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Multiperipheral-like integral equations are derived from inclusive sum rules by making
direct approximations on inclusive cross sections. As a result, the physical basis of multi-
peripheral dynamics is clarified. Furthermore, the Regge behavior for exclusive processes
and the scaling property of inclusive cross sections can be considered as consequences of
our dynRIQlcal approxHxlatlons

I. INIODUCTION

The importance of sum rules' for inclusive cross
sections has been emphasized recently by Vene-
ziano. ~ He has demonstrated that these linear re-
lations between discontinuities of multiparticle
amplitudes are equivalent to a whole set of non, -
linear unitarity equations. The purpose of this pa-
per is to demonstrate that dynamical- equations can
be derived from these sum rules by direct approx-
imations on the inclusive cross sections. These
equations resemble the ordinary multiperipheral
integral equations, '~ and arguments are given to
indicate that they are actually more general.

The necessaxy approximations are suggested by
the apparent lack of long-range correlation effects
and the observed strong cutoff in transverse mo-
menta in high-energy particle productions. Simi-
lar but stronger assumptions are needed in the ox'-

dinary formulation of multiperipheral dynamics. s'4

The virtues. of our present approach are the fol-
lowing: (I) Approximations are made only on ex-
perimental observables; thus any error committed
can in principle be controlled. (2) Since we do not
work with general production amplitudes, we avoid
cex'tRln unnecessRry dynamical approximations Rs
well as achieve great kinematic simplifications.
(2) It provides a more definite procedure for in-
jecting the concept of short-range correlations.
(4) It could lead to new techniques for studying
properties of inclusive cross sections. Since we

are able to derive general integral equations,
which include mqltiperipheral equations Rs special
cases, this approach exhausts the complete dynam-
ical contents of the multiperipheralism. In partic-
ular, both the Regge behavior for exclusive pro-
cesses Rnd the scaling propex'ty of inclusive pro-
cesses' are consequences of our dynamical consid-
erations.

We introduce notations and review inclusive sum
rules in Sec. II and then state our dynamical ap-
proximations in Sec. III. These general assump-

tions are sufficient for us to construct dynamical
equations based on the sum rules. However, in
order to avoid kinematic complications, we shall
employ more specific assumptions in Sec. IV to
derive a Chew-Goldberger-Low-type multi-Regge
integral equation. A simplex integral equation for
the Reggeon-Reggeon absorptive amplitude will
also be introduced. Finally, we contrast the pres-
ent approach with the conventional multiperipheral
dynamics in Sec. V.

II. INCLUSIVE SUM RUI.ES AND KINEMATICS

Let T„„bethe connected part of the scattering
amplitude for the process

g+ 5+ 1'+2'+ ~ ~ ~ +n'- C'+ b'+ I +2+ ~ ~ ~ +n

and let 2ia„be the discontinuity of T„„in the
missing-mass variable squared

It has been shown~ that D„, in the forward limit of

p, =P, , p, =j,., P, =P, , is directly related to the
n-particle inclusive cx oss section by

=(2v) '"a 'i'(s„, m, ', w, ,*)
Qd4P g+(P 2 ~2}

».(P.;Pg~ . P.~pa),

b(x, y, s)= x'+ y'+ z ' —2(my+ yz +ax) .
Inclusive sum rules are bnear relations between
D„and D„„, n= 1, 2, . . . . For instance, in the
case Gf D2 Rnd B3~ 448 sum rule reads

(Pa PB)pDB(pat Pit P20 Pb)

=(p -P6),D' +(2v) '
J I d' P~'(P'3-v*)( P),

DS(P~P P1 I P2 I PS 1 P5) t

(2.2)
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where

~e Pa +ps ~ ~8 ~X +~2 ~

and D,"is the single-particle-state contribution to
the discontinuity D, :

D'"(P. 'Pi P*~Pb)= vI&(u, &- I, 2, 2}I'

&6'((P -Ps}' -u'&. (2.S)

The derivation of these sum rules can be found in
Refs. 1 and 2, and they become obvious when the
D„'s are considered as (unnormalized) energy-
momentum density functions. With P„P„P„P,

fixed, D, describes the (relative) probability den-
sity for finding a particle with four-momentum p„
and Eq. (2.2) simply expresses the energy-momen-
tum conservation conditions. Conversely, if all
D„'s satisfy inclusive sum rules, Veneziano' has
demonstrated that Eq. (2.1) follows. These linear
relations then become statements of unitarity; and
they can obviously be used as a starting point for
dynamics based on the direct-channel unitarity.

