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in the study of dual-resonance models. It is par-
ticularly useful for studying the parity content of
possible self-bootstrapping configurations in the
evasive case (i.e., when all trajectory functions
are different). The price one pays for this sim-

plicity in parity is that kinematic constraints be-
tween different amplitudes must be enforced "by
hand. " However, a number of conclusions can be
drawn about any particular model even before these
kinematic constraints are enforced.
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We consider finite-moment sum rules in the rest frame. We show (a) that the usual deriva-
tions are incorrect for kinematical reasons, and (b) that the disconnected' contributions are
large. The largeness of the disconnected contributions is an advantage since they alone can
be measured. We derive three pion sum rules, one of which implies the first spectral-func-
tion sum rule in the chiral limit; the derivation leads naturally to a proposal to test the spec-
tral-function sum rule experimentally. We also derive five nucleon sum rules, from which
we calculate the I=1 charge radius of the nucleon and the slopes at threshold for 0(e+e -NN)1

&

and o(e+e NA)1 &.

I. INTRODUCTION

After nearly ten years of current algebra, we
still know very little about local current commuta-
tors. The chiral charge algebra is (at least in
Lagrangian models) not affected by a large class
of symmetry-breaking interactions, but the local
commutators may be quite dependent on the details
of hadron interactions. As a result, it is difficult
even to conjecture plausible forms for the local
commutators. A second obstacle is that the infi-
nite-momentum-frame method, which has been
used successfully to study the charge algebra, can
only be applied to a restricted class of local com-
mutators. Commutators involving spatial current
components are the most likely to depend on the
detailed nature of hadron interactions, and they
are also the least accessible to investigation by
the infinite-momentum-frame method. '

Local commutators are more difficult to study

than global commutators, but there is potentially
much more to be learned from the local commuta-
tors. The equal-time commutators of axial charges
have been used to calculate axial-vector form fac-
tors at zero momentum transfer. ' From the local
commutators we could potentially learn about the
full momentum dependence of weak and electro-
magnetic form factors.

Here we study local commutators by means of
rest-frame, finite-moment sum rules, which ap-
ply to all species of local current commutators.
Such sum rules were first.used to show that re-
sults previously obtained from SU(6) symmetry
could also be obtained from current algebra. '
More recently they have been used to attempt to
distinguish between quark-model and field-algebra
commutation relations. '

In addition to the particular results to be pre-
sented in this paper, there are two points which we
wish to establish. The first is purely kinematical:
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The usual method of deriving finite-moment sum
rules from commutators of multipole operators is
in general ambiguous and incorrect. The usual
manipulations with multipole commutators are
only formal, since they involve meaningless quan-
tities such as 5(0). When a well-defined procedure
is followed, the orbital angular momentum enters
in ways not appreciated by the naive formal argu-
ment. Several well-defined sum rules may corre-
spond to a single sum rule derived by the formal
method, and the formal sum rule is not in general
correct. A simple alternative method for deriving
finite-moment sum rules is presented, which is
used throughout this paper.

The second point has to do with disconnected
contributions, in particular, the pair and semi-
connected contributions (the terms are defined in
Sec. III). Perhaps because they do not contribute
to sum rules derived by the now familiar infinite-
momentum-frame method, there has been a ten-
dency to overlook their presence in rest-frame
sum rules. ' In the examples considered below,
we show that the disconnected contributions are no
less important than the familiar connected contri-
butions. Furthermore, this is an advantage since
it increases the usefulness of the sum rules. The
connected contributions are measurable in principle
but not in practice (in general one would have to
observe the decay of a many-hadron state into a
nucleon and a lepton-antilepton pair). Only the
pair contributions, which can be measured in elec-
tron-positron colliding-beam experiments, are
directly accessible to twentieth century experi-
mental physics. ' For this reason, it is fortunate
that the pair diagrams are enhanced by kinematical
factors in the sum rules involving spatial compo-
nents (see Sec. V).

The plan of the paper is as follows.
In Sec. II we criticize the formal use of multi-

pole operators to derive finite-moment sum rules
and propose a simple alternative method.

In Sec. III we work through a purely theoretical
exercise, a sum rule to which only the semicon-
nected terms contribute. We also introduce the
techniques to be used in Secs. IV and V.

In Sec. IV we derive three pion sum rules from
the three species of local SU(2) current commuta-
tors (time-time, time-space, and space-space).
In the limit of exact SU(2) S SU(2) with m„=0, one
becomes Weinberg's first spectral-function sum
rule, ' while the other two put constraints on anom-
alous contributions to the local commutators. The
finite-moment sum rule from which the spectral-
function sum rule emerges may be used to study
corrections to the spectral-function sum rule due
to SU(2)SSU(2) breaking. Furthermore, the der-
ivation leads naturally to a proposal for experi-

In this section we only discuss kinematics, but
we nevertheless obtain a rather surprising result.
We find that the usual derivations of finite-mo-
ment sum rules are ambiguous and incorrect. We
then present a method which is simple and unam-
biguous, and which is used in the remainder of
this paper.

We first review the usual argument, taking an
example considered in Ref. 4. The SU(2) electric
dipole operator is (at t=0)

a
4

d'xx'V', (x), (2.I)

and the magnetic quadrupole operator is

M,"= d'xx' xxV, x (2.2)

The angular momentum and parity of these opera-
tors is J =1 and J =2, respectively. Their
equal-time commutator, deduced from the local
current commutator

is

[V', (x), V,(0)] =i@,6(x)V,(x)+. (2.3)

[z,', ~", ] =te.„jld'xx*x '[xx V, (x)]'+ . .

(2.4)

Extra terms in (2.4) would be due to a third-de-
rivative Schwinger term in (2.3); only a third-de-
rivative, operator Schwinger term could contrib-
ute to the sum rule that we will discuss.

The sum rule is derived by takirig the matrix
element of (2.4) between nucleons at rest and in-
serting a complete set of intermediate states:

2 0 + dxx x~x&&V~x N+ 0 +

=Z&N, (&, +)I&,'ls&(~IM"IN, (0, +)&-[E,'-M"j.
. n

(2 5)

lN, (p, s)) is a nucleon state of momentum p, iso-
spin component T, = t=+—,', and spin component

mentally testing the saturated spectral-function
sum rule. '

In Sec. V we derive five nucleon sum rules from
the three species of local SU(2) current commuta-
tors. Saturating the sum rules with the leading
nucleon resonances, we calculate the nucleon iso-
vector charge radius and the slopes at threshold
for o(e'e N-N), , and o(e'e —NE), , We predict
that the cross section near threshold for production
of isovector nucleon-antinucleon pairs is of the
order of magnitude of a pointlike nucleon. "

II. AN UNEXPECTED PROPERTY OF
MULTIPOLE COMMUTATORS
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S3= s = +—,', no rma, li zed by

(N, (p, s)IN, (p', s')&= (2w)'5„,5„,5(p -p').
(2.6)

Since F. and M are integrated quantities, they con-
serve spatial momentum, so the intermediate
states In& must be at rest. Then by the Wigner-
Eckart theorem, the angular momentum and parity
of the states In) is restricted to be Z~ =-, . Thus,
it seems plausible that the sum rule may be satu-
rated by the "second" resonance, N*(1520}.'

The derivation just presented may appear to be
clear and correct. But we will show (a) that it is
ambiguous, since it does not really imply a unique

sum rule, and (b) that it is incorrect, since none

of the sum rules related to (2.5) have the properties
which (2.5) appears to have. In particular, the
sum rules related to (2.5) have contributions from
states of positive and negative parity and of angu-
lar momentum —,

' and —,', so that saturation with just
the N*(1520) is not plausible. (In subsequent sec-
tions we emphasize the importance of disconnected
contributions, but here we are discussing'only the
connected contributions. )

The remainder of this section is in three parts.
In part A we review the kinematics of matrix ele-
ments of a single multipole operator; we find that
the formal arguments are correct. In part B we
consider multipole commutators and find that the
formal arguments are not correct in general. In

part C we present a simple alternative method for
deriving finite-moment sum rules.

We reassure the reader in advance that our re-
marks do not apply to the nonrelativistic sum
rules of atomic and nuclear physics. This point
is discussed briefly in part B.

~

~

d'p2, ( (p)IE'Ix(o)&= d"„((p)lv'Ix(o)&2w' p=0

(2.7)
The momentum dependence of lo(p)& may be dis-
played by using the Lorentz boost operator, "

lo(p)& = (m./P. )'"e ""Io(o)&
=r1 - f K p/m. +O(P')]lo(O)&, (2 6)

where g, = (p/I pl) sinh '(I pl /m, ). Then

, (o(P) Iz"Ix(5)&
= —(o(o) Iz'v'Ix(o)&.

2.9

The amplitude in (2.9) is well defined. The oper-
ator K"V' has J = 1, so by the Wigner-Eckart
theorem (2.9) vanishes unless X has JP =1 . This
verifies the usual argument. From (2.7)-(2.9) we

see explicitly how the orbital angular momentum
enters the problem, a feature which is obscured
by the usual, formal argument and which will be
important in what follows.

