
1422 HECTOR MORENO

H. Moreno, Phys. Rev. Letters 25, 625 (1970).
VH. Gemmel and H. A. Kastrup, Nucl. Phys. B14, 566

(1969); H. Gemmel and H. A. Kastrup, Z. Physik 229,
321 (1969).

One should not expect the model to be accurate at
small momentum transfers, since in that kinematical
region the deflection might be due to several (not neces-
sarily just one) very soft collisions. This may lead to
"double counting" and it was pointed out by Professor
R. Blankenbecler.

sin previous papers (Ref. 6), the field has been assumed
to be massive, neutral, and of vector character. In this
paper, two possibilities are explored: (a) scalar mesons
and (b) vector mesons. One can then compare the two
cases easily and, furthermore, find in the vector-meson
case the results of the first paper of Ref. 6 for the elas-
tic form factors in a generalized form for inelastic
nucleon-resonance processes.

R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969);
in High Energy Collisions, Third International Confer-
ence held at State University of New York, Stony Brook,
1969, edited by C. ¹ Yang et al. (Gordon and Breach,
New York, 1969), p. 237.

~~F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937);
D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. (¹Y.)
13, 379 (1961).
~See first and last papers of Ref. 6.

After subtraction of terms of the same type as 8& in

Eq. (7), which may be defined to be zero with the oper-
ational procedure of Eq. (8). That procedure defines the
ambiguous product of the two 6 functions gf the same
argument as the limit of the product of the two 6 functions
where one of them has its argument infinitesimally dis-
placed. But then products of the type 5(k -p )5(k P) are
zero since both k and p are timelike and k p & 0.

~4The variable

& (P+2e)
m'2 co'-1 (p +q)2

with co'=co+ m /Q was studied in Ref. 3, where it was
shown to originate in a natural way in the parton model.
It was suggested by the work of G. Cocho and J. Salazar,
Phys. Rev. Letters 27, 892 (1971).

~SS. D. Drell and T.-M. Yan, Phys. Rev. Letters 24,
181 (1970); G. West, ibid. 24, 1206 (1970). See also the
last paper of Ref. 6.

~6Bars on the symbols that appeared in the scalar-me-
son calculation will denote the same quantities in the
vector-meson case.

VIn the rest frame of the nucleon, E&+~ = v + m (p'q
v). mi [(p +q)2]&/2 [m2+2mv(1 ~)]i/2 ~ Q2/2m

Therefore, if m~-(m'/m)' ~, e&0, then

thf =(EP ) (v'/m')

=—m (1+v/m)[1+2v(1 —x)/m] ~

which will be large in the Bjorken limit v , x fixed.

PHYSICAL REVIEW D VOLUME 5, NUMBE R 6 15 MARC H 1972

Normalization of the nm Veneziano Model Using a Multiperipheral Model

with w, E, and u Exchange*

L. A. P. Balazsg and V. V. Dixit
DePartment of Physics, Purdue University, Lafayette, Indiana 47907

(Received 3 September 1971)

We consider a model of the Amati-Bertocchi-Fubini-Stanghellini-Tonin (ABFST) type with
co and X exchange, in addition to the usual pion exchange. Instead of using the usual formal-
ism, we sum the ABFST ~x xx graphs approximately by projecting out into crossed-channel
partial waves (which can be continued to unphysical angular momenta) and constructing a
diagonal Pade approximant. This satisfies unitarity exactly in the elastic region of that chan-
nel. In practice only the [1, 1] approximant was considered. The relevant graphs are then
built up from xm. xx, xx x~, and xx XZ input kernels, each of which is approximated by
Veneziano-model resonances with a cutoff at the mass of the J=3 resonance and with off-
shell effects neglected. By requiring that there be an output pole at t= 0 in the unphysical
I =1, J=2xx state and that its residue be consistent with the one predicted by the xvr Venezia-
no model, we can determine the normalization coefficient P of that model. We obtain P =0.65,
which corresponds to a p width of 135 MeV.

