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2J df, ' I 21 +i~jr
( U(tI t)I2

m „(~ +,)2 t' —t

(A7)

(A8}

Needless to say, although Figs. 4(a), 5(a}, and

5(c) could be evaluated quite readily by the LTBS
approximation, they could also be evaluated by
the technique of the preceding paragraph. This
then gives contributions

v, "" dt' Iv~'~(q", q'„', t)I2

t' —t q' Vt'

(q.q )'
TJ(~2) =

~&'(q.",q.", t) ~~ (q.",q~, t)
J, t' —t q', 'q' Wt'

(A9)

q
Il'X(q„"; q", t)I'

&(22)
& P t qs2J~P

4
(A10}

instead of Eqs. (22), (A1), and (A4). The latter
equations are probably more accurate.
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An operator formalism for a dual-resonance theory with nonlinear trajectories is presented
and an explicit, factorized operator representation is obtained for the N-point function. Op-
erator Ward identities are also given.

In a previous paper, ' we considered a meromor-
phic dual N-point Born term B~ with poles at en-
ergies = s, '" given by

1+(1-q}(a+bs,) =q '.

a and 6 are constants and q is a parameter be-
tween zero and unity whose value determines the
degree of nonlinearity of the trajectories, ' fn the
limit q- 1, the trajectories become linear and
B„-V~, the Veneziano N-point amplitude. '
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In this note we present an operator representa-
tion of B„from which it follows that B„possesses
the necessary factorization properties to be a sat-
isfactory multiparticle Born term. From this rep-
resentation the degeneracy of the Eth level is de-
termined to be & 6'. An N-particle amplitude with
two particles in excited levels can then be written
as the matrix element of an operator Born term
B„"between states representing particles in these
excited levels. The excited states are generated
by a single set of six noncommuting creation oper-
ators a~, a=0, 1, 2, 3, 4, 5 acting on a vacuum state.
These operators and their adjoints a" satisfy the
following commutation relations4:

a"a] =qa8'a" +(1-q)68.

sO ~g+Pg+1+ +PJ) t

where 1 &i & N- 2, i+1 &j &N-1 except for i =1,
j=N-1. The positions of the poles are given by
Eg. (1). B» is then defined by the following multi-
ple power series in s,&.

.

"ij 0(9=2 &~ ()=2j=g+1 "U ) ~li»

where

f„=(1-q)(1-q')~ ~ ~ (1-q"), n&0, f, =1,

o,~ =1+(1-q)(a+bs,.~),
The 6' independent states with energy = s, ' ' given
by Eq. (1) are written as

and the product I'I,», q "o"» runs over all indices
ijkl in the range (1 &i&k&j &I &N-1). These in-
equalities mean that "duality factors, "

q "~& "», are
included for indices corresponding to overlapping
variables o,&

and o». The power series Eg. (5)
involves ~N(N 3) o, v-ariables and summations.
It converges when all the variables satisfy

I o,JI &1.
The poles in the variable s,~ become explicit when
we sum over the index n„as can be seen from the
formula'

Iu, ~ ~ n) -=a~at ~ ~ ~ at I0),
where the state IO) satisfies

(3)

oo

gpss

'0

~f =~1-oq&

The duality factors q "~&"» prevent simultaneous
poles in B„in the overlapping variables. '

To factorize B~ we first express a„. for 2 &i&j
&N- 1 in terms of the N-1 independent momenta

(6)@~-=Z&.

of the multiperipheral configuration of Fig. 1. We
define six-component quantities Q,„and Q,.

" as
follows:

Q;„=[2(1—q)&]'"Q.

