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turn electrodynamics seems to confirm the validity
of these assumptions.
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Dynamical models are used to discuss the theoretical justification of the Regge-eikonal
formula for scattering amplitudes. A generalized ladder-diagram model with Reggeon ex-
change replacing single-particle exchange yields the eikonal result only if the Heggeon am-

plitude has no mass-shell dependence, since the intermediate-state particles are far from

their mass shells at high energy. This result i.s contrasted with a nonperturbative model

of a Regge-pole amplitude whi. ch has strong mass-shell dependence. Next, a theory in which

the coupling of the Reggeons to the external particles is nonplanar is examined. The double-

Reggeon-exchange amplitude does not satisfy the eikonal representation. The perturbation-
theory model of Cicuta and Sugar is shown to break down if higher-order corrections to the

residue function are calculated. The conclusion of the paper is that there does not exist
any theoretical justification for considering the Regge-eikona1. model to be a valid descrip-
tion of high-energy scattering.

I. INTRODUCTION

In recent years it has become apparent that the
simple model in which a few Regge poles dominate
scattering amplitudes at high energies is incapable
of adequately describing scattering data. ' This
failure to agree with experiment suggests either

the Regge-pole model must be modified or the
whole concept of Regge poles should be abandoned.
Although the second alternative has its devotees,
most proponents of Regge theory feel. that the nat-
ural step is to introduce Regge cuts. Cuts in the
angular momentum plane were first discussed al-
most ten years ago, 2 but not until the pure pole
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The amplitude for single-Regge-pole, exchange is
p(t)s" &', where n(t) is the trajectory function.
When the exponential in (1) is expanded in a power
series, the first term corresponds to the exchange
of a single Regge pole. The second term yields
the Reggeon-Reggeon cut, while the third term
contains the cut from triple-Reggeon exchange,
and so forth. Equations (1) and (2) are similar to
the eikonal approximation in potential theory where

y(s, b) is essentially the two-dimensional Fourier
transform of the Born approximation. 4 According
to the eikonal picture, the two particles scatter off
each other many times, yet each retains its origi-
nal identity and remains close to its mass shell.
To be valid in the relativistic domain these condi-
tions must be satisfied at high energy.

The Regge-eikonal model has certain attractive
theoretical features. In most dynamical models of
Regge trajectories, there is no restriction on the
magnitude of o(k' =0). If o(0) & 1, single-Regge-
pole exchange violates the Froissart bound. How-

ever, as Chang and Yan' have shown, the Regge-
eikonal amplitude satisfies the Froissart bound,
whatever the magnitude of o.(0). Secondly, the
Regge-eikonal model forces approximate s-chan-
nel unitarity on ((-channel pole exchange and, in the
process, provides a unique prescription for intro-
ducing the accompanying Regge cuts. Unfortunate-
ly, in spite of these attractive features, theoreti-
cal justification of the model is based mainly on
analogy with potential theory, and potential theory

model failed did anyone take their importance ser-
iously. There exist a number of phenomenological
models which combine poles and cuts. ' Most of
them are successful in fitting the data. In this pa-
per we concentrate on one of them, the Regge-
eikonal model. ' Not only is it simple to describe,
but it appears to be a straightforward extrapolation
of potential-theory results on high-energy scatter-
ing amplitudes. The question is whether potential
theory can be trusted. It should be possible to de-
velop relativistic models which lead to the Regge-
eikonal picture. What are the limits of these mod-
el.s, if they exist'P

The Regge-eikonal model states that at high en-
ergy the scattering amplitude takes on the form

A(s, i)=-is f d ( e'~' (e'" ' —(),

where q =-t. By itself (1) says nothing; it is just
another representation of the scattering amplitude.
The crucial step in the Regge-eikonal model comes
in identifying g(s, b) with the Fourier transform of
single-Reggeon exchange:

has proved to be a notoriously poor guide to the
relativistic version of the complex angular momen-
tum plane. The Schrodinger equation does not in-
corporate multiparticle unitarity or crossing and
does not yield Regge cuts or daughter poles. More-
over, the usefulness of potential theory at high en-
ergy is questionable.

What is the theoretical justification of the rela-
tivistic version of the Regge-eikonal model~ Note
that this is not the same as asking whether certain
field theories eikonalize. The fact that some field
theories eikonalize certainly suggest that there is
no basic incompatibility between relativity theory
and the eikonal representation. Moreover, the
reason why some theories do not eikonalize may be
related to the difficulty of justifying the Regge-
eikonal model. ' Chang and Yan give a heuristic
derivation of the model in a P' theory, while Cicuta
and Sugar' obtain the Regge-eikonal form in the
same theory by carefully summing diagrams con-
taining nested ladders. Their work, however, is
strictly a weak-coupling, leading-logarithm cal-
culation. Muzinich, Tiktopoulos, and Treiman'
have shown that in certain situations the eikonal
formula does not emerge, at least not in the form
envisaged by Chang and Yan. ' Cheng and Wu' and
Islam" have discussed a nonplanar diagram con-
sisting of Regge-pole and single-particle exchange.
They find that the eikonal approximation fails in
this case.

Theoretical models have to be subjected to two
tests: Does the model sum to the eikonal form,
and does the eikonal sum actually represent the
high-energy limit of the model'P

In our study of these questions we use off-mass-
shell techniques. When the high-energy particles
which undergo the scattering occur in intermediate
states, they are represented by Feynman propa-
gators, This approach is consistent both with
other attempts to justify the Regge-eikonal form
and with potential-theory derivations of the eikonal
approximation. Our conclusion is that there does
not exist at this time any theoretical justification
for considering the Regge-eikonal model to be an
accurate description of the mechanism of high-
energy scattering. This result is based upon the
investigation of two general theoretical models
which can be forced to yield the Regge-eikonal for-
mula, but only with the imposition of certain arti-
ficial constraints which are believed to be incor-
rect. We are thus in accord with other investiga-
tions on the same subject, ' though our reasons
are different and our results are more general.
The Regge-eikonal model requires that at high en-
ergy either the scattering particles stay close to
their mass shells or there be no mass-shell depen-
dence in off-mass-shell scattering amplitudes.