I. INTRODUCTION

Although the Veneziano model, ' or for that mat-
ter any dual amplitude, is capable of giving suc-
cessful predictions for the ratios of resonance
widths in any given problem, it does not say any-
thing about their absolute values. In other words,

the over-all normalization of the Veneziano am-
plitude is arbitrary. To determine it, one has to
turn to some kind of dynamical model. One such
model is the multiperipheral integral equation,
which can be either of the multi-Regge' or the
Amati-Bertocchi- Fubini-. Stanghellini- Tonin
(ABFST) type. ' It has recently been argued that
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the former is highly suspect, since it depends on
the use of Regge behavior down to fairly low ener-
gies. ' The latter, on the other hand, seems to
lead to output Regge trajectories which are too
low, at least when simple pion-pole dominance is
assumed. ' One way of removing this difficulty is
to include the effect of other exchanges. '

In the present model we shall explicitly include
K and ~ exchange in addition to n exchange. These
are, of course, only the lightest among the par-
ticles which could come in. However, most of
the others are either Regge recurrences or lie on
exchange-degenerate trajectories, and it is usually
a reasonable approximation to replace a Regge
trajectory by the lightest particle lying on it, at
least for the sort of application we shall be con-
cerned with. The actual graphs of the model are
then constructed in terms of the resonances given
by the Veneziano model. This involves the Vene-
ziano model for other processes besides nm scat-
tering, and the normalization for these will either
be determined from experiment or related to the
ww normalization through SU(3) symmetry. The
mm normalization itself will be determined by re-
quiring consistency between the output wm trajec-
tory and the corresponding input Veneziano tra-
jectory in the neighborhood of 1=0.

The output nm trajectory is calculated by following
the usual procedure of summing the nm scattering
graphs which arise when the multiperipheral pro-
duction amplitudes are inserted into a multipar-
ticle unitarity relation. In Sec. II we discuss a
Pads-approximant technique for approximately
carrying out this sum. We first make a partial-
wave projection in the t channel, and continue the
resulting amplitude to unphysical angular momenta.
We then rearrange the graphs in terms of diagonal
Pads approximants, which satisfy unitarity ex-
actly in the elastic region. ' In practice we do not
go beyond the [1,1] approximant, which only in-
volves singly peripheral graphs. The explicit con-
struction of the input kernels for these graphs in
terms of the Veneziano resonances for nm- mm,

nw- men, and mn-XK is given in Sec. III.
In Sec. IV we carry out an approximate evalua-

tion of our graphs in the J= 2 unphysical state. To
avoid any Pomeranchuk complications, we only
consider the 1=1 state If our o.utput Regge tra-

jectory is to be consistent with the input ww Vene-
ziano trajectory, we must then have a pole at
t—= 0, the point at which the multiperipheral model
is most likely to be valid anyway. The require-
ment that the input and output parameters of this
pole be consistent with each other enables us to
determine the Veneziano normalization. In prin-
ciple this also determines the intercept of the tra-
jectory. One of our graphs requires a cutoff, how-
ever, which is needed to prevent a divergence and
to guarantee that the squared momentum transfers
in the peripheral chain are not much larger than
1 GeV'. We will therefore fix the input intercept
at a=-2 [which, as we shall see, is required by
partial conservation of axial-vector current (PCAC)
in the mv Veneziano model], and simply adjust the
cutoff parameter so that the output intercept is the
same, The resulting cutoff is in fact of the right
order of magnitude.

Finally, in Sec. V we discuss a multichannel
Pads technique in which several processes are de-
scribed simultaneously. The diagonal approxi-
mants, which are now matrices, then satisfy a
coupled-channel unitarity relation.

II. PADE- APPROXIMANT SUMMATION OF
ABFST GRAPHS

The model for production from two incident pions
which we shall use is illustrated in Fig. 1, where
all the produced particles are taken to be pions or
kaons. The effect of the latter will turn out to be
small, although its inclusion does improve our re-
sult. somewhat. This is consistent with the experi-
mentally observed fact that the large majority of
produced particles are pions. Of course, this
fact does not prevent us from having unstable par-
ticles such as the ~ among the vertical lines of
Fig, 1. But such a diagram would be dual to a
similar diagram in which these lines are all pions,
and so we would be double-counting if we included
them explicitly.