It turns out that if we use a two-particle-corre-
lation approximation, we need only to work with

D, and D, . It is convenient to first convert Eq.
(2.2) into an invariant equation by dotting the vec-
tor p -P&, and we obtain

M -M' +
D, (P.; P„P, ; P ) = & ' + *(2~) '

J
d'9 ('(D ' —v')( I & (P. P, P, P, ; P )' (2.4}

s,~, M 2 (2.7)

with 0 &M'/s, b &b.m, t~=(p, —p,)', t, =(pb —pm)'

held at very small values. This is often referred
to as the double-fragmentation region. ~ In the lim-
it 6-0, it becomes the "di-triple" Regge region.
In terms of the rapidity variables, the limit (2.7)
corresponds to Iq, I, Iq, I small and y. —y, =O(a),
y, —y, =O(bb), as Y=y, -yb=lns, b-~. The integra-
tion volume in (2.6) is roughly a cylinder with its
length increasing with s„as Y -O(i().

III ~ DYNAMICAL APPROXIMATIONS

We next state a "sufficient" set of dynamical ap-
proximations which will allow us to construct inte-

where

M =(p„-p((), M' =(p„-ps -pb) . (2.5)

Equation (2.4) indicates that D, is a "weighted"
average of D, over the phase space of P, . The
weighting factor is simplified due to the experi-
mental observation that transverse momentum of
every particle produced at high energies is small
so that both D, and D, have a built-in cutoff in q, '.
This can best be done by parametrizing the phase
space by collinear variables' (the rapidity vari-
ables in particular). Let P, = (p,'coshy, , q;,
p', sinhy, ), p', = (p'+q", )'", where q; = q; = 0, and
y, » y, . Equation (2.4) can then be written as

M -M'

(2.6)

and the limits are further restricted by the energy-
momentum conservations and the experimentally
observed cutoff in Iq, I.

We shall concentrate in this paper on the region

gral equations. They are meant to be an illustra-
tion on the essential ingredients that are necessary
to turn the exact sum rules into apPxoximate dy-
namical equations. These approximations will be
made precise in Sec. IV and they will also be ex-
amined more critically later when we contrast the
present approach with the conventional multipe-
ripheral dynamics.

(a) Strong ordering. The integration region in
Eq. (2.6) can be divided into three regions, A:
Iy, —ysI=O(h), B: Iy, —y, I= O(t(,), C: y, EpA, B, such
that the contribution from the region C in (2.6), in
the limit (2.7), can be neglected.

(5) Tbvo-Particle correlation Db can be. approxi-
matedxo by

D3 +(P((0 Pl 9 PS}D2(pg Pll Pblpll pb)

(S.la)

DS=D2(p„' p~, P3 g pb —pm)F(pb i ps i ps) in B.
(S.lb)

Both approximations are motivated by the appar-
ent lack of long-range correlation effects at high
energy and the observed strong cutoff in transverse
momenta. Approximation (a) can be understood by
noting that, for Iq, I

=0, the weighting factor
(M' —M" +tL')/M' in the integrand of (2.6) is of
the order 1, 0, 1 in the regions', C, B, respec-
tively. We see that the cutoff in transverse mo-
menta automatically provides a kinematical cutoff
for the y, integration. (a) corresponds to replacing
this smooth damping by a sharp 0-function cutoff.
In practice, this choice is awkward, and, as we
shall see in Sec. IV, it can be reformulated with
the help of some rapidly decreasing functions, such
as Regge residues. Its counterpart in the ordinary
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multiperipheral dynamics is the arbitrary neglect
of the so-called "crossed-graph. " Our approach
makes this concept precise, and it can in principle
be checked more directly by experiments. " This
point will be elaborated further in Sec. V.

Approximation (b) specifies the nature of the
short-range correlations. Eq. (3.1) is, strictly
speaking, attainable only in the limit 6- 0. In or-
der to keep 6 small but finite, we should interpret
(3.1) as a vector equation, with D, and D, being
column vectors, i.e., we need to keep terms to
higher orders in (M'2/Mm). In the case of the
multi-Regge model, this corresponds to keeping
lower -angular -momentum branch points so that
the integral equation derived becomes a coupled-
channel problem. This, of course, will not cause
any conceptual difficulty, aside from increasing
the notational inconvenience. We shall, therefore,
keep ourselves to a single-channel analysis in what

follows, although the content is actually more gen-
eral. The physical basis of the two-particle-cor-
relation approximation will be discussed in Sec. V.