A. Matrix Element of a Single Multiple Operator

Consider, for example, (o(0)IE"IX(0}), where

lv(0)& is a, scalar meson at rest, IX(0)) is a state
at rest whose angular momentum and parity are
to be determined, and E" is the electric dipole
operator, (2.1). For o, J~=O', and for E", dp =1,
so by the Wigner-Eckart theorem, IX) must have
J =1-

The conclusion is correct, but it is necessary
to be more careful in establishing it. With contin-
uum normalization as in (2.6), (o(0)IE'IX(0)& is not
a well-defined quantity, but is proportional to (a
derivative of) 5(0). We obtain a well-defined quan-
tity by considering fd'p (o(p) IE'IX(0)). Using the
definition (2.1) and translation invariance, we have

8. Multipole Commutators

Consider the commutator (2.4) between protons:

(N (p, lMx)l(, ININ (p, +))=q Jd x(x )
' x'(N (p, +)IV (x)IN (p, +)): (2.10)

Equation (2.10) states the equality of two distributions; to obtain an equation in the ordinary sense, we may

let p, =0 and integrate on p, . Inserting a complete set of states and using translation invarianee, the result
ls

=-x"'g Jq'qqp (,', q(p-q))(q", q(q)) &N(p, x)IIv', In(q)&&n(q)llv'IN (p, +)&

82
5p —q 5q N p+ V'nq nq V'XO+

(2.11)
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To evaluate (2.11) it is helpful (except when n is a single nucleon, which case must be considered separate-
ly) to use current conservation

&~lv'I»=,'" E
~ &~l~ I», (2.12)

which is correct to lowest order in weak and electromagnetic intex actions. Calculating the neutron contri-
bution separately and using (2.12) for the other contributions, we perform the p and q integrations in (2.11),
ob ta1nlng

,&P,(P, +)IV', IX,(O, +)& =«'"g —,, &N(p, +)IV!In(0)& (n(O)IV' IX,(O, +)&

+, . &N,(q, +) IV' In(q)&&n(q)l V!IN,(0, +)&
q=o

+ (neutron contribution).

[There is indeed a neutron contribution; we will verify its presence below when we examine (2.13) in the
free-field-theory case. ]

Except for the neutron contribution, the first term of the commutator in (2.13) is what we expect from
the formal manipulation of the multipole operators. The factor «"~(s'/sp'sp')&N(p)IV!In(0)& allows n to
have J~ =-,', —,', and (n(0)IV'IN(0)& allows J~ = -,', a, so only states of J =-', can contribute. The big sur-
prise is from the second term of the commutator, because s'/Bq'sq' acts on both matrix elements The. con-
tribution we expect from the usual argument is indeed present, i.e.,

82«"&&,(o, +)IV'In(o)&. .. , &n(q)IV', I&,(0, +)&
q=0

(2.14)

but other contributions are also present, for instance,

""—.N, (q, )lv'I (q)&, , & (q)lv!I~,(o, )&
BQ' 0

Using the Lorentz boost operator (and the fact that &N(0) I[V', K']in(0)& =t&N(0) IV' In(0)&= 0, which follows
from m„tm„andcurrent conservation), (2.15) may be rewritten as

"&Ã,(0, +}IV"K'ln(0)&&n(0)l(KxV )' IN, (0, +)&.Slp'
(2.16)

The operator V'K' has J~ =0', 2' while KxV has J~ = 1', so (2.16) allows contributions of intermediate
states with J'" =-,",—,", in contradiction of the formal argument. Other terms in (2.13) allow contributions
from intermediate states of J"= —,', -'," so that altogether contributions of J~ = —,",p, —,"are allowed (with iso-
spin I= —,)." Since the n (1236) and the neutron contribute, saturation with just the N*(1520) is implausible.

In a field theory of free nucleons, the sum rule (2.13) is a trivial identity, and the neutron contribution
is necessary to satisfy that identity. With the normalization (2.6), the free-field isoveetor form factor is

&N, (p, +)IV,"IN,(q, +)&= ~(m'/p, q,)'"n(p, +)y"u(q;+),

and the left-hand side of (2.13) is found to be -3t/4m3. On the right-hand side of (2.13) the only inter-
mediate states are the nucleon and the nucleon pair (i.e., Z graph —see Sec. III). The neutron contribution
1S

. N, p, + V~X q, s N q, s V'N, O, +
Q=O

and the nucleon pair contribution (which appears in the cross term of the commutator) is"

(2.17)

2«'"'g. .. , , , &IIIV'IX,(O, +)F7 (q-p, s)&&Ã (q-p, s)~(p, +)IV', in&
Q' P

P=q q=O

(2.18)
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so that the sum rule is completely satisfied by the
neutron contribution, eontradieting the formal
argument which claims that only J = —,

' contribu-
tions are allowed.

The above example taken from a relativistic
free-field theory provides a clue to why the prob-
lem discussed here does not appear in nonrelativis-
tic quantum mechanics. The nonzero contributions
in the above example were due to derivatives acting
on the relativistic factors, m/p, . In a nonrelativis-
tic theory of free nucleons, these factors are not
present and there is no contribution from the neu-
tron or anything else. This is also true of non-
relativistie theories of interacting particles, be-
cause a nonrelativistic state depends on its total
momentum only through the trivial phase factor
which specifies the motion of the center of mass.
Commutators of multipole operators taken between
momentum eigenstates yield interesting sum rules
because the relativistic amplitudes have additional
kinematical and dynamical dependence on the total
momenta; the corx'esponding nonrelativistic sum
rules embody nothing more than conservation of
momentum. An interesting class of nonrelativistic
sum rules (e.g. , that of Thomas, Reiche, and
Kuhn) is obtained by considering the expectation
value between atomic or nuclear states of the com-
mutator of a multipole operator with the time de-
rivative of a multipole operator. We have checked
that these sum rules are not affected by the prob-
lem raised here. The kinematical problem dis-
cussed in this section arises only in relativistic
field theories.

In (2.13), except for the neutron, all the unex-
pected contributions (J'~ = —,",—,",—,") appear in the
cross term of the commutator and therefore have
isospin I= —,. This is because we proceeded from
(2.10) by setting p, =0 and integrating on p, . If in-
stead we put p, =0 and integrate on p„weobtain a
dynamically differen& sum rule, in which the unex-
pected contributions appear in the first term of
the commutator and therefore have isospin values
I = -„-,'. Thus, the naive sum rule (2.5) is ambigu-
ous, in the sense that its precise form in the the-
ory of distributions (2.10) implies more than one
sum rule. This ambiguity suggests that there
might be a prescription by which the naively ex-
pected sum rule (with only J = —, contributions)
could be deduced from (2.10). Vfe will discuss in

part C why no such prescription exists.
The problem discussed here does not apply to

all multipole commutators. If the currents are
conserved and no higher moments appear in the
commutator than the first moment of the time com-
ponent or the zeroth moment of the space compo-
nent, then the naive argument turns out to be
valid. In particular, the Cabibbo-Radicati sum

C. A Simple Alternative Method

%'e present a simple, unambiguous method for
deriving finite-moment sum rules. This method
preserves the principal advantage of rest-frame,
finite-moment sum rules, which is the restriction
of allowed angular momentum and parity of the
intermediate states.

Consider a local, equal-time (f = 0) current
commutatox

[V"(x) V'(0)] = 5(x)C"'(x)+ ~ ~ ~

The three-dimensional Fourier transform is

(2.19)

d'xe '~ '"[V,"(x),V', (0)] = C,",'(0)+ ~ - . (2.20)

Take (2.20) between states of momentum p, and p„
insert a complete set of states, and use transla-
tion invariance to evaluate the integral on the total
three-momentum of the intermediate states. The
resulting sum rule exhibits the most general
three-momentum dependence:

rule, "which is deduced fxom the commutator of
SU(2) electric dipole operators, is not affected.
But our remarks do apply to the sum rule obtained
from SU(3) magnetic dipole operators. " The ef-
fect is perhaps not serious in this ease, since the
contributions which are correctly anticipated by
the naive argument, J = —,",—,", are more important
than those which are overlooked, 8 = —, , —, (pro-
vided we assume resonance saturation).

We have also studied these sum rules using unit-
normalized wave packets in place of the eontinuum-
normalized momeptum eigenstates treated here.
(The width of the wave packets in momentum space
must be small compared with the particle masses
in order for any multipole selection rules to be
present. ) In this case, the sum rules are well de-
fined, but they do not agree with the sum rules ex-
pected on the basis of the naive, formal argument.
For instance, the unique sum rule obtained by
taking (2.4) between wave packets is just a partic-
ular combination of the several sum rules which
follow from the equality of distributions, (2.10).
The contributions which are not anticipated by the
formal argument are due to terms in which mo-
mentum derivatives act on the shape of the wave
packets.

Finally, we remark that the inadequacy of the
naive argument is related to its failure to appreci-
ate the role of orbital angular momenta. The
naive expectation for the quantum numbers of the
states may apply to the moving states which appear
at an early stage in the calculation but not to the
rest-frame states which remain at the end of the
calculation. '6
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&p, lc„'Ip,&+ =Z[&p, lv, ln(p, +q)&&n(p, +q)lv", Ip, &
—&P, lv", In(p, —q)&&n(p, -q)lv,"lp, &]. (2.21)

Finite-moment, rest-frame sum rules are obtained from (2.21) by differentiating with respect to p„p„
and q at the point p, =p, =q=0.