1402 ARTHUR R. SKI F T

The first condition is not met by any of the theo-
retical models, and the second is unlikely to be
true of strongly interacting, composite hadrons.
The model also requires that fragmentation of the
incident particles be neglected at high energies.
In other words, processes in which the incident
particles break up and transfer a sizable fraction
of their energy to other particles must be unim-
portant. Just as fragmentation is suppressed in
quantum electrodynamics, ' it can be suppressed in
the Regge-eikonal model by a proper choice of the
Regge-pole amplitude to be eikonalized.

The first class of models we consider follows
very closely the ideas developed by Arnold' in his
original paper on the Regge-'eikonal model. Two
particles interact in all possible ways through
Regge-pole exchange. This is just the generalized
ladder-diagram model of P' theory with Regge-
pole exchange replacing elementary-particle ex-
change. Since the residue function p(t) for single-
Reggeon exchange is expected to depend on the
mass of the scattering particles, this dependence
is included in the models. In fact, nonperturbative,
field-theoretic models of Regge poles lead to just
such a behavior. The eikonal result in field-theory
models turns out to be crucially dependent on the
fact that the only mass-shell dependence is in the
particle propagators. This result is particularly
evident in a detailed study of double-Reggeon ex-
change.

The second class of models we consider looks
for the Regge-eikonal amplitude to emerge from a
summation of nested amplitudes along the lines
proposed by Chang and Yan' and developed in de-
tail by Cicuta and Sugar. ' The Cicuta-Sugar' re-
sult depends on having a Q' theory so that direct
and exchanged particles are identical. The frag-
mentation graphs are then equivalent to the direct
graphs. Moreover, their perturbative calculation
breaks down if higher-order corrections to the
residue functions are calculated. For double-
Reggeon exchange, the eikonal formula predicts
an amplitude of the form

4 (s, t) = d'0p(k')p((q —0)')s"~k '+"f' k"l '
2(2m)' ~

(3)

where q' = -t. On the other hand, we find that
double-Reggeon exchange with nonplanar coupling
does not lead to amplitudes of the form given by

(3), but rather we obtain

(S f) = d kgb(y g (q —y)k)sn kk +rx a 0)

(4)

Equation (4) differs from (3) by the lack of factor-
ization of the integrand. This factorization is a
crucial step in the summation procedures neces-

sary to produce the eikonal result.
In Sec, II we develop generalized ladder-diagram

models with Regge-pole exchange. Particular em-
phasis is placed on the conditions necessary for
the eikonal amplitude to emerge. These require-
ments are compared with the results of a nonper-
turbative field-theoretical calculation of the full
off-mass-shell scattering amplitude for single-
Regge-pole exchange. Section III is concerned
with models wherein the Regge-eikonal formula is
supposed to emerge from the nonplanar coupling
of Regge poles to the scattering particles. Here
we concentrate on double-Regge-pole exchange and
examine the conditions under which the faetoriza-
tion predicted by the eikonal amplitude in (3) actu-
ally appears. The &P' perturbation-theory model
of the Regge-eikonal amplitude is examined in de-
tail and its limitations discussed. The Appendixes
contain calculations too involved to include in the
text of the paper.

H. GENERALIZED LADDER DIAGRAMS

Ml ITH REGGEON EXCHANGE

The eikonal model arises in quantum electrody-
namics (QED) as the high-energy limit of the sum
of a restricted class of diagrams in electron-elec-
tron scattering. " One such class, known as gener-
alized ladder diagrams, is made up of all diagrams
in which a photon emitted from one electron line is
absorbed by the other. The resulting eikonal func-
tion, y(s, b) [see Eq. (1)], is the two-dimensional
Fourier transform of the high-energy limit of
single-photon exchange, This result suggests that
the Regge-eikonal amplitude might be obtained
from a sum of generalized ladder diagrams where
the Nth-order term in the sum contains all possi-
ble permutations of N-Reggeon exchanges. If the
analogy to QED is valid, the eikonal function will
be the transform of the single-Reggeon-exchange
amplitude with all four legs on the mass shell. Let
us construct such a model and see if the eikonal
result emerges.

The off-mass-shell scattering amplitude for the
reaction p, +p, -p,'+p,', where all particles are
spinless, is a function of six variables: s,
=(p, +p,)', t=(P, —P,')', and the four squared
masses p, ', p, ', p", , p,". In the large-s domain
the amplitude for single-Reggeon exchange, Fig.
1, has the form

(Pl 1 Pk & P &PjIS2) )

Signature and pole factors are lumped into Z(t),
and the factorization of the residue function is ex-
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FIG. 2. The two double-Reggeon-exchange diagrams
with the direction of the 1oop momentum indicated.