)4"=-[2(1—q)&] "%'
p, =0) 1) 2) 3

tg4'=@~s=l

Q =Q;, =-'[I+(1 —q)(a+2kq, .')].
We can then write

FIG. 1. The N-point tree graph in the multiperipheral
~o~igu»tion. pg=Qg and pg=-Qg g.

a" IO) =0, (OIO) =1. (4)
6' independent states are generated by (3) because
any set of indices n, e, produces an independent
operator acting on I0). Thus, although B„in-
cludes V„as a special limiting case, B„can be
constructed from six operators, whereas if one
starts directly from V„, as was done by Fubini,
Gordon, and Veneziano, ' one is naturally led to in-
troduce an infinite set of ordinary commuting oper-
ators satisfying the usual harmonic-oscillator
commutation relations. In the general q &1 theory,
the single six-dimensional "generalized oscillator"
plays a role equivalent to that of the infinite set of
four-dimensional oscillators in the special q =1
Veneziano limit. This fact suggests that there is
an underlying subtle organization to the usual in-
finite collection of Veneziano oscillator modes.
Thus the simple operator structure which arises
from the commutation relations (2) should be of
interest also from the point of view of the Vene-
ziano limit. We also note that in the proof given
below) no restriction is put on the momenta p,. of
the external lines in the N-point function B~ and
hence factorization is demonstrated for a general
off-mass-shell amplitude. In fact, there is essen-
tially no difference between factorization on or off
the mass shell in distinct contrast with the usual
factorization procedures' in the generalized Vene-
ziano model.

We begin by letting P, , i =1, . . . , N denote the ex-
ternal momenta in the N-point amplitude. A typi-
cal graph for B» is depicted in Fig. 1. The totality
of planar tree graphs with the ordering of the mo--
menta P,. given in Fig. 1 has poles in the ~N(N 3)—
variables s,&

defined by
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a"H '=qH-'a", H 'a~=qa~H ',
and the condition

II 'l 0& = l0&,

(12)

(13)

where l0& is defined by Eq. (4). From Eqs. (3),
(12), and (13) it follows that

H 'ln ~ ~ ~ n &=q'ln ~ ~ n &

We now define an operator N-point function B„'"by
the following rules:

(i) We associate with each vertex in Fig. 1 the
vertex operator

(QI'a')" „(Qg, a)

fm
(15)

(ii) We associate with the ith internal line the
propagator

I (Q, ) =- g
n =O

The operator N-point function J3„' is then defined
as follows:

BN'(Qg' ' ' QN, ) = I'(QgQ2)I'(Q2) I'(Q2Q2)

&&I'(Q.)" I'(Q .)I'(Q .Q, ,).
(17)

o,.& ——1 + (1 —q) [a + b(q; - Q;,)'] = Q&, ' Q], (10)

where we have used the notation

5

Q-x'Q]= Z4-i QJ .
n=0

Equation (10) expresses the variable o,, as a "dot
product" of two "six-vectors" Q, , and Q~, where

Q, , depends only upon external momenta to the
left of p, , and Q~ (by momentum conservation) de-
pends only upon momenta to the right of p&. [In the
remainder of this article all dot products are six-
dimensional as in Eq. (11).]

We now use Eq. (2) to define a set of six opera-
tors a. and their adjoints a . No commutation re-
lation between a" and a~ is postulated. We also
define an inverse Hermitian Hamiltonian operator
H ' by the following commutation relations with
the operators a" and a~:

The fundamental result is the following factorized
operator representation for B„ofEq. (5):

BN =(01 BN'(Q, "QN, ) I0& (18)

In order to prove Eq. (18) we commute all the at
to the left and all the a" to the right of the H '
operators in the middle of Eq. (17), using the com-
mutation relations (2) and (12). No commutation
relation between a" and as is needed in order to
carry out this operation, just as no such commuta-
tion relationship is needed in the corresponding
work of Fubini, Gordon, and Veneziano and of
Nambu. ' Since B„"involves products of the form

(Q, a) (Q,'at)" the above reduction of BN2 can be
carried out by repeated application of the formula

(Q; a) (Q,'. a )"

f f.
Ml&(. 2)

(Q .Ql)t (QI'at)

fi f. i

(Q .a)m-l
+(n-s) (~ -s)

fm

(19)
Equation (19) is a direct consequence of Eq. (2),
as is easily verified by induction, The only other
products which appear in B~"are of the form
(o„H ')"(Q~" a~) and (Q~ a) (o„.H ')". From Eq.
(12) these products can be rewritten in reverse
order multiplied by an additional factor q" . For
example, repeated application of Eq. (12) yields

(Q a) H "=q" H "(Q a) (20)

The above rearrangement of the operators in B~
introduces additional q" factors via Eqs. (19) and