This simple method may be used to retrieve the naive multipole commutator sum rules when the latter
are correct. For instance, the sum rule obtained from the commutator of two electric dipole operators
(of conserved currents) can be derived (cf. Secs. IV and V) by choosing p —= p, = -q = -p„p,= v = 0, and taking
the second derivative of (2.21) with respect to P' at p=0. [There are also other ways to obtain this sum
rule from (2.21).]

Examining (2.21), we can see why it is in general not possible to derive sum rules which fulfill the ex-
pectations of the naive argument following (2.5). For instance, from the first term of (2.21) we can obtain
the J = —, contributions expected from (2.5) by setting q+p, =o and calculating

~". . . ,, , 4&~,(P„+&Iv',ln(0)&&n(0&lv l&,(p„+)&]--
] ~-P2-0 (2.22)

But when this prescription is applied to the cross term in (2.21),
2

p, »», (&&,(0„+)IV I (p. - q)&( (p, - q)lv', I&,(p„+)&j (2.23)

we obtain unwanted, positive-parity contributions.
For instance, when 8'/BP,'BP,' acts on the momen-
tum dependence of the proton, l&,(p„+)&,and for
i =j= k = 3, we find by using the Lorentz boost op-
erators and the Wigner-Eckart theorem that the
intermediate states have J~ = ~".

Generally, we could derive the naively expected
sum rules if we could find two variables s, and s„
depending linearly on p„p„andq, such that (i)
&p, lv. ln(p, +q)& and &n(p, —q)IV. lp, & depend on s, but

not on s„and such that (ii) (n(p, + q) IV', Ip, & and

&p, lV', In(p, —q)& depend on s, but not on s,. Then
by taking appropriate derivatives with respect to
s y and s„wecould obtain only the desired contri-
butions from both terms of the commutator. But
it is clear that, except for special cases, no such
variables s, and s, exist, since the two matrix ele-
ments in (i) depend on the same three independent
variables as the matrix elements in (ii). There-
fore, only in special cases, such as the ones men-
tioned in part 8, can we construct the sum rules
which we would expect on the basis of the naive
formal argument.

III. AN EXAMPLE FROM THE ALGEBRA OF
CHARGES

En this section we consider an example which il-
lustrates the importance of disconnected contribu-
tions to rest-frame sum rules: ugly the semicon-
nected terms contribute. We also introduce the
kinematical techniques to be used in the subsequent

—&rr, (0) I
Q' In&&nl Q,' Irr, (0)&] .

(3.1)
If the exact SU(2)13 SU(2) symmetry were manifest
in the mass spectrum, (3.1) would be trivially sat-
isfied by the contribution of the scalar, isoscalar
chiral partner of the pion. But we assume that
SU(2) 8 SU(2) is spontaneously broken, so that m,
=0 and chiral multiplets do not appear in the mass
spectrum. Then the pion has no chiral partner,
and it is not evident how (3.1) is realized. We may
wonder whether (3.1) is only a tautology in this
case or whether it has physical content. This is
the problem which we now proceed to solve.

To illustrate the derivation of finite-moment
sum rules from local commutators, we will treat
(3.1) as a "zeroth-moment" sum rule, obtained
from the local equal-time (t =0) commutator

[Ao (x), A.' (0)]= 2 V,'(x)5(x) . (3.2)

We take the three-dimensional Fourier transform
of (3.2) and bracket it by pions [normalized non-
covariantly as in (2.6)] of equal and opposite mo-
menta:

sections, and, incidentally, we find theoretical sup-
port for Weinberg's remark" (in discussing Kr4
decay) that Bose symmetry must be maintained in
soft-pion limits.

The sum rule is obtained by taking the commuta-
tor of conserved axial charges between pions at
rest and inserting a complete set of states,

2&~„(o)I q, la, (o)& =g [&v,(o) Iq,'ln&&nl@' Iv, (o) &
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2(v, (p) [V', (w„(-p)&= J" d'x e ' ' " (v+(p) [[A', (x),A'(0)] [v+(-p)& . (3.3)

We insert a complete set of states, use translation invariance, and perform the integration on the total
three-momentum of the intermediate states, with the result

2&v, (p} I I'l lv, (-P)& = g[&v, (p} IA', ln(p+q}&&n(p+q} IA' lv, (-p)& —&v, (P) IA' ln(-p - q)&&n(-p -q) IA', lv, (-p}&].
(3.4)

(3.5)

In (3.4) the argument of the currents is (x, t) =(0, 0) and n represents a complete set of quantum numbers
except the total three -momentum.

Next we display the disconnected contributions. " When
~ n) contains a positive pion,

~n(p)& = [n'(p -k)v, (k)&,

then a matrix element (w, ~A" ~n) has a connected and a disconnected part,

& ~, (pi) IA" ln(p. }& = &v. (pi) IA" In(p. )&. + (»}'6(Pi -k}&QIA" ln'(p. —k)& (3.6)

where the subscript c denotes the connected part. When we substitute (3.6) into the sum rule (3.4), we find
four classes of contributions, which are illustrated in Fig. 1. The connected terms, Fig. 1(a), come from
the product of connected parts with connected parts. The "pair" (or g-graph) terms, Fig. 1(b), occur when
the intermediate state contains two or more pions; they come from the product of disconnected parts in
which different pions are disconnected in the two factors. The semiconnected terms, Fig. 1(c), come from
the product of connected parts with disconnected parts. Finally, the fully disconnected terms, Fig. 1(d),
come from the product of disconnected parts in which the same pion is disconnected in both factors.

We choose q = -p, so the intermediate states are at rest, and write the sum rule (3.4) with the structure
of the disconnected contributions displayed:

2&,, (p}~Vo~,, ( p)& =&[&,,(p) ~A; ~n(O)&&n(5) ~A ~,, (-p)&+&QIA', [v, ( p)n(0)& &n(O), ,(P) ~A0~Q&
n

+« IA', ln(-p)&&n(-p) v, (p) IA' Iv, (-P)&+ &v, (p& IA', lv, (-p)n(p)&&n(p) IA'IQ&

+(2v}'«2p}&Q IA', ln(O)&(n(0) (A (Q&] —[A', —A'j. (3.7)

In (3.7) and all subsequent equations, the subscript c is suppressed and all matrix elements are understood
to be connected. .

In (3.7) the fully disconnected contributions cancel between the two terms of the commutator. In general,
these terms are related to possible c-number contributions to the commutator. In Sec. IV we will encoun-
ter a sum rule in which the fully disconnected terms provide the familiar spectral representation for the
c-number Schwinger term.

We can regard (3.7) as a double power series in p and m, . Equating coefficients of like powers of p, we

obtain finite-moment sum rules, as discussed in Sec. II. Equating coefficients of like powers of m„,we
obtain sum rules reflecting the (presumably small) breaking of SU(2)ISSU(2)." Here we evaluate (3.7) to
zeroth order in p and m, ', which means we are studying the charge algebra in the limit of exact SU(2)
@SU(2).

To zeroth order in p, the connected and pair contributions must have angular momentum and parity J'~

=0+, while the semiconnected contributions have J =0 . Using the parity operator and with some isospin
rotations, (3.7) is

2+0(p) =g(]&v, (p) IA', ln(@&['+ )«IA', lv, (p)n(o)&[' —l&v, (p) IA'ln(o)&I' —I«IA-'Iv. (p}n(o}&l'
n

+ 2 Re[&Q IA' In(p)&[&n(p) v. (-P}IA-'lv. (p}& +&n(p) v.(-» IA: lv. (»&1»+ 0(p» (3.8)

where Re denotes the "real part. " (To avoid ambiguity later, we must include the p dependence, though

finally we will let p = 0.}
Using crossing symmetry for the pion with m„=0, p =0, the connected contributions cancel with the pair

contributions. The first term of (3.8} cancels with the fourth, and the second cancels with the third. Thus,
the existence of scalar mesons is irrelevant, and only the semiconnected terms remain.

The axial-vector current is conserved, so &Q (Ao ~n(p)& =(Q ~AO (n(0)& +O(p) can only contribute to zeroth
order in p if ~n(0)) is a state of zero energy Therefore, .~n& can only be a single-pion state. It may seem
that ~n& might be a many-pion state, but the sum on n would then include an integration on the relative pion
momenta. The constraint that ~n(5)& have zero energy means that only one point (the threshold) in the re-
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gion of integration can contribute. Unless there is a singularity at this point, the contribution to the sum
rule is zero. There is in fact a pion-pole singularity at the point, but its residue is proportional to the
m-m scattering amplitude, which vanishes to Eeroth order in nz, .'0

Now the sum rule is reduced to

I+O(p) =Re(«jA', j~, (P)&[&~ {p}~,(-P) jA'j~, (P}&+&v,(P)v, {-P)jA', j~.(p)&1]+O(» m. ) ~

The first factor ls

&II jA; j~,(p)& = f&2(Z,/&2m„)m„+O(p).