FIG. 1. The single-Beggeon-exchange amplitude.

plicitly displayed. As a first step we calculate the
large-s limit of the two second-order diagrams in
Fig. 2 and compare the result with the eikonal pre-
diction of Eq. (3). The calculation is outlined in
Appendix A, and we present the answer here. The
high-energy limit of the box diagram (A) is

E„(s, t) = c d' 4"k[P(~, m', k')P(~, m', (q —k)')]'

&&Z(k )Z((q-k)')s"&~'~""&~' ~ '" 'lns,
(6)

while the crossed graph (B) is given by

E (s, t) = (-1)'s"E„(s, t) .
We have assumed that, as p,'- ~, p(p, ', m', k')-p(~, m2, kn)/p, '". N need not be an integer. The
momentum transfer t =-q' =(p, —p', )'. Equation (6)
contains an integral over 2 —4N dimensions. Con-
tinuous dimensional integration has been introduced
and discussed elsewhere. " It is sufficient for our
purposes here to note that the integral can be given
a definite meaning.

The important feature of (6) is that although the

integral factorizes in the manner required by the
Regge-eikonal model, the asymptotic behavior of
the amplitude depends on the residue function
p(p, ', p',2, t) far from the mass shell. In other
words, the particles in the intermediate states in
Fig. 2 are far from their mass sheQs, and the
whole rationale for the Regge-eikonal model comes
into tiuestion. A specific difficulty with the ampli-
tude in (6) is that the branch point for the Regge
cut is displaced by 2N to the left from 2n(0) —1,
the generally accepted position. ' Finally we note
that the leading behavior of each diagram is of the
form s 'lns. The logarithm does not cancel be-
tween the hvo diagrams unless N is an integer,
Thus, we find that this generalized ladder-diagram
model cannot lead to the Regge-eikonal model un-
less the residue functions are assumed to have no
mass-shell dependence. On the other hand, we
show below that residue functions should have a
strong mass-sheQ dependence.

Another way to arrive at these same conclusions
is to attempt to calculate the asymptotic behavior
of the box and crossed diagrams by means of the
standard approximation of dropping terms quadrat-
ic in the loop momentum. " Then we find

1 1
2P y 2N+1 2p y 2N+j 2p y 2/+1 2pl ~ y 2/+1 (6)

For simplicity we have assumed

p(p2 m2 t) p(t)/(p2 m2)28

The reader can easily convince himself that the
difference between N =0 and N g0 is significant
when it comes to combining denominators to obtain
the factorized form characteristic of field theo-
ries. On the other hand, if N=0, the only mass-
shell dependence of the generalized ladder diagram
is in the propagator s, and this model can be ana-.

lyzed and summed just like @ED.
If we arbitrarily set E(p,', p, ', pp, p,";s, t) equal

to its value when all legs are on the mass shell and
use the resulting amplitude as the Born approxima-
tion to a generalized ladder-diagram series, the
Regge-eikonal model will emerge. We emphasize
that this restriction to the mass shell, although it
agrees with the intuitive picture behind the eikonal
model, is an artificial one; it should emerge from
the dynamics rather than be used as input. The
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ladder sum can be performed in many ways; we
omit the details ". The answer is just (1) with

d'0 2
g(s b) = e '"'~[P(m' m' b')]'Z(b')s" '

~ (2v)'
(9)

Although (1) and (9) have the desired Regge-eikonal
form, we must check to make sure that they rep-
resent the true high-energy behavior of the set of
diagrams. Treiman and Tiktopoulos' have shown
that, although the corresponding expression in
QED is valid, the eikonal amplitude in a P' theory
does not represent the correct asymptotic behav-
ior. The basic problem concerns the importance
of fragmentation processes in which the energy is
transmitted across the rungs of the ladder rather
than only along the sides. A standard analysis of
the high-energy behavior of Feynman diagrams
shows that the eikonal formula with (9) is correct
if either (a) c.(0) & I or (b) P(t) vanishes faster than
any power of t as

~
t~-~. In case (a) the summa-

tion procedure succeeds for the same reason it
does in QED.' The eikonal path is enhanced rela-
tive to fragmentation paths by a power of s at each
vertex. Moreover, the Nth term in the expansion
of the exponential in (1) is of the same order or
larger than the first term so that the series makes
sense. In case (b), the contributions of noneikonal
paths to the asymptotic s behavior vanish faster
than any power of s due to the behavior of the res-
idue functions. On the other hand, eikonal paths
lead to a power-law behavior in s.

We have here a dynamical model of the Regge-
eikonal amplitude, if mass-shell effects are ne-
glected and either condition (a) or (b) is satisfied.
What do theoretical models of Regge poles say
about the reasonableness of these restrictions'P

The simplest theoretical model of a Regge pole
is an infinite sum of planar ladder diagrams. "
However, a perturbation-theory treatment of the
model is not adequate for a discussion of the be-
havior of residue functions. Recent work'2 on non-
perturbative approximations to the partial-wave
Bethe-Salpeter equation can be used to obtain rep-
resentations of the off-mass Regge pole amplitude
which have reasonable properties. Solutions to the
partial-wave equation, when combined with a Som-
merfeld-Watson transformation, yield the follow-
ing amplitude for single-Reggeon exchange":

1 r(-a) K (P)K (P') „
G& (t) K (0)

(1o)
where n= (tc), 4p =(p, +p,')'=2(p, '+pp) —2t, and
4p" =(p, +p,')'. The Regge trajectory c.(t) is gen-
erated by unitarizing a fundamental interaction
K(p ) in the ladder-approximation Bethe-RQpeter

equation. For example, in a p' theory K(p')
=g'(p'+X') '. The modified kernel, K„(p'), which
appears in (10) is defined by

K.(P')=r y 'K(y+P')A.r n-. ,
For single-particle exchange in a P' theory

r(n+1)K (P') =t'~„~.) „.
Regge trajectories are given, in this approxima-
tion, by solutions to the equation 1 = G(n(t), t),"
and

The important feature of the amplitude in (10) is
its explicit dependence on the masses of the exter-
nal particles. In perturbation theory the residue
function is a constant in leading order.