For the exchanged (horizontal) lines, we shall
take the m, K, and ~, which give the poles lying
closest to the forward direction. If we now insert

~ 0~CK C) C ~ )
S i

FIG. 1. Diagram for an ABFST production amplitude.
The horizontal lines can represent w, X, and ~ exchange.

FIG. 2. Multiperipheral contribution to the four-point
amplitude.
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where s, t, and u are the usual Mandelstam vari-
ables. We have dropped the u channel for the time
being, but will restore it later. In the case where
all the lines represent pions, for example, V,(s, t)

is just the elastic absorptive part and is given by

V,(s, t) = ~ dQT*(s, t,)T(s, t,),47tvs „ (2)

where T is the amplitude describing the blobs of
Fig. 3, q is the magnitude of the three-momentum,
and t, and t, are the squares of the momentum
transfers between the intermediate and final and
the initial and intermediate states, respectively.
At t=0, V, is simply related to the elastic cross
section.

The graphs of Fig. 2 are usually summed by
using either the ABFST integral equation for the
absorptive part' or the Bethe-Salpeter equation
for the full amplitude. ' We shall, instead, use
Pads approximants, which are much simpler.
These have already seen considerable application
in other areas of elementary-particle physics"
and so we shall not dwell on their more detailed
properties here. We first make a partial-wave
projection of the graphs of Fig. 2 in the t channel,
and make the usual Froissart-Gribov continuation
to unphysical J. We then associate a parameter
A. with each kernel of the type shown in Fig. 3, so
that the graphs of Fig. 2 give an expansion for the
partial-wave amplitude of the form

the diagrams of Fig. 1 into a multiparticle unitarity
relation, the resulting absorptive part of the mm

scattering amplitude is given by a sum of graphs
of the type shown in Fig. 2. If we insert this into a
fixed-momentum-transf er dispersion relation we
obtain the corresponding amplitude, which is also
given by Fig. 2. The input kernels V, out of which
these graphs are then constructed are given by
Fig. 3 and the corresponding contribution to the
invariant amplitude can be written as

( )
1 t'd, Vg(s, t)

which we normalize such that T~ = (v t /q)e' sin5
in the elastic region, where q is the c.m. momen-
tum in the t channel and 5 is the phase shift. We
will set A. = 1 at the end of the calculation.

The diagonal [X N] Padd approximant is now
defined by

ZnJ+ ~ ~ ~ +X"n,"
1+Zd' + ~ ~ ~ + X"d" ' (4)

where the coefficients nJ and d& are chosen in
such a way that an expansion of Eq. (4) in powers
of A. agrees with the expansion (2) up to the A.

'"
term A.diagonal approximant like Eq. (4) can be
easily shown to satisfy unitarity exactly in the
elastic region of the t channel. ' In the case of non-
relativistic potential scattering it has also been
shown to converge to the correct amplitude for
large enough ¹'In practice, however, we have
only considered the [1, 1] approximant. This gives
an approximate amplitude

(3-W &
7r C~)

c~) cM )

where we have set 1=1 and where TJ is the partial-
wave projection of Egs. (1) and (2). In the t-chan-
nel isospin state I=1, which does not have any
Pomeranchuk complications and which we shall
consider from now on, T~ is given by the graphs
of Fig. 4. We therefore have only singly peripheral
graphs contributing explicitly to this order of ap-
proximation. A pole in TJ will now occur at t= tJ
when

1/T (t ) =0.

T~(t ) = XT~ + X'T~ + ~ ~ ~, (a) (b)

FIG. 3. A typical input kernel out of which the graphs
of Fig. 2 are built.