(3.9)

(3.10)

To calculate the other terms, we use Adler's "massive" partial conservation of axial-vector current
(PCAC) prescription, B„Af'= m. ,~E„P,', and calculate to zeroth order in m„.This procedure is equivalent
to Nambu's procedure, in which B„A"=0 and m, =0 (see Chap. 2 of Ref. 1 for a discussion of this point).

Using PCAC and the Lehmann-Symanzik-Zimmermann (LSZ) reduction, we have

&vy(p)v+(g) jAy jS'+{A)& +
~2 2 ~ 2 { 0 0 Opgg

x d~dydg e'~~+'"-"~Z„E.„E:,T D, ~ D y B, g A,' 0 (8.11)

where E is the Klein-Gordon operator and D, = B„AP'-We ca. n reduce (3.11) to a known three-point function
by the usual Ward-identity procedure of moving a derivative through the time-ordering, etc. However, the
result would be ambiguous since it would depend on which of the three derivatives we chose. The clue to
the solution is Bose symmetry: We must average the three possible Ward identities. This prescription is
well defined and it is also correct [if the reader is skeptical, he may glance ahead to the conclusion, Eq.
(3.14)]. The Bose-symmetric Ward identity is

2'(B„A,"(x)B„A"(y)B,A;(z)A,'(0)) = '(B„T(-A",(x)B„A"(y)B A;(z)A', (0)) B„+T(B„A,"( )Ax'(y)B„A,( )Az(00))

+B„T(B„A",{x)B„A"{y)A.;(z)Af(0)) —5(x,)jr([A~0(x), A,'(0)]B„A'{y)B,A; (x))

—5(y, )T([A'{y),A.,'(0)]B„A('(x)B,A; {z))—5(z,)T([A,'(z), A,'(0)]B„A~(x)B,A" (y))].

+O(m, ') . (3.12)

In (3.12) the "o commutators" (commutators of currents with divergences) are omitted since they do not
contribute to Eeroth order in m .

When we substitute (8.12) into (3.11) and integrate by parts, the cont'ributions from the first three terms
of (3.12) valllsh as p~ k~ g 0.(since no external-line insertions are possible). In h remaining three terms
we evaluate the commutators and reverse the LSE procedure, with the result

&m (p)m, (-p)jA'jw, (p)&= 3
'„,[&w„(-p)jV,'jw, (p)&+&v (p)w, (-p) jV,'jII&+O(p, m„}]SE.P.'"

g

1/2 + o(PI mg) t
Em~

{3.13a)

&z,(p)z, (-p) jA', js, (p)& =
3

„-,[&m, (p) j V,'jv, (p)&+&v, (-p) j V', jw, (p)&+0(p, m, )]
'w~o

-2$
gg2 + O(py m&)3F.ng.

(8.18b)

Finally, we substitute (3.10) and (8.18}into (8.9), with the conclusion that

The fact that only the semiconnected terms were important is of physical interest, since it dramatically
illustrates the dangers of neglecting disconnected contributions to rest-frame sum rules. Incidentall wevie
have seen in a purely tautological context the importance of maintaining-Bose symmetry while going to the
chiral limit.
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I

I
o

I

I

I

lations are

[V', (x, o), V'(0, 0)] =2V,'(x, o)C(x), (4 1)

[V', (x, 0), V'(5, 0)] = 2 V', (x, 0)~(x) + fC, 5(x),
8x3

(4.2)
2 V, x, 0)5(x), quark

+ P 0 0 0 field algebra.

(4.3)

(c) (cI)

FIG. 1. Contributions to the sum rules: {a) connected,
{b) pairs, {c) semiconnected, and {d) fully disconnected.
{The wavy lines denote the currents. )

IV. "PHYSICAL" SUM RULES AND THE FIRST
SPECTRAL-FUNCTION SUM RULE

In this section we will derive three sum rules
from local commutators of SU(2) vector currents.
In the limit of exact SU(2) SU(2) with m, =0, one
of these sum rules becomes the first spectral-
function sum rule of Weinberg. ' The derivation is
interesting, not simply for the novelty of obtaining
the spectral-function sum rule as a finite-moment
sum rule, but for two more cogent reasons.
First, the "physical" sum rule, which becomes
the spectral-function sum Irule in the chiral limit,
may be examined in order to study the corrections
to the spectral-function sum rule due to the break-
ing of SU(2) SU(2). Second, the way in which the
spectral-function sum rule emerges from the
physical sum rule naturally suggests an experi-
mental test of the (saturated) spectral-function
sum rule. (The same test has also been proposed
by Pais and Treiman. ')

We now proceed to derive the three physical sum
rules from the local equal-time commutation re-
lations of the SU(2) vector currents. For the sake
of definiteness, we use the space-space commu-
tators of the quark model' and the algebra of
fields. ' We assume that the Schwinger term is a
c number (we will see that this assumption can be
weakened somewhat). Then the commutation re-

Higher-derivative Schwinger terms in (4.2) (which
are in fact present in the quark modei2') would
have no effect on the finite-moment sum rules we
will derive here.

As in Eqs. (3.3) and (3.4), we take three-dimen-
sional Fourier transforms, take the expectation
value between pions of equal and opposite momen-
ta, and insert complete sets of intermediate states.
As in Sec. III, we choose p = -q so that the inter-
mediate states are at rest. The result is three
sum rules, analogous to Eq. (3.V), which we will
not bother to write down.

We neglect weak and electromagnetic interac-
tions, so that the SU(2) vector currents are con-
served. Then choosing p—=p2 along the third axis,
we may explicitly display the first-order momen-
tum dependence of matrix elements of time com-
ponents, e.g.,

(vr, (p) [ V, [n(0)) =, (w, (p) ]
V', [n(0)), (4.4)

P It. .Pn

where p„'is the energy of the state ~n) (the single-
pion intermediate state requires separate treat-
ment). Finally, we choose finite-moment sum
rules by taking derivatives with respect to p at
p=0. For the sum rule obtained from (4.1), we
evaluate (I'/(fp'~-

„

this is equivalent to taking the
commutator of dipole operators. For the sum rule
obtained from (4.2), we take d/dp~~ „which is
equivalent to considering the commutator of the di-
pole operator with the "spatial" charge. For the
sum rule obtained from (4.3), we put p = 0 equiva-
lent to considering the commutator of two "spatial"
charges. (By "spatial" charge, we mean the space
integral of a spatial component of the current. )
Then the three "physical" sum rules, which follow
from (4.1), (4.2), and (4.3), respectively, are

Rv, '& =+( ', 1&v. (o)(lv', I (o)&l* ', l(o(lv', (l,.(o) (o)&il

, &olv*. i (o)&& (o),(o)(v'Iv, (o)&+,&v.(o)lv', Iv. (o)o(o)&& (o)lv'Io&)-(v*, —v'&, (4.o)
m~

o=( +g( )&v, (o&(v'. Io(o)&l' ~ l&olv'. Iv, (o)o(o)&l'
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+ «)I)'!I~(o)&&~(0)~,(0)l)"I~*(o&&+ &~.(0)l)'. I~, (())~(0&&&~(0)l)'-'I»)+()'—)'-'& (4.6)

+{BIV', (tE(0))(n(0)r, (0) (V'(r, (0))+(v, (0) (V', (v, (0)n(0)){n(0)(V'(0)] -(V', —V'] .
(4.7)

In (4.6), r, is the charge radius of the pion, and

m„is the energy of the state ~n(0)).
In (4.5) and (4.7) the fully disconnected contribu-

tions from the two terms of the commutator can-
celed with one another. But in (4.6) they added,
contributing

2(2v) 6(2p) g ((Q(V' (n(0))[ (4 6)

c„=2+ J(o)V', fm(o))f' (4.10)

is just a clumsy way to write the usual spectral
representation for the c-number Schwinger term. '2

We obtained (4.6) from the assumption that the
Schwinger term is a c number. This assumption
can be relaxed slightly without changing (4.6). In
general, instead of (4.2), we could have

[V', (x, 0), V(s (0, 0)]= if~, V', (x, 0)6 (x)

+ i [S.,(x)6(x)]+ ~ ~ ~,
X3

(4.11)

where S~ might contain an operator part, Q„,i.e.,
S„(x)= 6„C~+Q„(X). (4.12)

Then the operator Schwinger term mould contribute
()T,(0)(Q, ~v, (0)) to the left-hand side of (4.6).
However, the right-hand side of (4.6) is symmetric
under the intercb8, nge of the isospin lndlces
+ ——.Hence, only an isospin-symmetric oper-
ator Schwinger term, i.e., Q„=Q„,could con-
tribute to the sum rule. Thus, an I=0 or I=2 op-
erator Schwinger term would contribute to (4.6),
but an I = j. term would not.