(20), and —,'(N- 2)(N- 3) additional sums because
Eq. (19) must be applied 1+2+ ~ ~ ~ +N-3
= —,'(N-2)(N-3) times. Each application of Eq. (19)
introduces a subenergy variable Q, , Q~ = o,~,
2 &i&j ~N-l. The N-3 momentum-transfer vari-
ables o„, 2 +i +N-2, already appear in the prop-
agators P(Q&). Thus all of the ,'N(N-3) o,&

va—ri-

ables of Eq. (5) appear explicitly in B„". Our re
ordering of the operators in 8„'" leaves us with a
multiple power series in o,~, Q, a, and Q,'. ~ at
which takes on the explicit form

(QI ~ at)n2 (Q&, at)n2 (Q, a1)tlN &
N '(N 2 (o H q %2+ +lhp+ap+z+ +UN z)tip&

B()2 g 2
~ .. &-~

nA, m)

f22 2 3 2N 1 2~J~2 f.„
E 2 + $ 0. II~+' +A~ y+1Ã~+y+' '+Pig IIg a 2 a 3 g alrin ""' ' ' 'l rr'"l '

(21)
&=2 y= &+z '&I" 2 3

where g,.~» q"~~ "» is the factor appearing in Eq. (5). In Eq. (21) all the indices n, , n„and m, are summed
over integers from zero to infinity. The indices n, and m, arise from the indices which originally appeared
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in p(Q,. 1, Q). The explicit form (21) of B»2 can be
straightforwardly verified by using induction on

N I.f we then evaluate &0IB»2 IO& using Eq. (4) as
well as the adjoint equation &0

I

nt =0, we find that
the only terms which contribute in Eq. (21) have

n, =m, =0 and we are left with the desired result
(18).

An N-point amplitude containing one or two par-
ticles with high spin will involve matrix elements
of B„"between the states I n, ~ ~ n, ), eigenstates of
H ' with eigenvalues q', Eq. (14). Using the com-
mutation relations (2), we obtain the following val-
ues for the scalar products of these states and
their adjoint states:

(n1"'n»IP1" P»& =5;»Ne, '"
e,

'

where

& n; ~ n, I
-=(0

I
a"1a"2 a" »

(22)

(23)

1 -~q Q- l Q ~ Qt'1'"Bl ~P 8P(l) BP(2) SP(l) (24)

Here the QN goes over all l! permutations of the
integers 1 to l and T(P) is the number of transpo-
sitions associated with the permutation P. The 6-
by-6' matrix N is in general a nonsingular matrix
since its determinant is a polynomial in q with a
nonvanishing constant term. ' The existence of the
matrix N ' allows us to define I P, ~ ~ P, ) by the
equation

I P, ~ ~ P»& =Ne "e, 'In, n»&. (25)

From Eqs. (25) and (22) we have the orthonormal-
ity relation

&n1 "n;IP1" P»& =5e,'''5e, '5»».

The unit operator 1 can then be written

(26)

1 = g I n, ~ ~ n, &(n; ~ n, I, (27)
l=O

where summation over n,. is understood. We in-
sert this completeness relation (27) on both sides
of P(Q, )in our facto.rized form (17) for B'„' and use
the fact that (n, ~ n, I

is an eigenstate of II '.
This leads to the result

B„= 0 B'„", (y,, ~ ~ a,
l=o

(n," n, lB" »„I0&,
(o»;q )"1»

p

"1»
(28)

where B„,is the operator representation of the
(i+1)-point function which depends on momenta
Q„.. . , Q, , and '~B,„edenpd . onsthe momenta

Q„.. . , Q„,. Using Eq. (8) and Eq. (25) we can

rewrite Eq. (28) in the form

~(Q» 2 QN 1) ~(QN 2 QN 1)(QN 1 a ) ' (32)

Equation (32) is easily derived from the definition

B = 0 B Q ~ ~ ~ (x

l=o

N
0L 1' ' '01 l
8 ~ ~ op- '

(1
'

»+»)&P1" ~ P»l B»+»»l 0&.
9=0 liq

(29)