If K(p') represents single-particle exchange, we
find that as s-, the Regge behavior s"~' is ex-
actly canceled by the mass-shell dependence of the
residue functions and the second-order amplitude
does not contain moving Regge cuts. This result
is not surprising since planar diagrams with pla-
nar ladder exchange do not have Regge cuts. If,
instead of single-particle exchange, we consider
a theory in which the fundamental particles making
up the Regge pole interact through a kernel K(p')
which vanishes faster than any power as p -~, we
would find that K„(p') vanishes faster than any pow-
er and the double-Reggeon amplitude would not
have power behavior as s - . Such a kernel is in-
teresting because it generates trajectories which
have n( ~) =-~-. In any case, the representation
(10) for a Regge-pole amplitude suggests that it is
unreasonable to use the mass-shell limit of (5) in
an off-mass-shell calculation. The single-Regge-
pole-exchange amplitude shouM have a strong de-
pendence on the effective masses of the external
particles.

The conclusion of this section is that the eikonal
form of the scattering amplitude emerges from a
sum of generalized ladder diagrams with Regge-
pole exchange replacing particle exchange only if
the fundamental exchange amplitude is independent
of the effective masses of the scattering particles.
Although the eikonal form is obtained with this re-
striction, the model does not provide theoretical
justification of the Regge-eikonal formula for scat-
tering amplitudes. Rather it provides a demonstra-
tion of the close connection between mass-shell be-
havior and the eikonal representation. Moreover,
an analysis of a nonperturbative model of a Regge
pole shows that the assumption is unwarranted.
However, the generalized ladder-diagram model
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is not the broadest possible model. In a field-
theory sense, diagram (A) in Fig. 2 is planar and
should not contain cuts. The nested ladder-dia-
gram model of Cicuta and Sugar' is not of the type
considered here. For this reason, Sec. III is de-
voted to an analysis of diagrams containing nested
Regge poles with nonplanar couplings. Conceivably
the pinch analysis necessary to evaluate the asymp-
totic behavior of nonplanar diagrams could result
in a suppression of the mass-shell dependence of
the residue functions.

q-k

III. MULTI- REGGEON EXCHANGE KITH
NONPLANAR COUPLING

Although in Sec. II it was shown that generalized
ladder diagrams do not sum to the eikonal result,
there still remains the question of what happens
when the coupling of Regge poles to external par-
ticles is nonplanar. Regge cuts emerge from an
analysis of a different type of singularity. The Q'
model with nested ladders" is of this type, and it
leads to the Regge-eikonal formula. Although per-
turbation theory was used in that calculation, we
wish to avoid perturbation theory here. To this
end we write down the amplitude for a general,
nonplanar, double-Reggeon-exchange diagram and

analyze its high-energy behavior. The graph under
consideration is shown in Fig. 3." Again we as-
sume the off-mass-shell Reggeon-exchange ampli-
tude has the form given by (5). The limit s,s $-~
of the nonplanar diagram in Fig. 3 is

F($ t) -e dmk $~&~'&+~(&~-~&'&-~ [G((k q)2 km qm)]~
4

(12)
The details of the calculation are given in Appendix
B. Unlike the amplitude generated by double-Reg-
geon exchange in Sec. II, this amplitude has the
correct asymptotic behavior. In fact, (12) is just
the impact-factor representation of the scattering
amplitude discussed by Cheng and Wu." Whether

FIG. 3. The double-Reggeon-exchange amplitude with
nonplanar coupling to the external a particles. The sin-
gle-particle lines are labeled by the corresponding Feyn-
man parameters.

(12) constitutes the second term in an eikonal ex-
pansion depends on whether G((k- q)', k', q')

g (k')g((k —q)'). To answer this question we
must look at the detailed structure of G((k-q)', k',
q'). First, however, we note that if the Regge-
eikonal model must be based on a theory of nested
Reggeon exchanges, the attractive physical picture
behind the model is undermined. Which of the in-
ternal lines in Fig. 3 is to be identified with the
external particles'P Which line carries most of
the energy~ There is no way to decide, and the
idea that the incident particle passes through the
scattering process without losing its identity is
questionable. Thus, if the eikonal model can be
recovered from (12), it will be at the expense of
the intuitive ideas which originally motivated it.

For a nonplanar model to eikonalize, the func-
tion G((k —q)', k', q') must factorize into a product
of a function of k2 and a function of (k —q)'. [See
Eg. (3).j The explicit functional form of
G((k —q)', k', q') is

where

""daxda2da, da dx~dx2dxzdx2 a a(A ) a n((A'-a) )' e'o 5(a,a —a,a,}p(x„x„(k—q)'}p(x'„x,', k '}
a, +a4 a~+Q2

(13)

a,a, , a,a, ,a,a, (a, +a,)(a, +a,)
Q =k' +(k —q)' —q' +p, '

0~+03 Q2+Q4
—m'(a, +a, +a, +a,),

and

I /a, =a, +x, , a, =a, +x, , Q2 = Q2 + x~ Q4 = Q4 + x2

Z =a~+Q2+Q3+Q4,

The 5 function in the integrand of (13) has been used to rearrange the factors in Q. Almost by inspection it
is possible to conclude that (13) does not factorize, since the integrand does not factorize into the form
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g(a„a„x„x,) &&g(a„a„x,', x,'). Although the residue function p(x'„x,', k') and the coefficient of k' in Q de-
pend on the same set of variables a„a„x,', x,', as they should if the integral is to factorize, neither the
coefficients of q' and p,' p,

"in Q nor the term [a,/(a, +a4)]" " ~ =[az/(a, +a,)]" ~ factorizes correctly.
Moreover, the 6 function in the integrand of (13) prevents factorization. The fact that G((k- q)', k', q')
does not separate is independent of the mass-shell dependence of the residue functions. However, in the
absence of any mass-shell dependence, the result can be made more explicitly. The four-dimensional in-
tegral in (12) can be reduced to a single integral.

z" (1-z)" ~ & A+(A +4AB)
G =4p(k')p((k —q ') dz (A'+ 4AB)' ' ln (14)

where

A=k'z+(k-q)'(1-z) —q'z(l-z), B=P,'z(1- z)-m'+is.