The isospin and (" parity (I ) of the intermediate
states is restricted to I~ =(0, 1, 2) for the connec-
ted and pair contributions and I~ =1' for the semi-

to the right-hand side. The c-number Schwinger
term contributed a similar term to the. left-hand
side

(v, (p) IC lv, (-p)) =C (2v)'6(2P) . (4.9)

Since the sum rule has no other terms containing
singular 6 functions, (4.8) and (4.9) must cancel
with one another. Indeed,

connected contributions. The principal advantage
of resorting to a finite-moment sum rule is that
the angular momentum and parity (J ) of the inter-
mediate states is also sharply restricted. From
the Wigner-Eckart theorem, we see that the con-
nected and pair contributions have J"= 1', while
the semiconnected contributions have J

The importance of the disconnected contributions
is most evident by inspection of (4.6). The connec-
ted and pair terms make a positive definite con-
tribution to (4.6), so the semiconnected terms
must supply an equally large negative contribution.
If instead of pions, we had derived a fermion sum
rule (as in Sec. V), then the pair terms would make
a negative definite contribution to (4.6); in this
case, the connected terms mould be canceled by
the sum of the pair and semiconnected terms. In
either case roe see that the disconnected terms are
at least as &Bportant as the connected on8s, so
that it is not a reasonable approximation to consid-
8r onlp the connected conA'EAQAons.

We refer to E&ls. (4.5)-(4.7) as "physical" sum
rules because they are consequences only of the
commutation relations (4.1)-(4.3) and may there-
fore be valid in the real world of massive pions
and broken SU(2) S SU(2). But, although the sum
rules are physical, " their usefulness is limited
by the experimental inaccessibility of the matrix
elements on the right-hand sides. For instance, to
measure a connected contribution (v,(0) ~ V,'~ n,(0)),
it would be necessary to observe the decay of the
state

~
n) into a pion and a lepton-antilepton pair.

This is possible in principle but not li.kely to be
realized in practice —especially when

~ n) is a state
of several hadrons. The only exception is the
pair contributions, which are accessible to elec-
tron-positron annihilation experiments. We will
see that the experimental accessibility of the pair
contributions offers a possible means of testing
Weinberg's first spectral-function sum rule.

Before we study the sum rules in the chiral
limit, we should mention a feature of (4.5)-(4.7)
which seems puzzling upon first examination. Con-
sider the semiconnected contribution when

~ n) is
a p meson. The matrix element (p(0) v(5)

~

V'
~ v(5))

then contains a p-meson pole with a residue given
by the amplitude for per elastic scattering at thresh-
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old. In the zero-width limit, V&=0, this pole
makes a divergent contribution to the sum rules.
The divergence cannot be trivially canceled by the
cross term of the commutator, because different
isospin channels are involved. Furthermore, the
cross term appears with a negative sign in (4.5)
and (4.7), but with a positive sign in (4.6). A sim-
ilar difficulty also appears in the sum rule (3.7) of
Sec. III.

This problem also arises in the Adler-Weis-
berger sum rule, and was resolved by Weisberger
in his original letter. ' The point is that there are
also singularities from the connected contributions
which, using unitarity, are seen to cancel the

singularities from the semiconnected contribu-
tions. In Appendix A we present a demonstration
of the cancellation which is more detailed and
differs in some respects from Weisberger's pre-
sentation. The cancellation means that to zeroth
order in I'~/m~, we may neglect the pole contribu-
tion to the p-meson semiconnected term.

We. now proceed to consider the "physical" sum
rules (4.5)-(4.7) in the limit of exact SU(2)&S SU(2)
with m„=0. We will evaluate the matrix elements
on the right-hand sides according to the PCAC
method, which is exact. in the limit under consid-
eration [see the remark following Eq. (3.10)]. Then
for the connected and pair contributions we have

&v,(|))I
V',

I
~(o)& = i&. &Q IAl I

~(o)&+»m
2

"1&2 dx e""&Q
I
T(A" (x) V!(0))1~(0)&,

P o 2F,m, "' (4.13K)

&v,(t)) i V'in(0)& = lim „,dxe' "(Q
~

T(A" (x) V'(0))in(0)&,
P~o 2F„m,' ' (4.13b)

(Q i
V'

i m,(0)n(0)& = », (0 iA', in(0)&+lim " „,dxe ' "(Q iT(A,"(x)V'(0))in(0)&,
F~m ~ ~m~

(4.13c)

&Qi V+ i»+(0)n(0)& =lim " „,dxe ' "(QiT(A&,'(x)V', (0)}in(0)&.
p 0 rm7t'

(4.13d)

(We are forced to keep track of the factors m, "' because of our choice of noncovariant normalization;
eventually we will put m, =0.) The terms proportional to p„canonly contribute "external-line insertion"
pole terms in the limit p=0 [see Fig. 2(a)]. These insertions are possible if in& is a many-particle state
containing at least some particles which are not G-parity eigenstates and which have spin and isospin
greater than zero.

The evaluation of the semiconnected terms requires some care because two pions appear in the matrix
elements. As in Sec. III, the Ward identity must maintain the Bose symmetry of the pions. We have

(no&&w, (i=5&I &", Im,(q=o»=[ ', " '
Jl

a«'" '-(~(o&Ir(a„x&(x&a„x",(v&v*(0&&In&2E,m„' 2m.
(4.14)

and the Bose-symmetric Ward identity is

T(s„A"(x)s„A",(y) V', (0))

= 8„s„T(A"(x)A;(y) V', (0)) '5+(x,)5(y, )[A'„(y),[A' (x), V', (0)1] +-', 5(x,)5(y, )[A' (x), [A',(y), V', (0)]]

-s „T(5(y.)[A',(y), V!(0)]A"( )) —s.T(5( .)[A'(x), Vl (0)]A', (y))

— s T(5(xo -y )[A:(y)»"(x)]V',(o))--'s.T(5(xo -yo)[A'(x), A;(y)] V,'(o))

—-'T(5( .-y.)[A'( ), s.A;(y)] V!(0))—lT(5(, -y, )[A',(y), s„A"( )] V,'(0)). (4.15)

The last line contains the so-called 0 commutators which vanish in the chiral limit. Substituting the re-
maining terms in (4.15) into (4.14), integrating by parts the terms containing derivatives, and taking the
soft-pion limit, we find

j

(n(0)w, (0) i
V', in, (0)& = —4~, (n(0) i V,'iQ& — lim

4
"," dxdy e'~" "'&n(0) iT(A" (x)A", (y) V,'(0)) iQ&4F,'m„ ~m~

+ lim, " dxe"~"&n(0)
i T(A,"(x)A',(0)) iQ&+lim 4," dx&n(0) i T(V,"(x)V', (0)) iQ&.

p-o 2F.'m. /~0 tf m 7f

(4.16)
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(o)

FIG. 2. External-line-insertion pole terms, corre-
sponding to Eqs. {B2a) and {83).

The integral in the fourth term in (4.16) has no p
dependence, so the fourth term vanishes at p =0.
The second and third terms contribute external-
line insertions, as shown in Fig. 2,

In deriving (4.13) and (4.16) we have not used
any local current-current commutators. We have
used only charge-charge or charge-current com-
mutators. So (4.13) and (4.16) are not affected by
model-dependent features of the local commuta~
tors, such as the nature of the Schwinger terms.

Next we substitute (4.13}and (4.16) into the sum
rules, (4.5)-(4.7). In all three sum rules, we
find that the external-line insertions from (4.16)
cancel with the ones from (4.13). The proof of
cancellation is presented in Appendix B. The
proof is straightforward except for one amusing
point. The double insertions [Fig. 2(b)], which
arise from the second term in (4.16) turn out to
be undefined; that is, we can obtain any value de-
pending on the path in (p, q) space along which we

approach the origin, (p, q} =(0,0). But if we aver-
age the result for any path with the result for the
path obtained by interchanging p and q, we find
that the result is well defined. Furthermore, the

(4.18)

This is precisely Weinberg's first spectral-func-
tion sum rule. ' Referring to the "clumsy" form
of the spectral representation, (4.10), we see that
(4.18) may be rewritten as

Cy =2E +C„. (4.19}

The states contributing to the vector spectral
function must have quantum numbers I,J =1', 1;
those contributing to the axial-vector spectral
function have I,J = 1,1'. If we truncate the
sums with the p and A., meson contributions, we
find the familiar saturated form of the sum rule,

result obtained has just the right value to cancel
the single insertion terms calculated from (4.13)
which are free of any such ambiguity. So we see
again the importance of maintaining Bose sym-
metry in calculations with several soft pions.

Now we substitute (4.13) and (4.16) into (4.5)-
(4.7), neglecting the insertion terms, which all
cancel. We multiply the three equations by m, (to
eliminate the kinematic pole, m„')and then put
m„=0. From (4.5) and (4.7) we learn only that
0=0, i.e., the local commutators (4.1) and (4.3)
are consistent with spontaneously broken SU(2)
SSU(2). This information is not completely trivial.
For instance, the commutator (4.1}could contain
a term proportional to the second derivative of a
5 function, 6{Q(x) 5(x)). On the left-hand side of
(4.5), this term would contribute

(4.17)

where I' is a scalar form factor. Unless I" van-
ished in the chiral limit with m„=0,we would have
a contradiction. So we see that our result puts re-
strictions on such anomalous contributions: These
anomalous contributions must be of less than the
leading order in m, so that they may be neglected
in the chiral limit. [Of course, we have only
proved this statement for anomalous terms in
(4.1) and (4.3) which would contribute to (4.5) and

(4.7).] In general, very little is known about
whether such anomalous terms are present in the
hadronic current commutators of the real world.
Perhaps the only information comes from the
success of the Cabibbo-Radicati sum rule, "which
tells us that if a term like 4(Q(x) 5(x)} is present
in (4.1}, then the expectation value of Q between
nucleon states is small.