FIG. 4. Graphs which contribute to the function TJ2 of
Secs. II-Dt.
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The corresponding residue pJ is

8 1
at T,(t),=,, '

snd the equation for a Hegge trajectory a(t) is
given by

=n(t'~) . (8)

For mrs- mm we have a T matrix

(st t )~pllpO pPl!IP2pP3(7 1

where e„ is the ~ polarization vector and the P»
are the pion momenta. The invariant amplitude
T is given by

T (s, t)= j) [B(l —n(t), 1 —a(s))

The graphs of Fig. 4 involve three kinds of input
kernels, corresponding to Fig. 3 for the processes
Iw-n3; mw-mm, and nK-xK. The first is also
the one which gives TJ. Now in evaluating the
graphs of Fig. 4, we require off-shell expressions
for these kernels. For this we shall follow the
usual procedure of approximating V,(s, t) by its
on-shell value" and calculating V itself from Eq.
(1). This procedure is the one which is favored if
we invoke a "criterion of maximal convergence. "'

We have already seen that only m or mE inter-
mediate states should come into Fig. 3. Since the

p and f' decay almost totally into w w and the
K*(892) almost totally into wK, and since these
are the dominant low-energy resonances, we have

V,(s, t)=T,(s, t)

at low energies, where T, is the corresponding
full absorptive part for the process considered.
We will use Eq. {9)up to the g meson for ww-ww

and w~- mv and the 4= 3 Hegge recurrence of the
K*(892) for nK- wE. Actually, it is not clear
whether this is quite correct, since these reso-
nances may decay predominantly into other chan-
nels and so should probably be suppressed. We
will include them to compensate for higher-s con-
tributions which we are neglecting. ' Explicit esti-
mates made by Chew, Rogers, and Snider' have
shown that such a neglect 1s justlf1ed.

To evaluate T,(s, t) we use the Veneziano model.
For ww- wn the corresponding amplitude is

T"(s, t) =2j3„[F(n(t), a(s)) -F(a(t), a(u))] (10)

in the t-channel I=1 state, with

I (1 —x)I"(I —y)Fx, y =—
I'(1 —x —y)

and n(s)= n, +n's. Equation (10) gives the usual
Hegge asymptotic behavior with a residue function

b n'"
w I'(a)

This can be related to the y~ function of Eq. {7)
through

v w I'(n+1) b
7 Ix 4n Zl(n + 3)

+ B(1—a(t), 1 —n(u))

+ B(1—n(s), 1 —n(u))],

where a(s) is the same as for ww- ww and B is the
Euler 8 function. Finally, for mK- mE, which be-
comes mw-EK in the t channel, we have

Tw(s, t) =2P~[F(a(t), a(s)) -F(a(t), a(u))], (16)

where F ls again given by Eq. (11) and n(s) = ao
+ n's is the K* trajectory. If we take the absorp-
tive part of Eqs. (10), (15), and (16) in the s vari-
able and use Eq. (9), we obtain in each case an
expression of the form

V',{s,t) = P V'„(t)6(s- s'„),

where the V'„(t) are polynomials in t, the s'„are
the positions of the resonances, and i=m, co, E, re-
spectively.

We will determine our trajectory parameters in
the usual way'0 by imposing the PCAC conditions
n(m, ') = —,

' and n(ml') =-,', and requiring n(s) to
give the correct experimental value for the p mass,
This gives no=0. 5, @0=0.28, and e'=~«in pion
mass units; we are taking n' to be the same for
both n(s) and n(s), sn assumption which is approx-
imately consistent with the experimental E* mass.
The parameter P was determined in terms of the
p residue in the ww- wu& process, which gives P

a gpppgpw(u/4w' Now gpwp Tp ~d gpwtu ~(u/I p

if we assume the Gell-Mann-Sharp-Wagner model, "
where I ~ and I' are widths of the p and co reso-
nances. Thus P depends only on I' . If we take
the experimental value I' =12 MeV, we obtain

gp„„gp, /4w=0. 468. The constant Pw in Eq. (16)
was also determined in terms of the p residue and
is given by j3w =gp„.gp«/4w Since the. same pro-
cedure applied to Eq. (11) gives P, = gp„'/4w and
since SU(3) gives" 2gp«'=gp, „'we thus have P»
= (—,')'"P, . The value of jl, itself will be determined
self -consistently.