8
„dv„dv„g da& @+1 jQ

2 K+4+2E»»(o., t) = 1(g ) c,&„& &
d k5(a, a, -a,a,)5(a,a, -a,a,),&+1 &sr ~~ «,+~4) &~, +~,r

(15)

~h~~~ f =a,a,f»+a,a,f», Z, =p', ,a„&,=p', ,a„and we have used (88) to convert part of the Feynman-
parameter integral back to an integral over the two-dimensional loop momentum k. The precise form of
Q is unimportant at this stage; 6» and n, '„are the determinants of the N- and M-rung ladders and dv» and
d7~ represent the integrals over the Feynman parameters for the two ladders. An N-rung ladder diagram
with its legs off the mass shell, such as shown in Fig. 3, has the integral representation

dv e'~&

~2E (16)

where

f» A»+pl xlB» pl IC»+p2 x»D»+Pm»@» (Pl+P2) f»+ (Pl P2) G»'

The only important function is b.»f„=x,x, x„. The other functions A„, B», etc. do not vanish if one of
the x, =0. The representation of F„in (16) has the same form as that developed in Appendix A for the gen-
eral Regge-pole amplitude in (5). Given g», we see from Fig. 4 and the definition of a, used in Appendix B
that

Clearly double-Reggeon exchange with nonplanar couplings does not lead to an amplitude which corresponds
to the appropriate term in the expansion of an eikonal amplitude. " On the other hand, the Q' model with
nested ladders is of the form considered here, and it leads to an eikonal amplitude.

The answer to this paradox lies in the difference bebveen inserting ladder diagrams that have already
been summed into Fig. 3 and treating nonplanar graphs with finite ladders and summing the result. In a p'
theory fixed poles in the angular momentum plane are summed to give a moving pole. The residues of
these fixed poles receive contributions both from the interior ladder diagrams and from the crossed lines
coupling the ladders to external particles. To see how the Regge-eikonal result emerges in a P' perturba-
tion-theory calculation, we present a quick derivation of this model. Starting with (B5) of Appendix B, we
find the Mellin transform of an amplitude containing the exchange of ladders with N and M rungs is given
by

I I
~1 Ql +Xl B~ ~

Q = Q+X1BN
I Ia, = Q3+X1CQ,

Q4 = Q4+XjCp y

Q =Q+X~Dgy
I I

+6 —~6++M DN y

+ —+ +ONE~ y

I I
~8 = ~8+&~&g ~

Y)

y2

X2

X3

Since u and u' in Appendix 8 are the conjugate
variables to the momentum transfer across the
amplitudes, they are identified with f„and f„,
respectively.

The poles of E»»(n, i) arise from those regions
of Feynman-parameter space where the integral
representation diverges. These regions are deter-
mined by the function

YN I

XN-l

Xg Zg (

FIG. 4. An &-rung ladder diagram with its Feynman
parameters explicitly labeled.
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x '''x g~eeegI
(a, +x, C„)(a,+x»Z„)+, (a, +x,C»)(a, +z»E»), (18)

and include not only x, =x, = =x„=x,=. @~=0but also four disjoint regions of the integral over the a,
parameters. These regions are

(a) a, = a, = a, = a, =0;

a1 = as =a() = as=0d

(c) a, =a, =a, =a, =0;

(d) ~=a4=ae=as=0.

For example, near n = -3 the contribution of region (a) is given by

8
La, +a4g~a6+as&

0 e 0 g X Ct +J,

x g8(a1+x1C») + a4(a7+x»E»)
&N

(19)

The!& functions in (15) were used to eliminate the a1 and as integrations. Next, 1f as=P1(1 y1)) z1=P1y1)
a, -p (I y ), and z»-p„y», we find that (19)becomes

d (ts S)=s'(ds)"+"+ J d')tJ ds 'ds ds''''dss

1 a e'~
P1 P» P1 P» y1 y»( )(a +g )n

c+2 A+2 d

~ ~ eg g g too+x y»a8(l -y1+y1C»)+, ad(1 -y»+y»»)

(20)

Poles of E„„(n,f) at n =-3 come from the p„p„,x„... , z» „&&,"~, z», y1, y» integ»~ons
set these variables equal to zero wherever they occur and use the integral

f r(++I-I) 1
1 z»++y1 y») dzl dz» dy1 dy»

(n + 3)»+»-1 ie(~)le(~)

to obtain
(N'+M-2)! 1 da, da, da, da, , e'4&

hl-I)!(I-I)! (n+3)"'"+' a + +a " "n

When x, =xz =a, =a, = a, =a, =0, the exchanged ladders are fully contracted so that the determinants A„and
6,„' factorize,

n»= g (y, +z, ), a»'= g (y(+zI),

and Q takes on the form
t

I-~'I 2()'(+s(&s(.+4& I+(d-d&'(g '
I

*I E()"ss )s(+"")).y1+z& a()+as) (1 1 ) () y(+z( a2+a4) (&=1I=1

Note that only in a (I)' theory will all the masses in Q be identical. In general, the masses from the ladders
differ from those which arise from intermediate states in the nonplanar coupling scheme. If K(s) is de-
fined by

z'(s) =d' ets)t t s -te (s+s) I,
"dpdz
/+8 p +g

the final form of E„„(n,t) is
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(N +M —2)! [K(k2)]"[K((q —k)')]"
JFAf 9 8