Substituting (4.13) and (4.16) into (4.6), we find
a nontrivial sum rule because in (4.6) the cross
term of the commutator contributes with a positive
sign. We have
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gp /mp =F~ +gg /mg (4.20)

where g~ is defined by

pp/
(4.21)

and g„is defined analogously.
The assumptions which have gone into our deri-

vation of (4.19) are similar to the assumptions
used by Weinberg in his original derivation. ' They
differ in only one respect. Weinberg's derivation
would fail if there mere I= 1 operator Schwinger
terms in the A-A or V-A local commutators. The
derivation we have presented would fail in the
presence of an I=0 or I=2 operator Schwinger
term in the V-V commutator, (4.2}.

The principal attraction of the derivation pre-
sented here is that it establishes the connection
between the spectral-function sum rule, (4.18},
which holds in a theoretical world of massless
pions, and the "physical" sum rule, (4.6), which

may be valid in the real world. If we can study
(4.6), either in models or experimentally, we can
learn about the corrections to (4.18) due to the
breaking of SU(2)SU(2). The pair terms in (4.6)
can be measured in e'e annihilation experiments,
and they contribute 50'fc of the axial-vector spec-
tral representation in the sum rule (4.18). In par-
ticular, the cross section near threshold for
e'e - mA, determines the pair contribution
~(QV J'w, (5)A, (5))P, which in the chiral limit (with
our noncovariant normalization) is g„'/2F„'m,m„
[see (4.13d)]. Since F„m„andm„are all known,

we have an experimental means to estimate g~ and

to test (4.20). Furthermore, our derivation of
I'4. 18) shores that the ex~ox introduced into this
estimate of g„by the use of PCAC is the same as
the error committed in the derivation of the sPec-
tral function sum-rule.

More generally, Pais and Treiman' have ob-
served that it may be possible to retrieve the
SU(2) vector and axial-vector spectral functions
below the nucleon-antinucleon threshold from the
cross sections for electron-positron annihilation
into one or tmo soft pions and anything else." For
details the reader should consult their paper.

A difficulty of rest-frame sum rules is that we
have little experience which tells us whether they
can be adequately saturated by low-mass contri-
butions. This problem is only likely to be re-
solved by comparison with experiment, which is
surely a disadvantage, since we are then testing
the commutator and the saturation scheme togeth-
er. (This is really a difference of degree and not
of kind from other sum rules; e.g. , consider the
implications for the Adler-Weisberger sum rule
if at the National Accelerator Laboratory the same

value of a „+~—o„„-is seen as was seen at Ser-
pukhov. ) However, on the basis of the material
presented in this section, we may at 1'east note
that the saturation properties of the finite-moment
sum rules may be related to those of the more
familiar spectral-function sum rules. Assurging
that the terms due to SU(2)ISSU(2) breaking are
at least as convergent as the SU(2)3 SU(2) sym-
metric terms (which is reasonable in the context
of arguments about asymptotic symmetries), we
can conclude that the [V', V'] sum rule converges
like the first spectral-function sum rule, while
the [V', V'] ([V', V']) rule converges more rapidly
(slowly) by a factor linearly proportional to the
mass of the intermediate states. The saturated
form of the spectral-function sum rule has been
incorporated into literally hundreds of theoretical
models, but its validity is not known. We may hope
that it will eventually be determined, perhaps by
the method outlined in the two preceding para-
graphs.

To conclude this section, we emphasize again
the importance of the disconnected contributions.
For instance, in the spectral-function sum rule,
we found that the pair diagrams accounted for
half of the axial-vector spectral integral and that
the semiconnected diagrams accounted for the
entire vector spectral integral. We also saw that
the importance of the pair contributions is a def-
inite advantage since it means that the (saturated)
spectral-function sum rule can be tested experi-
mentally.

V. NUCLEON SUM RULES AND e'e ~BARYONS

We derive five nucleon sum rules which are anal-
ogous to the "physical" pion sum rules of Sec. IV.
One is the nucleon analog of (4.6), from which we
deduced the first spectral-function sum rule in the
chiral limit. Again we find that the pair and semi-
connected contributions are just as important as
the connected ones. This fact is responsible for
whatever usefulness the sum rules may have since
only the pair contributions are currently accessi-
ble to experimental observation. Neglecting the
semiconnected terms, we saturate the pair and
connected terms with the leading resonances and
calculate the isovector nucleon radius and near-
threshold values of o(e'e--NN), , and

( ece-NZ(1236))~,-.
The assumption that the semiconnected terms

can be neglected is very uncertain. As in (4.5)-
(4.7), the leading semiconnected term is the p-
meson contribution which is proportional to

g (p(0)N, (0)IV IN (0)). (5.1)

Equation (5.1) contains a p-pole contribution, whose
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residue is the pN scattering amplitude at threshold.
As me remarked in Sec. IV, this contribution is
infinite in the zero-width limit, l

&
=0, but the in-

finity is canceled via umtarity by double pole con-
tributions to the connected terms (see Appendix A
or Ref. 2). Therefore, if we assume p-pole dom-
inance of (5.1) and neglect terms of order I' /m~,
then there is no p-meson semiconnected contribu-
tion to the sum rule. This is the argument we pre-
sented in Ref. 10.

However, we can see from Sec. IV that the argu-
ment is not completely leak-proof. In the soft-
pion limit we found a contribution to (vp~v~v) which
was proportional to g~/E„' and did not have the p-
yole structure. It is an open question mhether
thexe are significant analogous contributions to
(5.1). Such contributions are theoretically inac-
cessible since there is no nucleon analog of the
soft-pion procedure, and they are experimentally
inaccessible since they do not contribute to pN
scattering. So all me can say is that the contribu-
tions from (5.1) which are proportional to the pN

scattering amplitude are suppressed in the sum
rule by at least a factor I"~/m~.

In the yion sum rules, it would have been impos-
.sible to neglect the semiconnected contributions
because in (4.6) the connected and pair contribu-
tions are yositive definite and can only be canceled
by the semiconnected contributions. But in the
analogous nucleon sum rule the pair terms appear
with a negative sign (because of Fermi statistics)
so that it is at least possible that the semiconnect-
ed terms can be neglected. Furthermore, we will
see below that in sum rules involving spatial com-
yonents of the currents, the pair diagrams are
significantly enhanced by kinematical factors.

We simply state the results because the method
of derivation is identical to that of Sec. IV. K Sec.
IV there mere three sum rules, but here there
are five because of the additional degrees of free-
dom due to the nucleon spin. Semiconnected terms
are not recorded because they will be neglected in
our saturation scheme. Prom the five equal-time
(t =0) commutators

[ V', (x), V' (O)] = 26(x) V,'(x), (5.2)

[;(x),V' (0)]=26(x) V', (x)+fG, 6(x),
ebs (5.3)

[V',(x), V-(O)] =26(x) V;(x)+fC, , 6(x),

26 (x)V,'(x), quark
[v', (x), v'(0)] =

0, field al

(5.4)

(5.5)

46(x)[V,'(x)+-,'A', (x)+ -',A.', (x)], quark
[v,'(x), v-(o)] =

0, field algebra

me obtain the corresponding sum rules

1 (rr') IG r (4m') I2

,+ " —,= Q(2R„+2R„-R„-R~)+(R-R},
Bm 3 2'

IG r(4m') P0= — +Q(m*-m)(R~~+R~3+R~~+Rss)-(R R, m- -m]. ,

(5.6)

(5.2')

(5.3')

G„"(0) IG r(4m') I2—2 =Q(m*-m)(-4R„+2R„+2R„-Rss)-(R R, m--m},
N

(5.4')

quark

field algebra

quark

field algebra

1

=2~Gr(4m')~'+ Z(m*-m)'(2R„+2R„-R„-R„)+(R-R,m--m},
0

I (5.5')

,' + pr, (o, +)
~
(-,')'—I'x.'+ (-,')'I'x', ~pr, (o, +))

0
I= 4)G "(4m') ('+Q (m* -m)'(4R„+R„+R„-2R„)

N+

+(R R, m -m}. (5.6')
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(rv) is the isovector nucleon radius, G v(4m')
—=G~(4m') =Gz(4m') is the Sachs isovector form
factor [normalized by Gsv(0) =-,'] at t =4m', 2", is a
U(3) nonet of axial-vector currents, and the "in-
elastic mean square radii" are defined by

R„„(V+)—, , )(N, (0)( V,')Ny, (O)&]',

(5.'I)

2s, 2z( *& =
(~++~pl(~l ~slN+(0&Nr*, z(0&&I

m~ is the mass of the state N*. In (5.3')-(5.6'),
(m*+ m) is factored merely for brevity and not to
imply a mass degeneracy of the intermediate
states.