IV. CHEW-GOLDBERGER-LOW EQUATION

The multi-Regge integral equation proposed by
Chew, Goldberger, and Low' (CGL) can be derived
by a specific choice of the two-particle correlation
function. Before doing so, we first take care of
the problem of replacing the 0-function cutoff in
the y, integration. We note that in the limit (2.7),
the amplitude T(a, b 1, 3, -2) (which enters into
D~,'~) has a double-Regge expansion

T(a, b-1, 3, 2) =G(t~)[(p, +p, )'/p']" «» p(t, , cosQ~, t, )

D3(pu 9 Pg $ P2 0 Ps t Pb}= I G(t,}I

' B.(q„qg i Q„qg}

x
I p(t. , cost... t.}I'

x &(Qg~ Qg~ Q~) I G(tg) I'~

(4.4b}

in regions A and B, respectively. In (4.4a), we
have Q, =p, -p, -p„cosp»=Q, ~ Q, , and, in

&(Q., Q„Q.) = [(Q.—Q,)'/v']""" '. (4.5)

Since these two regions do not overlap, there are
no difficulties in defining B, and in introducing Q, .
We next make the ansatz that the definition of 8,
can be extended to all values of its arguments ana-
lytically, and assume that this extension leads to a
smooth function in the region C. We see that when

substituting (4.4) back into Eq. (2.6) the 8-function
cutoff can be removed by virtue of the rapid damp-
ing of the factor

I P I'. This will lead to an integral
equation for B„and our ansatz can then be veri-
fied a posteriori upon solving this equation.

We now return to a four-vector integration and
find~3

becomes

Ds(p. i Pg Pm Pg t Py) =
I G(t g) I'&(Q. ~ Qg, Q s)

x
I p(t~, cosp~~, t~) I

x B,(q„q.;q. q )IG(t, )I',

(4.4a)

x[(p, +p, )'/p, ']""G(t, ), (4.1)

where cosp» = p, p, and is related to the Toiler
angle. 4 G(t, ) and p(t, , cosp~, t, ) are single- and

double-Regge vertices, respectively. They are
known to be rapidly decreasing functions of t, and

t„as t„t,- -~, and can thus be used to damp
out unwanted contributions in (2.6}.

First, we introduce new variables Q, =P„Q,
= p, —p» Q, = p, —p, , Q, =p„and define new func-
tions B, , Bt20I for t, =Q,' and t, =Q,' small, by

P2 pb)=IG(t '}I'B(q. Q| Q2 Qi)IG(t )I'~

(4.2}
Dm (p. & px P, &ps)

=
I G(tg) I' Bm (Q. ~ Qxi Qa Qs) IG(t2) I'.

(4.3)

Q ~Q)
p ~

I
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Q ~Q
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Q2~ Qb
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I 2

Qo
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The CGL equation corresponds to the choice that
the correlation function is given by a "helicity-
pole" contribution, '~ in terms of which Eq. (3.1)

FIG. 1. (a) Schematic representation of a multiperiph-
eral-like integral equation with two-particle correla-
tions. (b) The same integral equation in the conventional
"one-sided" form.
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&(Q. , 1„'Q„Q,) = -'(») ' I&''tP(Q. , Q„Q,) I t(& „&OIt„&,) I'&'((0, -0,)' -p') &,(Q„Q„'Q„Q~)

+&2"(Q., Ql; Qm, Qt)

+2(») ' J(d'Q&&2(Q. , Ql'Qs Q2)~'((Q2-Qs)'-u')tP(f„cosy», t,}I'If(Q„Q„Q,),

(4.6)
where

&2"(Q. Q tQtmQt)t=tt&(Q. Ql Qm)IP(~t cos4'l2 ~2)l'~'((Qt+Qm)'-u'}&(Qt Qm Qt). (4 7)

Etluation (4.6) is a "two-sided" integral equation, schematically represented by Fig. 1(a). Either by sym-
metry or by direct iteration, one can show that those two integrals on the right-hand side of (4.6) are
identically etlual. We can thus rewrite (4.6) in a more conventional "one-sided" form [Fig. 1(b)]:

B.(Q. , Q„Q., Q.) =~/(Q. , Q„Q., Q, )

+(tw) ' I&'Q&(Q. , Q„Q,)It(&„&»t„,&,) I'&'((0, - )'It-w H4(Q 'Q„Q„„Q,) .
(4.8)

Aside from the fact that both Q, and. Q, are contin-
ued off the mass shell along helicity poles, this is
precisely the CGL integral equation.