(N 1) t (M I) t ( 3)N+N+1 (26)

The superscript a indicates that (25) is the contribution of region (a). Regions (b), (c), and (d) are similarly
evaluated. The four terms are added together and the result summed over all N and M to give

~(~,), ~ d.kg g (N 'M-2}' [K(k')]" '[K((k -q)')1" '
[K(k ),K(( k).)).Qy =c g (N —1)!(M —1)! ( 3)"'""

N=j. 4=x

=c'g d'k +3-K 8 -K k-q ~ n 3 2 a+3+K k' +K k-q ' (26)

Keeping just the cut term and going from the
Mellin transform of the scattering amplitude to the
amplitude itself, we find

E(s t)=c g'fd'k"s"~'+"~ (27)

where

n(k') = -1+K(k')

Certainly (27) has the Regge-eikonal structure.
The residue function p(k') is a constant.

The reason for going into some of the details of
this perturbation-theory model is to be able to dis-
cuss the limitations of the calculation. The model
breaks down if (i) higher-order terms are system-
atically calculated, (ii) the basic interaction which

binds particles in the ladders to a Regge pole is
modified, (iii) the particles on the sides of the
ladders are not identical to those that occur as
intermediate states in the coupling of the Regge
poles to the external particles. The most serious
failure of the model is the fact that it breaks down

in higher order. Higher-order corrections in the
Mellin-transform approach to perturbation theory
are obtained from summing the residues of less
singular terms. (In more conventional words,
higher-order corrections are down by powers of
lns from the leading term in each order of the

coupling constant. } The first correction to (25)
comes from the coefficient of (n+3) " ". A com-
plete calculation of this term is very difficult.
However, it suffices for our purposes to note that

at least one contributiontotheresidue of (o, +3) " "
comes from a region of Feynman-parameter
space where none of the parameters a„a„a„a4
are zero. If these parameters are nonzero, the
model becomes equivalent to those considered at

the beginning of this section. The integral does
not factorize into a function of k' and (k-q)' as
required by the Regge-eikonal formula. In other
words, the first-order correction to the residue
function of the Regge cut in (27) does not have the
factorization properties required for the eikonal
representation.

Although single-particle-exchange models of
Regge poles are conceptually simple, since they
are based on a conventional field theory, recent
investigations" "have shown that more realistic
trajectories are obtained when other interactions
are substituted for single-particle exchange. If
ladder diagrams with such interactions are used
here, there will be a mismatch between the poles
from the ladders and those from the nonplanar
coupling. For example, if the single-particle
propagator (q'+A. ') ' is modified by a form factor
P(q') which vanishes like q

'" as q'-~, the ladder
diagrams sum to trajectories which have o. (t = -~)
=-N-1. A calculation of the Regge cut such as
that done above requires summation of poles at
a = -2N —3. However, the singularities which
contract the lines. coupling the ladder diagrams
to the external particles occur at n = -N —3. Per-
turbation theory breaks down since the leading
singularity at n =-N —3 does not sum to a Regge
cut. A nonperturbative calculation would give a
cut to the right of this point at the expense of the
eikonal formula.

The final point to notice about the perturbation-
theory calculation is that if the particles on the
sides of the ladder diagrams have masses differ-
ent from those of the particles coupling the lad-
ders to the external particles, then (26) is re-
placed by

y(+ t) cI d2kg g [ .( )1 [ 8( -q&}] &™2}'
[K (km)+K ((k )gq}]

2

(o.'+ 3)" '
(N —1)!(M —1)!

d'k[K, (k') +K,((k —q}')]'
(o. + 3}'[o.+ 3 —K, (k') —K,((k —q)'}] (26)
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K, (k') and K, (k') are different functions due to the
different masses involved. The residue of the
pole in (28} doei not factorize into a product of
a function of )t,

' and a function of (k-q)'. The
Regge-eikonal form of the scattering amplitude
could not be derived in a (*(/field theory, even
in perturbation theory.

%e conclude this section and the paper with the
disappointing result that there is no satisfactory
theoretical justification of the Regge-eikonal for-
mula for high-energy scattering amplitudes. "
Double-Regge-pole exchange with nonplanar cou-
pling fails because the resulting amplitude does
not show the correct faetorization properties.
The basic reason for this is that there is no well-
defined path along which the energy flows from
incoming to outgoing particle. The only theoreti-
cal calculation of the Regge-eikonal formula, that
of Cieuta and Sugar, ' is too limited to be used as
justification for the model. The most that can be
said is that the scattering amplitude satisfies an
impact-parameter representation" at high energy.

I wish to thank R. %. Tucker for useful conversa-
tions.