In (5.3') the connected contribution, (m*-m)
&& (R»+R»+R~+R»), is positive definite so it
must be compensated by an equally large contri-
bution from the pair and semiconnected contribu-
tions. Therefore, it is not plausible to assume in
such sum rules that both semiconnected and pair
contributions can be neglected. This conclusion
could be modified only if there were an operator
Schwinger term which made a large positive con-
tribution to the left-hand side of (5.3').

In (5.3')-(5.6') the connected terms R are multi-
plied by factors (m*-rn) or (m*-m)', while the
pair terms R are multiplied by (m*+m) or
(m*+m)'. With typical values of m* we see that
the pair terms are enhanced relative to the con-
nected terms by at least an order of magnitude in
(5.5') and (5.6') and by factors of 3 to 5 in (5.3')
and (5.4'). Thus, the pair terms may contribute
little to the nucleon radius in (5.2') and still be
very important in determining the over-all system
of equations.

From (5.7) we see that the connected contribu-
tions have quantum numbers I = —,', —,

' and J
while the pair terms have I = —,', —,

' and J =-,",—,".
Therefore, in addition to the nucleon and nucleon-
pair contributions, we attempt to saturate the sum
rules with the N*(1520) and the b, (1236). (vv) and
G v(0) are known experimentally. '4 The three un-
knowns —~Gv(4m')~', R(1520), and R(1236) —are de-
termined from Eqs. (5.3'), (5.4'), and (5.5'). [(5.6')
is of little value since nothing is known about the
neutral axial-vector currents. ] The results for
the quark model (field algebra) are ~G v(4m')~'
=0.43 (0.29), R(1520) =0.87m (0.98m ), and
R(1236) = 0.19m ' (0.25m '), Substituting these re-
sults into (5.2'), we calculate that (vv) =0.46 F
(0.48 F), to be compared with the experimental
value, '~ (rv&=0.62+0.01 F. Agreement is as good
as one might hope, considering the severity of the
saturation assumptions. The quark-model and
field-algebra results are not distinguishable.

G v(4~2)j 2
2m3

.6x10 "m 'cm', quark

and

.1x10 'm ' cm', field algebra

(5.8)

do' +—(e "e I ~NB)
dp

,~R (1236)
(m+m~)'

2.4x10 "m 'cm', quark

3.2x10 "m ' cm', field algebra.

(5 9)

Since the cross sections vanish at P = 0, (5.8) and
(5.9) may be used to estimate the magnitude of the
cross sections for small p. For instance, at
p =»~m, 100 MeV/c in the center-of-mass frame,
(5.8) implies a cross section of the order of mag-
nitude of 10 "cm'.

Considering the crudeness of the calculations,
(5.8) and (5.9) should probably be regarded just as
indications of the order of magnitude. As such,
they are surprisingly large. The prediction (5.8)
is of the order of magnitude of a pointlike nucle-
on. The predictions ~Gv(4m')~'=0. 43 (0.29) may
be compared with ~G v(4m') ~' = 0.25 for a pointlike
nucleon. The p-dominance model for the Pauli
form factors gives ~Gv(4m2)~' =0.22, while the di-
pole fit to the spacelike Pauli form factors gives
a value which is smaller by an order of magnitude,
~Gv(4m')~' =0.022. [The pole and dipole calculations
must be made for the Pauli form factors in order
to satisfy G~v(4m') = Gzv(4m'). ]

The only experimental information about the nu-
cleon form factors in the timelike region is an up-
per bound for the proton form factor, ~G ~(5.8m')

~

& 0.2 2' This could be compatible with Eq. (5.8).
For instance, the p-dominance model ~G„v(5.8m')

~

= 0.36 provides a smooth extrapolation from the
order of magnitude of the experimental bound at
5.8m2 to the order of magnitude of the prediction
at 4m'. Since the pole alone can extrapolate so

From the values of Gv(4m') and R(1236) we can
estimate the values near threshold of v(e'e
-NN), , and v(e'e -Nb)~, . Where p is the mag-
nitude of the spatial momentum in the center-of-
mass frame, we have

do' +

dP I=1
—(e'e —NN)
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well between the two values, it is possible that a
smooth extrapolation occurs with the additional
help of the cut singularities.

Being large, the prediction (5.8) has the virtue
of being relatively easy to disprove. With the an-
ticipated luminosity of the Frascati colliding
beams, we would predict roughly one (NN)/,
event per hour at a nucleon center-of -mass mo-
mentum of 100 QeV/c. The prediction seems
large, but we are encouraged by preliminary re-
suIts which suggest that the pion form factor
may be half-pointlike near s =4'.

Note added in proof. Near the end of Sec. IV we
state that the error in estimating g„from e'e-mA, near threshold is the same as the error in
deriving the spectral-function sum rule. This is
not quite correct. The error in the estimate of

g„is 0 (m„), but in the sum rule the 0 (rn, ) correc-
tions cancel and the leading correction is 0 (m,').

which are canceled by contributions from the con-
nected terms. This was first established byWeis-
berger. ' The demonstration given here differs
from %'eisberger's in some respects and is pre-
sented in greater detail.

Consider, for example, the pion sum rule (4.7).
The p-meson semiconnected contribution to the
first term of the commutator is

e[&QI V, Ip (0, 3))&p (O, 3)//, (O)l V l~, (O

(A1)

where "Re" denotes the real part. The current
V3 carries four-momentum (m 0), so that the
p-pole contribution is infinite in the zero-width
limit, I =0. The divergence is canceled by
double-pole contributions from the connected
terms

ACKNOWLEDGMENTS @&7/,(0)~ V' ~n(0))('. (A2)

I am grateful to P. Carruthers for a suggestion
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K. Gottfried, R. Haymaker, J. Pestieau, K. Wilson,
and D. Yennie.

APPENDIX A: CANCELLATION OF-
SINGULARITIES

The sum rules in Secs. III, IV, and V have in-
finite contributions from the semiconnected terms,

Weisberger established the cancellation by work-
ing directly with the infinite quantities, like (Al)
and (A2), using the ie prescription to define the
pole denominators. Here we follow a somewhat
less delicate course: We derive a kinematically
different sum rule which has only finite contribu-
tions and consider it in the singular limit.

In the analog of (3.4) for the present case, we
choose px0 and p+q=xo6. Then (A1) is replaced
by

«I V',
I p (o, 3)&[&p (x -p, 3)~,(p)l V' lv, (-p)&+ &p (-x -p, 3)~.(p)l V' I~.(-p)&] (A3)

where we have used parity and have taken the (harmless) limit x, p- 0 in the term &Q~ V~ p). Similarly,
(A2) is replaced by

+&7/, (p) (
V', ]n(x)&&n (x) [

V' (vr, (-p)) . (A4)

(A3) is finite because the current V is off the p mass shell if x p xo. We will study the singularities of
(A3) and (A4) as x and p approach zero.

The intermediate states in (A3) and (A4) are chosen to be "out" states and the p w, scattering amplitude
is defined by

&p (km ~ )v.(P2) o«l p (ki, &, )~,(p, ) in& = (2~)'6(p, +&, -p, -&,)3R(p„k„&„p„k„&,). (A5

Applying the LSZ reduction to the incoming p and inverting the spin-1, mass-shell projection operator,
we obtain with the correct phase the p-pole contribution to semiconnected matrix elements,

1/2

(p (+x —p, 3)m, (p)~ V' ~v, (-p)&„„=+i (A6)
p x

where we have taken the (harmless) limit x, p- 0 in the factor 5R -=SR(0, 0, 3; 0, 0, 3). We substitute (A6) in-
to (A3) and find that the singular part of (A3) is

ig~'Re3R/p x.
Next we consider the connected terms (A4). As in (A5), there are p-pole contributions
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(As)(m, (+p)l v', ln(x)) =

where p„'is the energy of In(x)) and we have taken p, x- 0 in the factor (2m )'"%„-=(2m )'"3R(5, 0, 3; n (0))
defined by

(n(p„)outlm +(p)p (k, X)in) = (2v) 5(P+k -p„)%(p,k, A.; n(p„)).
Defining the four-momenta

0, = (k'„k,) = ([mp'+ (xvp)']'", +p x),—

the p-pole contributions to the connected terms (A4) are

(A9)

(A10)

(A11)

or

~ ~ ~,(po, 0 po) 4g~ lstf. l

(g —k++SE)(g +4+ —XE)(g —k —lE')(g +k +16) (A12)

We close the contour in the upper half-plane and use Cauchy' s theorem to evaluate the integral, with the
result

2 I' (2vf)-+5(P'+n'-P'„)I3g„l'

(in the 5 function we let x, p- 0 so that k', -k' =m~).
With the amplitudes defined by (A5) and (A9), the forward unitarity relation is

d'p
Re3R(p, k, 1; p, k, ~) = —

2 g 2 )". (2~)45(p+ a —p.)I3)f(p, k, &; ~)l'.
n

(A13)

(A14)

(The integration on p„is indicated explicitly because in the notation of this appendix 2, does not include
the integration over the total three-momentum. ) Using (A14) we see that the singular part of the connected
contributions, (A13), is

-ig 'Reslt/p x

which cancels the semiconnected singularity, (AV).
(A15)

APPENDIX B: CANCELI. ATION OF EXTERNAL- LINE INSERTIONS

ln this appendix we show that the external-line pole terms (Fig. 2) in (4.13) and (4.16) do not contribute
to the sum rules (4.5)-(4.V). We calculate in the limit of exact SU(2)Is SU(2) with m, =o (i.e., to leading
order in m„). The pole terms occur if In) contains at least some particles which have spin and isospin
greater than zero and which are not eigenstates of G parity. Such states always have projections both in
the channel of the connected and pair contributions (Ia, J~ =1,1') and in the channel of semiconnected con-
tributions (I~, J'~ = 1;1 ). We find that the projections of the pole terms from the two channels cancel with

one another in the sum rules. To illustrate the cancellation, we will consider in detail the case when In)
contains a nucleon and other particles. We will then briefly indicate the generalization to particles of ar-
bitrary spin and isospin.