If we insert Eq. {17)into Eq. (1) we have
3

V~(, t) 1 g V.(t) (18)
'F s —s

n=X

Now V'(s, t) is needed only for s &0 within any of
our equations and in the I= I state all the terms in
the summation of Eq. (18) are positive there, at
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least for t=0. We can therefore make the further
approximation of replacing V'(s, t) by a single ef-
fective pole

V'( t)- '"'
Sg-S

where

(19)

and

c'(t) = gv-'„(t)
n=l

vc'(t)

g [V„'(t)/s'„]
n=l

(20)

(21)

Equation (19}then reproduces Eq. (18) exactly at
s = 0 and s = ~ and to within several percent for all
other negative values of s.

(22)

where i=v, Z for Figs. 4(a) and 4(c}, respectively;
v&=q&'=&t-m~", andm, =1 and mK are the pion and

kaon masses. The V~ is a partial-wave projection
of Eq. (19) and is given by

V;(p", p', t)=12 2 c (t) sR+p +p (23)

where we have included an extra factor of 2 to take
into account the effect of the u channel. It turns

IV. SELF-CONSISTENT DETERMINATION OF P

Our remaining problem is now to evaluate the
diagrams of Fig. 4 in the appropriate angular mo-
mentum state or states, insert them into Eq. (5),
and require the output trajectory as calculated
from Eqs. (6)-(8) to be consistent with the one in

Eq. (11). Since the multiperipheral model is pre-
sumably most reliable near t=0 and since the
t= 0 intercept of the latter trajectory is np 0
we would therefore be interested in using Eq. (5)
in the neighborhood of J= —,'. Now there is more
than one way in which P could be calculated self-
consistently. The procedure we found most con-
venient was to do the entire calculation at J= —,

'
and require Eq. (6) to be satisfied with t~=0. Then

$ was varied until Eq. (7) gave the same value of

y~ as Eqs. (13) and (12).
In practice, a Logunov- Tavkhelidze-Blanken-

becler-Sugar (LTBS) type of approximation" was
used to evaluate Figs. 4(a) and 4(c). In this ap-
proximation the product of the propagators for the
two horizontal lines is replaced by a more trac-
table function. In a given partial wave we then

have contributions
oo r r l/2

out to be reasonable to make an asymptotic approx-
imation for Q~,

&~r(@+1)
Qz( )

(2 )7+lr(g 3) (24)

a = [s„+-,'(t' -m ' —3)]/(2q'„q'),

2- 1q" = —,(m ' —1+ t')'-m ',

and q", =-,'t' —1. The cutoff A was put in to prevent
a divergence of the integral and guarantees that the
squared momentum transfers t, in the peripheral
chain are bounded by ~t, ~

& A. The original multi-
peripheral assumption is that these ~t;( are not

much larger than 16eV'.' The cutoff can also be
thought of as a rough way of parametrizing the
more-c/istant singularities. As before we shall
make the asymptotic approximation (24) for

Q~, (a) and drop Q~„(a), which is of the same
order;j, s the higher-order terms in an expansion
of Q~,(a). The integral of Eq. (25) can then be
done exactly for J = &.

The above expressions enable us to determine
the Pacld approximant (5} in which

T~(t) = v~(v„, v„ t), (2't)

where V~ is given by Eq. (23), and

r2(t }= p r,""(t), (28)
$=7r, fd, K

with the T~~ ~ given by Eqs. (22) and (25). The
value of A in the latter integral was adjusted so
that Eq. (6) was satisfied with t~=0 for J=-,'. This,
as we have seen, guarantees that the output p tra-

With this approximation, the integral of Eq. (22}
can be evaluated analytically for J=-,'.