APPENDIX A

The first step in evaluating the asymptotic be-
havior of the amplitudes represented by Fig. 2 is
the assumption that the residue functions in (5)
have the following representation:

d(y y v). -f dsdys(s y v)sl*(l' +)')sl (s

(Al)
Such a representation exists if a dispersion rela-
tion in the variables p, ', p, ~ exists. If in the limit
P '-" P(P ' P ' t) "P '"IT(,P.', t), then p{x,y, t)-x" 'p(0, y, t}as x-0. In fact,

d( y' v)=&()v))'f"))(d y v)s'")s "' (dy)

Next, we write

p(x, y, t)p(z, u), t)Z(t)s "~"

1
t t" undue'"~' "Z(t)p{x, y, t)p(z, u), t)

2mi Jv Jo p+u{t)+ I I'(I+p)(t)~

1 oo oo

dP urdu dvH(x, y, z, u), P, v}
7T$ Q p 0

The asymptotic behavior of E(s, t) is most easily
calculated by taking the Mellin transform of {A5)
with respect to s and looking for the leading singu-
larity in the n plane.

y(d, s) =J s-.-'y(s, V)

ls( )
.d( y dTd'7 dP dq'

~ et+2

x usH(1 )u's H(1'). (A6)

For diagram (A), the box diagram,

4~ =p +Q' +'U +V

fg = {u +u )b g +P q

P =8+P+X
y Q=SO+g+P

while for the crossed diagram

Qg =P +g +'U +8 +Q +Q

f~ = (u +u')(v +v') -P q,

p =g+p+x g =sc +g+g ~

(A8)

The leading singularity in the n plane for both
diagrams comes from the region where u, u', p, q
are small. It is assumed that the residue functions
p(P1 yp2 y t) val1isll as function Of t fast ellollgll 'to

make the v, v' integrations unimportant for the
crossed graph. H(x, y, z, u), P, v) is replaced by its
value in the limit z, u -0:

together with the identity

a g4X(C+S&) ~
a+gal

~ 0

allow us to write the Feynman integral correspond-
ing to each diagram in Fig. 2 in the form

y(sy)=, sf' ddvdv''v(ydy sBs( v)s' sH(v')

x exp I i[@+ (jh —I))'t), ]}, (A4)

where Q =A+(fs+gt)l&, d1' =dx dy dz dM) dudv dp,
and p and q are the parameters corresponding to
the particle propagators. The 0 integration in
(A4) is easily performed to yield

E(s, t)=c', suH(1 }us'H(1') e'q.dT dT

~ ~S(a+i~)~ ~~~( ~+S~) (AS)
H(~) ~ (us)"-'H(1.).

The contour C encloses the path traced out by the
Regge trajectory in the complex angular momen-
tum plane. The detailed nature of the I; transform
in {AS) is unimportant. Equations {Al) and (AS),

Taking a similar limit for H(T') with respect to
x', y' and then changing variables to p =pp, g =ps,
x'=P(l -P -z), q=qq, u) =quI, y'=q(l-q-u)},
u =uuy u =u(1 -u)y we find
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F„,(n,. t) = r(-n)i c' u~'s's (p q)'"du dp dq
0

„,o H(~)H(r'),X e ~+2 (gg +P g)

r(N)4 r(1+p)r(1+p')
r(2N+I)' I (2+p+p'}

The integrals

r(1 +p)r(1 + p'}
r(2+p+p')

g&-«
I dp(1 g p)&-«

were used in deriving (A9). Next we note that

u«+ s' s (P q }2"(uFi, +P q )"d«u dP d q

(A9)

Es(n, s) = (-I)'""E„(n,s) . (A13)

This completes the derivation of the high-energy
limits of the diagrams in Fig. 2.

E(s, t) from (A12) it is necessary to invert the
Mellin transform by means of the relation

F(s) = . Jt dn s"F(n).1

C

The contour c runs parallel to the Imn axis and
has Ren = -e, 0 & e & 1. Since E„(n, t) in (A12)
has a pole in the o. plane, its inverse Mellin trans-
form is just Eq. (6) of the text.

The large-s behavior of the crossed graph is
extracted in exactly the same way. The only dif-
ference is the minus sign in the definition of fs in
(A8}. This minus sign propagates through to the
integral in (A10) to give

so that

1 r(2+P +P')r(2N+1)
(n+3+P +P'+2N)' r(P +P'+2N+ 3)Z'""' '

(A10)

c'[r(N)]4 e«oH(7)F(~')(t«, ) "2
r(2N+1) (n+ 3+2N+P +P')'

r(1+p)r(1+p')
X I.w g+ g +2@+3 d+d7 ~

C

I'(2N + 1)

«P ~"k [P (m', , k')P(m', , (k -q)'}]'
[n+2N+1- n(k') —n((k-q}')]'

xg (k')Z((k —q)') . (A12}

Eoth (A2) and (A3) were used to replace the inte-
gral representations of the residue functions by
the functions themselves. The continuous dimen-
sional integration iri (A12) can be given meaning
for all, jV." To recover the large-s behavior of

(A11)

We have set n = -P —P' -2N —3 wherever possible.
Since 2=v+v' and Q =q'vv'/(v+v')-m'(x+y+«o+z'),
(A11) represents a bubble diagram in 2 —4N di-
mensions. In other words, the v and v' integra-
tions can be eliminated and (A11}written in the
form

APPENDIX B
The techniques used to evaluate high-energy lim-

its in Appendix A are also applicable to the ampli-
tude represented by Fig. 3. Each Regge-pole am-
plitude is assumed to have the form given in (6).
Only an outline of the derivation is presented here.
Equations (A1) and (AS) are used for each Regge-
pole amplitude in Fig. 3, and the solid lines are
given by standard Feynman propagators. The an-
alysis here is complicated by the fact that three
loop integrations are involved compared with only
one for each diagram in Fig. 2. We have

E(s, t) =c d7dT'da, uu' H(T)H. (T') e«4d4k, d4k2d4k„

(Bl)
where g =k,A«&k&+2b«k«+C. In (B1) the unprimed
variables refer to the left-hand amplitude in Fig.
3. The Feynman parameters a,-, i =i, . . . , 8 corre-
spond to the eight propagators which are written
in exponential form. After the loop integrations
are performed by transforming g to a diagonal
quadratic form, the coefficient of s in the exponen-
tial can be isolated. Thus, upon performing a Mel-
lin transformation on (Bl), we find

E(n, t) =cI'(-n) d7 dT'da, u u' 'H(r)H(T') „e'o., (i)" «q

4

(B2)

The coefficient of s, f/6, is the important quantity.