Etluation (4.8}possesses the key characteristics
of all (forward} multiperipheral integral etluations:
The kernel H [ P ~

'5' is invariant under simultaneous
Lorentz transformation of Q„Q„Q, (with Q, and

Q, fixed). Using the same reasoning as Amati,
Bertocchi, Fubini, Stanghellini, and Tonin (ABFST)
and CGL, and noting the symmetry of B„we may
conclude that, as s~, M'-~, 8, is of the form

&, -(~') "'"&.(f„p. Q./Q, Q„P, Q, /Q, Q„ t,},

pursue it here.
We close Sec. IV by deriving another integral

equation for the forward "reduced" Reggeon-Reg-
geoll absol'ptlve pal't A(Q1 t Qm), which ls d jrectly
related to the two-particle inclusive distribution in
the di-triple Regge region. " For pedagogical rea- '

sons, we shall write the integral equation in terms
of another (unreduced) function'A(Q„Q2) defined
by

[(Q +Q )2/it 2] ma(tl)g -[(Q ~ Q )8/P I]-2a(tm)

(4.10)

(4.9)
[(Q +Q )a/~2]a {tl) a2 (tm+)ga (4.11)

where n„(0) is the largest eigenvalue of the horn'o-

geneous equation. Experience also tells us that B2
is a rapidly decreasing function of t, and t„ thus
justifying our initial ansatz. Furthermore, by ap-
plying the same analysis to (D„D,) and (D„D,),
we may proceed to demonstrate the Regge behavior
and the scaling property of exclusive and inclusive
processes, respectively. Since this has been dis-
cussed in great length elsewhere, "~we shall not

Sta'rting from (4.8) and making the kinematic ap-
proximation

&(Q., Qt Q, )=[(Q.-Q, )'/v'1'"'"'

= [(~,./V')(Q. +Q.}'/(Q, +Q.)*] "",
(4.12)

where tt» = p'+(Q, -Q,')', a straightforward manip-
ulation then yields [Fig. 2(a}]

+(2v) ' J"&'Q, ~'((Q, -Q, )' I*)I ~(f„cos-~... t.)1'[(~,./I ')(Q,.Q.)*/(Q..Q.}']'"&'*'~(Q„.Q.),
(4.13)

with

(Ql; Q, ) = ttl p(t„cosptl, t, ) I'5'((Q, +QII) -11').
We can also write a two-sided equation for A. to
exhibit the symmetry of the problem [Fig. 2(b)].
A standard analysis~ then shows that A. has an as-

ymptotic behavior'
g(t )[(Q +Q )'l"""g(& )

as well as a lower term associated with the branch
cut at

J=2e(0) -1.
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FIG. 2. (a) Integral equation for a Reggeon-Beg@eon
absorptive part. (b) The same integral equation in the
"two-sided" form.

V. DISCUSSION

To clarify further the advantage of our present
approach, we briefly review the assumptions nec-
essary for the formulation of the multiperipheral
models. The key theoretical input is the unitarity
relations, e.g.,

where

(5.1)

One immediate consequence of this result is that
the interplay between this branch point and the out-
put Regge pole demands the vanishing of the triple-
Pomeranchon contribution to inclusive cross sec-
tions at tile forward limit& if c(I (0) = 1.

(ii) p &qq &qq «qq &p (5.4)

This phenomenon is often referred to as a stxong
ordering, and it is generally believed that this will
allow us to make a meaningful approximation
where production amplitudes arg subdivided into
products of functions, each one depending on only
a small number of neighboring variables in (5.4).
However, this procedure is not as trivial as it
seems because (a) the integration in (5.1) covers
the whole phase space, and (b) a single factoriz-
able approximation is highly unrealistic. %'6 shall
explain the point (a) first.