We consider the contribution of the state

~n (0)) = IN„(k,s )Xs(-k )),
where IN (k, s)) is a nucleon of spin s and third component of isospin I, = n, and IXB) represents the re-
maining particles, with I, =P. To spare ourselves some tedious bookkeeping, we stipulate that IX) has
isospin I= , (if IX) has a larg—er isospin, we must keep track of more terms, but nothing essential
changes).

In the chiral limit, I„+m,-m„, and the contribution of the state In) to the sum rules (4.5)-(4.7) is pro-
portional to

g(l(m, (0)l v'+IN» (k, s)x „,(-k))l'+ l(m (o)l v'+ IN- i, (k, s)x„,(-k)&l'
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-qf(nl v' l~,(o)v„,(k, s)x,»(-k)&l' -ql(nl v' lv, (o)v „,(k, s)x„,(-k)&['

+2 Re&«l V+ I&-xi2{k s)x rim(-»&I:(~.(&»- »(k s)x-xi2{-&)IV' 1~+{0)&

+q(m, (0)x„,(k, s)x„,(-k)
I vier, (o)&g),

where we define q =+1 for (4.5) and (4.V) and q = -1 for (4.6). According to (4.13) and (4.16), in the chiral
11Dllt

{~,(O) I
V', IX„»(k,s)X„„(-k)&= „,{Qf&3)V„„(k,s)X„„(-k)&$1/2 y ~ 1/2

+ lim
2 „,dxe*' (QIT(A' (x) V',(0))lÃ„„(k,s)X„„(-k)),m

«I V' l.,(0K„,.(k, s)x„,.(-k)& =„„.«I&sl~„,.(k, s)X„,.(-k)&I".m.'"
0+lim, dxe '~'(QIT(AO(x)V'(0))lÃ„„(k,s)X, q (-k)),

P~0 ff m'

)x, .(-k) .(@IVII .(o)&=4F ~ (&...(k, )x„,(-k)lv', ln&

(82b)

~ O

+ lim ', tdxe'0"qV'„„(k,s)x„„(-k)lT(&',(x)&', (0)}ln&
P~0 m fl

+ lim dXdye'" "'N„/2 k, SX»/2- TA' X ', y t/'0 0 .
p ~q~O r fr

(82)

(We have used the fact that p =j= 0.)
External-line insertions for Eq. (82) are illustrated in Fig. 2(a). For instance, the external-line inser-

tion ln Eg. (82a) ls

~/Pl 3 P+mg Pl'JfPl'N
iim „,X,»(u )1.,(-a -e„+P), „,. ro (-P)u„,(n„,s) (84
p O r (~N -P) -~N +&~ X

where kx and k„arethe four-momenta of IX& and the nucleon, X is a generalized spinor for the state IX),
and the vertex functions are defined by

(nlvj,'Ix„(a„,s)x, (a )&=q, (u )r &( u„u)-u„(u-„,s)(m m„/a' u'„)'",

(&.(P„s.)l&",I&, (P, s )&
= M.(P„s.)1'", ,(P. -P, )~,(P„s,)m,/(P,'po)'"

The zero in the numerator of (84) is canceled by the pole, leaving a finite result:

N s

Using (85) and (86), we rewrite (84) as

(86)„.(~,»(a„,s)l&'Ipr„,{u,s)&(nl v', Ix „,(n„,s)x»{a )).2@ ~ r/2 -Z/2

Similarly, we calculate the pole contribution to (82b), and we record the final expressions for (82):

(w, (t)) I
V3 fÃ, q, (k, s)x,»(-k)&=,» (QIA', fÃ~»(k, s)X „,(-k))z„~,'"

+ „,yr „,(l, s) IA.
' lx„,(k, s))(nl v', pr, »(k, s)X „,(k, s))+".,

{1f+(5)fV+ IN gym(k~ s)xgg2( k)) = g» {QIAgfÃ g»(k s)xg»( k)& + '
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(I~I V-I&+(0)ti-~i2(k s)Xi&2( k)& = i&2 &IIIASI&-&&2(k s)Xxn(Z,m„'"

+ xi2 gxn(" s)IAl le-i~ (k, s)&&DI V' lttii2(k, s)Xii2(k s)&+"2/ m &t'2

(nl v'lv, (5)ti„,(k, s)x „,(-k)) = „,(nlA', liv„,(k, s)x „,(-k)&+. . . .
(B8b)

In (B8) we have recorded the insertions onto external nucleon legs; we have of course omitted insertions
onto particles contained in the state lX&.

Next we consider the insertion terms in the semiconnected contribution, (B3). The term in (B3) contain-
ing a single insertion is evaluated just as we have evaluated (B2), but the double-insertion term [Fig. 2(b)j
requires more care Th. e contribution of this term to (B3) is

p q p $~+p+m~ o jt~+p —it +mN mx mQllm 4E, „—,(k„,s)r, (-p), „,r„(q)
k „,r (k.+k„.p-q)X „,(k,) . .

X N

(Bo}

and we must evaluate the limit

(B10)

This limit does not exist; the value of (B10) depends on the path in (p, q) space along which we approach
the origin. In particular, if x =dp'/dq'l~o, o, is the slope at the origin, then for (B10) we find the x-de-
pendent expression

1 $„+m„o
( )

P~+m„
x -1 2k„'+ 2k„ (B11)

In evaluating matrix elements with several soft pions, Eqs. (3.11) and (4.14), we emphasized the need to
calculate Bose-symmetric Ward identities, (3.12) and (4.15). The same remark applies in this instance;
an arbitrary approach to the origin in (p, q) space clearly fails to maintain the Bose symmetry of the two
pions. But if we choose an arbitrary path and take its average with the result obtained by interchanging
p and q (i.e., the path obtained by reflecting the original path about the axis p =q), then the result is Bose-
symmetric. . This gives the (B12) prescription

1 1 1 1 1
x-1 2 x —1 (Ijx) —1 2 (B12)

so that the expression in (B10) is equal to

1 $„™NI,O (0)
k'~™„

2 2k„'+ 2k„,
and the double-insertion term, (B9), is

(B13)

l&N, g. (k, s)IA'I&». (k, s)&l'&fi A(2(k, s)X,g, (-k)l V'ltd&.8E„m
With the insertions onto the external nucleon leg calculated, we rewrite (B3) as

(B14)

&N, gn(» s)x,gg. (-kK(t))l v', l~, (0)& = 4, &lv„„(k,s)x„„(-k)lv', ltd&4y 2m 1/2

(N, ~(2(k, s)lA, lÃ„~(~(k,s)&(N, ~(2(k, s)X,~(2(-k)lA~~lQ&2S„'m,

2(k, s)IAOI&, i&2( s)&l'qv. ii2(k s)X,xi2(-k)l V', l0&.8E,'m„
(B15)

It is now trivial to substitute (B8) and (B15) into (Bl) and to see that the contributions due to insertions
onto the external nucleon line cancel among themselves, for both q =1 and q = -1. The cancellation gives
strong support for our use of Bose symmetry in (B12), since the (B12) prescription resolved the ambiguity
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of the douie-insertion tex'ms 1Q just the right wag' for them to cancel %'1th the unambiguous siQgle-insex'-
tion terms. If the cancellation had not taken place, then in Sec. IV me mould have contradicted the first
syectx al-function sum rule.

To generalize this example, we must consider insertions onto particles of arbitrary syin and isospin.
The generalization to arbitrary isosyin increases bookkeeping problem, but it is straightforward to see
that the cancellation occurs as in oux example. To generalize to arbitrary spin, we use %einberg's
treatment of perturbation theory for arbitrary spin. '~ In particular, we need only observe that the defini-
't10118 (85) Rx'8 8Rslly gsnsrRllzsd Rlid tllRt 618 property of 818 splI1 s pl'opRgRtox' u88d 111 (86) 18 trIIS for Rlly

syjn, i.e., the propagator for arbitrary spin is just the usual scalar propagator multiplied by the ayyro-
yriate spin px'ojec'bon oyex'atox'.
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