8

f =(a,a4-a, a,)(a,a, —a,a,)+uu (v+v) Pa, +(a, +a4+a, +a,)(a, +a, +a, +a,)
f=l

+u[(v+ v )(a, +a,)(a, +a,}+a,a, (a, +a4+a, +a,}+a,a,(a, +a, + a, +a,)]

+ + 2+ -4 5+ 7 + 2 5 3+ 4+ 7+ 8 + 4 7 1+ 2+ 5+ 6 (BS)

In (B3) a; is defined to be equal to a, plus the parameter related to the mass-shell dependence of the resi-
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due function at the end of that line. In other words, a, =a, +x&. The parameters u, u', v, v' are defined in
Appendix A. [See (AS).] If form factors are used in the coupling of internal to external particles, they can
be accommodated by a suitable modification of the definition of a, . The first term in the expression for f
can be positive or negative, and its vanishing at an interior point in Feynman-parameter space generates
the Regge cut.' Therefore, since

tS S
a a+1dx ) dy(xy+f)"= f""+~ ~ ~,

@+1
'&+i "d7dT dg

E(o., t) =
1

c „~ u~H(r) u'8H(T')e'o(Auu'+Bu+Cu')"+'6(a~a, —a2a3)5(asa, —a a ) .
CE+ 1

(84)

(86)

The dots in (84) denote terms which do not lead to a Regge cut, and (85) is that portion of E(ct, t) which
contains a cut in n.

The functions A, B, C, are determined from (BS). The leading singularity, or at least the one that leads
to the Regge cut, comes from the region of small u, u'. The rightmost singularity of E(n, t) is determined
by

Np

8 ie' 1 1(1+P) I"(1+P')
du du'u u' (A uu+ Bu+ Cu')"" =

S p pl 1.(2 p pl) 1+gC$+g' (86)

The next step is to note that when u =u =0, a,a~ =a,a„and a,a, =a,a„
(a +a }(a +a )

[(v+ v )(am+a4)(a, +as) +ama, (a, +a4+a, aa) + ama, (a, +a4) +a~a, (a7+ as)],
a4a,

and

a,a, Q~Q~B= 4, C= b, .
(a, +a4) (a, +as) ' (a, + a4) (a, + aa)

The leading singularity in E(n, t) is given by

6(a,a4 —a~a, )6(a,a7 —a,aa), ,o I'(I + p) I'(1+ p') [(a, +a~)(a, +a,)]
a+3+P+P' 12+ +

~a,a,~" ~a,a4)" '

(88)

(89)
From the fact that L ' occurs to the first power, we conclude that the integral over Feynman parameters
can be converted in part to a two-dimensional Euclidean integral over a loop momentum k. This result is
to be contrasted with the (2 —4X)-dimensional integral which appeared at this stage in Appendix A. When
the integral is expressed in terms of the momentum integration, the P and P' contour integrations are car-
ried out to obtain

d'k[G((k —q)', k', q'}]'
a+ 1 —n(k') —n((k —q)') ' (810)

where G((k —q)', k', q') is given in Eq. (1S) of the text. When (810) is used in an inverse Mellin-transform
integral and the residue of the pole in the n plane isolated, Eg. (12) is the result.
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The observable effects of a neutral intermediate vector boson in semileptonic processes
are considered in the context of a proposed renormalizable theory of the weak and electro-
magnetic interactions. With strange particles neglected, this theory allows the calculation
of neutral-current form factors in terms of charged-current form factors and electromag-
netic form factors. The results are neither confirmed nor refuted by present data. One
possible method of incorporating the strange particles is briefly discussed.

I. INTRODUCTION

It now appears that a renormalizable theory of
the weak and electromagnetic interactions may be
constructed from a Yang-Mills theory with spon-
taneous breaking of gauge invariance. ' There are
many possible theories of this general type, but
for the present it seems best to concentrate on

one particularly simple model, ' which requires
the smallest possible number of unobserved par-
ticles. This proposed model has so far been
worked out in detail only as it applies to the area
of the weak and electromagnetic interactions of
leptons, and within this area involves the usual
leptons, photons, a new massive scalar meson,
charged massive vector mesons S', and a neutral
massive vector meson Z, The neutral vector me-
son produces striking effects in neutrino-electron
scattering, effects which are just on the verge of
observability. '

This paper will deal with the possible observable
effects of the Z boson in semilept'onic processes,
especially neutrino scattering. The difficult part
of this problem has to do with the role of the

strange particles. In Sec. II the strange particles
are simply ignored altogether, and we find a
rather natural extension of the proposed model to
semileptonic reactions, which allows the form
factors for any neutral-current process to be cal-
culated from the form factors for the correspond-
ing charge-exchange and electron-scattering
processes. This theory is applied to neutrino
scattering in Sec. III. The chief result, valid for
not too large values of the momentum transfer,
is that

0.15~, ~0.25o(v'+ n- tt-+P)

as compared with an experimental value' (or upper
limit) 0.12 a 0.06.

The strange particles are considered in Sec. IV.
It is found that a four-quark model of Glashow,
Maiani, and Iliopoulos' naturally explains the ab-
sence of neutral strangeness-changing currents,
but leads to new terms in the neutral strangeness-
conserving current, which could in principle alter
predictions like (1.1).

In summary, there is no obvious obstacle to the