The usual procedure (which has never been
spelled out in published articles) is to first approx-
imate

T3 „(P~+P() qI+ q3+ ' ' ' +q„)

yg& /~
2.»'(&)» q))„& qX »~ ~ ~ qI 'p )

(5.5)

where T2'„ is large only in the region defined by
(5.4) and it is strongly damjed once one moves out
of this region. This is supposed to be accomplished
by properly choosing the "cell*' function in the fac-
torizable approximation for T,"„, e.g., the rapid
vanishing of Regge residues as the momentum-
transfer variables become large and negative.
(P(fX,)) represents the n! possible orderings of q',"s;
and "s.o." stands for strong ordering. Substituting
(5.5) into (5.1) and using the fact that all particles
ax'e identical, we find

ImT2 2= 2 . d4'„T2' „' +X~ (5.6)

Q+6~ 1+2+ ' ' '+Pl (5 2)

is large only if momenta q, 's satisfy the conditions

(i) g, ~' small, for all i = 1, 2, . . . ,

so that there exists a permutation (A.,)= ]i/& and

and we assume all particles are identical. The im-
portance of the production mechanisms in under-
standing the dynamics of two-particle amplitude
has long been recognized; however, progress has
been slow because of the difficulties of handling
many -particle systems. Multiperipheralism is a
scheme in which we rely heavily on the experimen-
tal information that the mean transverse momen-
tum of any particle produced at high energy is
small and nearly independent of the total energy.
This provides a kinematic simplification because
particles produced can now be ordered sequentially
according to their longitudinal moments, and the
amplitude T, „ in (5.1) for the reaction

X= 2 Q —, d4&„X„&
1

tl= 2

(5.7)

where X„is the sum of n!(n! -1) cross-product
terms. Clearly, if the term X ean be ignored, an
integral equation for ImT, , ean then be constructed
if a factorizable approximation is made for

~
T2'„~'.

This is usually assumed to be the ease. However,
the rapid increase of the number of terms in X„
makes this assumption somewhat dubious.

We would like to contrast the above procedure
with our approximation (a). Although they apply to
two slightly different functions, the physics in-
volved is clearly related. In the ordinary approach,
if an elx'01 has been committed 1t ls not eleax'
where the source is because it could have been the
result of the removal of X, or because (5.5) may
be incorrect. To the extent that avoiding the de-
tails of production amplitudes is the essence of
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studying the inclusive processes, we find our ap-
proach much more direct and precise. %'e never
have to talk about T, „, and approximations are
made only once on physical observables. Further-
more, if it turns out that the contribution from the
region C cannot be ignored, its magnitude can be
obtained from experiments. With this knowledge on
hand, it can then be grouped into the inhomogeneous
term of the integral equation, and its effect can
then be analyzed. This presumabably is the case if
Pomeranchon is not a factorizable singularity.
Since we are at the present only interested in the
structme of our dynamical equations, we shall not
discuss this question here.

The second point (b) is common to both approach-
es. One normally assumes T,"„is given by the
multi-Regge expansion appropriate for the limit
(5.4). If only the leading trajectory is kept, one is
naturally led to a single-channel problem, which is
identical to our choice of keeping only one helicity
pole. This turns out to be a bad approximation be-
cause the average adjacent subenergy (q&, +qq„,)'
is never too large. The remedy clearly hes in ei-
ther keeping several nonleading singularities, or
making a more realistic factorization approxima-
tion involving more than two particles. One such
attempt is the use of the ABFST model with a high-

energy tail in the n-n. amplitude.
As we have emphasized, the important fact to

remember is thai as long as a meaningful factor
gaIion approximation can be made, and as long as
the contribution from the region C is asymPtoIi-
eal/y negligible, the "Regge" pole structure of our
solution is then guaranteed. Modifications from
either the region C or a more realistic factoriza-
tion approximation will only change the numerical
details of our results, but not the general features.
(In terms of the partial-wave integral equation,
these modifications can change the locations and
the strengths of the 8-plane singularities of the
kernel, but they will not affect the Fredholm na-
ture of the integral equation. ) The usefulness of
the inclusive sum rules does not merely lie in
their ability to rederive multiperipheral-like inte-
gral equations but in the fact that they are exact
relations that can be used to discuss dynamical
questions such as in the pionization region. This
and other related questions will be discussed else-
where.
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