Figure 4(b) is somewhat messy to evaluate by
means of the above approximation, mainly be-
cause of the fact that the intermediate particles
in the t channel have unequal masses. We shall,
instead, use the fact that the partial-wave pro-
jection of Fig. 4(b) has a right-hand cut and a left-
hand cut in the t plane. Actually, for general J it
is more convenient to deal, not with the projection
T& ) itself but, rather, with the function v, T~
which has better analyticity properties. Now the
left-hand cut is relatively far from the region of
interest and so our approximation will be to drop
it. We then have

-XT2((u)(t) q&2/+1 ~jr ~vr(u(tg t))
1 dt'
m (~ +,)2 t' —t

(25)
where
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jectory has the correct intercept. The output
was then calculated from Eq. (7) for various input
values of P„, until it was equal to the value y,'»
as given by Eqs. (13) and (12). This finally oc-
curred for jr= 0.65 which corresponds to a p width
of 135 MeV in the Veneziano model of Eq. (10).
(Experimentally the p width is about 125 MeV, so
jr~0.6.) The corresponding value of the cutoff
was A=75.3 (1.476 GeV') which is roughly consis-
tent with the value of 1 GeV' required by the orig-
inal assumptions of peripheralism. Our self-con-
sistency condition appears to be a fairly stable
one, since y'»,'/y, '"„deviates sufficiently rapidly
from unity as P„ is varied from the self-consis-
tency value. For example, with j9„=0.60 we have
y»",'/y, '"„=1.06, while P, = 0.68 gives y'»",'/y, '»—- 0.96.

Our result is also not too sensitive to the cutoff.
Suppose, for example, we decrease A by 5%, but
leave all the other input parameters unchanged.
Then, of course, the input and output trajectories
are no longer the same. With z»2' = z,',"„Eq.(6)
gives tzg2 2 14 which corresponds to an output
intercept u, = 0.46 while the value of P, changes to
j9„=0.62 (a 4/0 change). But since we do wish to
have a self-consistent intercept, and since this
intercept is, after all, fixed at e, = 0.5 by PCAC
in our model, perhaps a more meaningful way of
seeing how sensitive our results are to the cutoff
is to change A but at the same time adjust g~„~'
so that the output intercept continues to be the
same. With A = 71.6 (a 5/o decrease) we then have

(g,„'/4v) = 0 472, w. hereas with A = 79.1 (a 5% in-
crease) we have (g~, '/4n) =0.304, which should
be compared with the value (g~, '/4m) = 0.373 in
the original calculation (with A = 75.3). On the
other hand, P„ in each case differs by less than
0.5/o from the original value j3„=0.65. This also
shows that P, is extremely insensitive to g~„'.

&(ix) ~&(xa)

&~(2i) ~~(22)
(29)

and would each be described by graphs of the type
shown in Fig. 2. According to the arguments of
Sec. II all the vertical intermediate lines are
again pions.

The rest of the procedure is exactly the same as
in Sec. II. We again have Eqs. (3), (4), and (5),
except that the various terms are now 2&2 ma-
trices. The condition for a pole mill be given by

detT~ '(t, )=0 (30)

instead of Eq. (6), however, and the corresponding
residue by

(y~), , = -cof [7~ '(fz)],& &
detTz '(t) (31)

t=tg

(where "cof" means "cofactor") instead of Eq. (7).
A diagonal Pads approximant mill now satisfy the
two-channel form of unitarity, at least below the
~nw threshold —the [1, 1] approximant actually sat-
isfies it for all t. In this respect, the matrix ap-
proximant is an improvement over the one in Sec.
II, which only satisfies simple nm elastic unitarity,
and, while not ignoring the mw intermediate state,
treats it in a less satisfactory manner. On the
other hand, the matrix version is considerably
more complicated. The T~' term in the [1, 1] ap-
proximant (5), for example, would involve the
graphs of Fig. 5 in addition to Figs. 4(a) and 4(b).
These graphs, which are also of the singly periph-
eral type, are discussed further in the Appendix.