Finally if we insert the expression (2'7) for the unit
operator into our amplitude (Ol B» I n, ~ ~ n, &, we
conclude that (P, ~ ~ P, I B„I n, ~ n, ) is the N-point
function when the first and the Xth particles of the
multiperipheral configuration (Fig. 1) are in ex-
cited states IP) and (nj. This function can easily
be evaluated explicitly from the formula (21) for

The factorized expression for BN is valid for all
values of the four-momenta P, ~ P~. The denom-
inator II»",(1 —o„.q'") vanishes when

0 q
(l+~) j=0 ] 2 (30)

which correspond to points in the mass spectrum
of Eq. (1). The lth term in the sum contributes to
all states with "energies" o„.~ q '. Thus the resi-
due of the pole in B„at o„.= q

~ will receive con-
tributions from all terms in the sum (29) for which
l ~ I. Since th.ere are 6' states I n, .~ ~ n, &

for each
l, that means that the degeneracy at the Lth pole
is at most 61 +6e '+ 6+1 =-2, (6e"—1), indepen-
dent of the number of external lines. The terms
in Eq. (29) which contribute to the maximum angu-
lar momentum (L) at the pole o'„. =q e are terms
with the maximum number of spatial tensor in-
dices; for example, the term with l =L and n, =+2

= n =3. For the set of indices z, =3, the only
nonvanishing ".omponent of N has all the P,. =3 and
the coefficient of this component of N has the val-
ue g~qr&N~&0. Thus, we see that this highest-
spin state, which is obviously nondegenerate, is a
state of positive norm. However, states with neg-
ative norm have been found among the degenerate
daughter states with spin / =L —1.

We now show that the apparent degeneracy of the
Lth level can be reduced because the amplitudes
(Ol B»2I n, ~ n, & are not all linearly independent
when the (N- 1)th particle in Fig. 1 is on its mass
shell with (mass)' =p», 2 = s„determined from
Eq. (1). Equations (10) and (1) with i =j =N 1 then—
yield

(31)

With the restriction (31) the vertex V(QN 2, Q„,)
satisfies the "operator Ward identity"
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TABLE I. Summary of "Feynman rules" of operator formalisms for dual theories.

OJJ'
vertex

Nonlinear q & 1

(P ' a ) nm (k ' a)
f. f

Veneziano q =1

y+u)&~~~ » (p+u)~~( i
II exp

l
exp—

n=i ~n ) vn

Propagator

External
lines

g(f~H ')"
f,

let ~ ~ &g)
orthonormal states defined

in the text

-(x+HP —'L

(1 )0 {P)-f
0

where ~ = ~ncf" cvV
n =1

II li„,„&

harmonic-oscillator occupation-number
states

(15) of V and the commutation relations (19). If
we insert (32) into our expression (17) for B'„", we
obtain

&Ol &~ I
o' ' "&i- ) = (@»- )"'(01&F

I
& ' "o' r- o'i& .

(33)
Equation (33) is valid for arbitrary values of the
spin indices n, ~ n, , Hence it gives us 6' ' con-
ditions on the amplitude with X-1 scalar parti-
cles and one higher-spin particle, provided only
that the spin-zero particle which is adjacent to the
spinning particle is on the mass shell. These lin-
ear dependence relations, which reduce the degen-
eracy of the Lth level to 6', can be used as in the
case of the Veneziano model to eliminate some of
the ghosts among daughter poles. However, be-
cause of the much greater degeneracy of the 1th
level for q~1, many more ghosts are undoubtedly
present than in the q =1 limit. Understanding what
should or could be done about them is a much more

serious problem in the q& 1 theory than in the Ve-
neziano limit.

In conclusion we present a brief table (Table I)
which illustrates the correspondence between the
states and operators of the nonlinear and the Vene-
ziano theories. In the table the c&„"&, n =1, 2, . . ., ~
refer to the infinite set of four-dimensional har-
monic-oscillator operators' of the Veneziano
model. Because of the obvious economy of the
single set of six-dimensional operators, it is
hoped that they may also be of use in the q=1 Ve-
neziano theory. As it stands, the q& 1 operator
formalism is not directly applicable in the limit
q-1. Of course, the limit can be taken after ma-
trix elements have been evaluated.
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