In conclusion, it should be mentioned that the

V. MATRIX PADE-APPROXIMANT SUMMATION

OF MULTIPERIPBERAL GRAPHS

We shall now discuss an improved, but somewhat
more complicated, way of using Pads approximants
to sum multiperipheral graphs with more than one
exchange, which amounts to a different way of re-
arranging the expansion (3). For simplicity, we
shall ignore the E meson, although its inclusion
would be straightforward. We shall also confine
ourselves again to the I= 1 state. Then, instead
of considering Fig. 2 with only pions for the ex-
ternal lines, we consider the coupled-channel prob-
lem in which the ww-mn, nm-we, neo-mw, and
m~- neo processes are treated simultaneously.
The corresponding amplitudes T&(»~, T~(»~, T~(»~,
and T~(»~ would then be written in the usual way
as elements of a 2&2 matrix

(a)

C W3

FIG. 5. Additional graphs which would contribute to
~z in the matrix version of Sec. V.
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Pads technique, whether of the simple variety
used in Secs. II-IV or the multichannel form dis-
cussed above, is by no means restricted to the
simple type of multiperipheral model which we
have been considering. For example, it would be
straightforward, if not altogether simple, to con-
sider a model in which the horizontal lines are
Heggeized. Equations (3)-(5}would continue to be
used but the expressions for T~ would, of course,
be different. It is also not essential to use partial-
wave amplitudes. At t = 0, for instance, we could,
instead, use an O(4) expansion in terms of Gegen-
bauer polynomials. The simple connection with
t-channel unitarity would be lost, however.
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where

x V~ (v', q„', t)V~(v', v„, t), (Al)

1
q '=—(m '-1+i)'-m ',

APPENDIX

The graphs of Fig. 5 can be evaluated approxi-.
mately by means of techniques very similar to
those used in Sec. DT. The LTBS approximation is
again fairly simple to use for Figs. 5(a) and 5(c),
where the particles corresponding to the horizontal
lines have equal mass. Thus Fig. 5(b} gives a con-
tribution to the mm- m~ partial wave of

1 P" dv' 1/2

T~ is normalized so that T~ =(S—1)/(q„q )"', S
being the appropriate element of the partial-wave
S matrix; V~ is given by Eq. (23), and V~ by

im -m~
2P'P 4t

(A3)

In n~- mw scattering the p trajectory contributes
only to states with I, = J'. For such states Fig. 5(c)
gives a contribution

dp pt 1j2

v —v v +mp gp V —V~ V +Pl~

(A4)

where VJ is again given by Eq. (A2) and the nor-
malization is such that T~ = (S —1)/q„v t, where S
is the appropriate element of the partial-wave S
matrix.

Figures 5(b) and 5(d) involve an input kernel
with Fig. 3 corresponding to the process neo- m~.

The Veneziano model for this process is difficult
to write down" and so we shall content ourselves
with the contribution of the p, although it would be
straightforward to include a higher resonance like
the g. The prescription for going off the mass
shell would again be to first evaluate an on-shell
value for V, and then use Eq (1) to.evaluate the
contribution of the kernel to the corresponding in-
variant amplitude. There is more than one invari-
ant amplitude involved in this case."

Since the horizontal lines in Figs. 5(b) and 5(d)
have unequal masses, the LTBS approximation
again becomes complicated to use. If, instead, we
follow the procedure applied to Fig. 4(b), we ob-
tain the contribution

V, (P",f ', t)=c (t) ~ 1 [Q, ,(&)-Q„,(&)],
[Z(J + 1)]'~'

(A2)
with

dt'
T (, )

= '
il q'' ' k/t'W (t', t)U (f', t),

~ (m~+X)2

where the amplitude is normalized in the same way as in Eq. (Al); W ~ is given by Eq. (26); and

(A5)

] g2 Q2 g
U (C I)= = c',', ;, [Q „(c)—Q, (c)]+q' '[ ' i ' k+ sc( q'+ kU)c s)qkkcEqs] (c)q)), q)'

(A6)

with

n'= —(m '-m '+f)'-m '

cos8 =1+,[2(m„'+m„') —t mp'], —1

c= „[m,' —2(m '+m, ') + f'] —1,

82=m 2+02 and gr2=m '+

Similarly Fig. 4(d) gives a contribution
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2J df, ' I 21 +i~jr
( U(tI t)I2

m „(~ +,)2 t' —t

(A7)

(A8}

Needless to say, although Figs. 4(a), 5(a}, and

5(c) could be evaluated quite readily by the LTBS
approximation, they could also be evaluated by
the technique of the preceding paragraph. This
then gives contributions

v, "" dt' Iv~'~(q", q'„', t)I2

t' —t q' Vt'

(q.q )'
TJ(~2) =

~&'(q.",q.", t) ~~ (q.",q~, t)
J, t' —t q', 'q' Wt'

(A9)

q
Il'X(q„"; q", t)I'

&(22)
& P t qs2J~P

4
(A10}

instead of Eqs. (22), (A1), and (A4). The latter
equations are probably more accurate.

*Work supported in part by the U. S. Atomic Energy
Commission.

)Work supported in part from an Alfred P. Sloan
Foundation Fellowship.

G. Veneziano, Nuovo Cimento 57, 190 (1968).
G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112

(1968); G. F. Chew, M. L. Goldberger, and F. E. Low,
Phys. Rev. Letters 22, 208 (1969);I. G. Halliday, Nuovo
Cimento 60A, 177 (1969); I. G. Halliday and L. M. Saun-
ders, ibid. 60A, 494 (1969); L. Caneschi and A. Pignotti,
Phys. Rev. 180, 1525 (1969); 184, 1915 (1969);G. F. Chew
and W. R. Frazer, ibid. 181, 1914 (1969);J. S. Ball and
G. Marchesini, ibid. 188, 2209 (1969).

3L. Bertocchi, S. Fubini, and M. Tonin, Nuovo Cimento
25, 626 (1962); D. Amati, A. Stanghellini, and S. Fubini,
ibid. 26, 896 (1962).

4G. F. Chew, T. Rogers, and D. R. Snider, Phys. Rev.
D 2, 765 (1970).

5D. M. Tow, Phys. Rev. D 2, 154 (1970).
~A crude way of doing this was used by L. A. P. Balazs,

Phys. Rev. D 4, 1117 (1971).
TFor a recent review of the properties of Pade approx-

imants and some of their applications to elementary-
particle physics, see J. Zinn-Justin, Phys. Reports 1C,
55 (1971).

J. S. Ball and G. Marchesini, Phys. Rev. 188, 2508
(1969).

BS. T. Chiang, UCLA Ph. D. thesis (unpublished).
C. Lovelace, Phys. Letters 28B, 264 (1968).

~~M. Gell-Mann, D. Sharp, and W. D. Wagner, Phys.
Rev. Letters 8, 261 (1962).
' See, for example, R. H. Capps, Phys. Rev. Letters

10, 312 (1963).
~A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento
29, 380 (1963); R. Blankenbecler and R. Sugar, Phys.
Rev. 142, 1051 (1966).

l4P. Carruthers and E. Lasley, Phys. Rev. D 1, 1204
(1970).
~~See, for instance, K. Kang, Phys. Rev. 140, B1626

(1965).

PHYSICAL REVIEW D VOLUME 5, NUMBER 6 15 MARCH 1972

Operator Formulation of a Dual Multiparticle Theory with Nonlinear Trajectories*

Darryl D. Coon
University of Pittsburgh, Pittsburgh, Pennsylvania 15213

8, Yu and M. Baker
University of Washington, Seattle, Washington 98195

(Received 6 December 1971)

An operator formalism for a dual-resonance theory with nonlinear trajectories is presented
and an explicit, factorized operator representation is obtained for the N-point function. Op-
erator Ward identities are also given.

In a previous paper, ' we considered a meromor-
phic dual N-point Born term B~ with poles at en-
ergies = s, '" given by

1+(1-q}(a+bs,) =q '.

a and 6 are constants and q is a parameter be-
tween zero and unity whose value determines the
degree of nonlinearity of the trajectories, ' fn the
limit q- 1, the trajectories become linear and
B„-V~, the Veneziano N-point amplitude. '


