
w, A. PERKINS

*Work supported hy the U. S. Atomic Energy Com-
mlsslon.

~M, H. L. Pryce, Proc. Roy. Soc. (London) A165, 247
{1938).

2K. M. Case, Phys. Rev. 106, 1316 (1957).3¹Rosen and P. Singer, Bun. Res. GouncG Israel 8F,
51 (1959).

4I. M. Barbour, A, Bietti, and B. F. Touschek, Nuovo
Cimento 28, 452 (1963}.

5D. K. Sen, Nuovo Gimento 31, 660 (1964).
B. Ferrettl~ Nuovo Gimento 33' 264 (1964).

7%'. A. Perkins, Phys. Rev. 137, B1291 (1965).
SB. Perretti and I. Ventux'i, Nuovo Cimento 35, 644

(1965).
9P, F. Smith, Nuovo Cimento 38, 1824 (1965).

~OB. Jouvet, Nuovo Cimento 38, 951 (1965).
~lP. Bandyopadhyay, Nuovo Gimento 38, 1912 (1965).
~2V. S. Bex'ezinskii, Zh. Eksperim. i. Teor. Fiz. 51,

1374 (1966) [Soviet Phys. JETP 24, 927 (1967)].
~3P. Ehrenfest and J. R. Oppenheimer, Phys. Rev. 37,

333 (1931).
~4H. L. Sahlin and J. L. Schwartz, Phys. Rev. 138,

B267 (1965).
~SR. Penney, J. Math. Phys. 6, 1031 (1965)..
~6SGG Ref. 7, Appendix A.
~~L. P, Kadanoff and 6. Baym, Quantum Statzstical

MecIzanzcs (Benjamin, New York, 1962).
~SF. Paschen, Ann. Physik 4,. 277 (1901).
~SO. Lummers and E. Pringsheim, Perh. Deut. Physik

Ges. 2, 163 (1900).
2oH. Rubens and F. Kurlbaum, Ann. Physik 4, 649

(1901).
2~%. %. Goblentz, Natl. Bur. Std. (U.S.) Bull, 13, 459

(»~6},
22P. Jordan, Z. Physik 93, 464 (1935).
23See Ref. 12, Sec. 2.

P HYSICAL RE VIE% D VOLUME 5, NUMBER 6

Compton Scattering and Fixed Poles in Parton Field-Theoretic Models*

Stanley J. Brodsky, Francis E. Close, f and J. F. Gunion-
Stanfo&d I znear Accelerator Cente~, Stanford Unzeexsity, Stan' d, Calzfonua 943'0$

(Received 12 October 1971)

We extend a class of parton models to a fully gauge-invariant theory for the full Compton
amplitude. The existence of local electromagnetic interactions is shown to always give rise
to R constRnt real pax't in the high-energy behRvior of the Rmplitude g&(p, q ). In the language
of ReggeizRtlon UQS is interpreted Rs R fixed pole Rt J =0 in Tl Rnd v+2, with residue poly-
nomial in the photon mass squared.

Recent inelRstic electropl oduetlon experiIQents
(wlllcll essentlany I118Rsu1'8 tile ilnRglllR1'y pR1't of
the forward off-shell Compton amplitude) hint at a
composite nature for the nucleon. This has been
represented by parton models involving pointlike
(possibly field-theoretic) constituents, but up to
the present time these concepts have only been ap-
plied to the scaling, incoherent impulse approxi-
mation, region. Gauge invariance and the love-en-

ergy theorem place further restrictions upon such
theories, and in this note we report the extension
of pRrton field-theoretic ldeRS to R discussion of
the full Compton amplitude. In particular ere shaQ
see that such models always give rise to a real
part at high energies additional to that expected
from the Regge behavior of the imaginary part.
This extra real part should be identified rvith the
"fixed pole" ' of conventional Regge analysis. Ev-
idence for such a fixed poli for on-shell photons
has been found phenomenologieaQy from dj.sper-
s1on relRt1ons. In Rdd1tion %'6 fiIld that the fixed
pole" appears as a constant real part, C, in T,
independent of g q

Rnd appeal s ln vT2 in the form

-Cq'/v. '
If the proton were as simple as the nucleus, then

the high-energy behavior of the forward Compton
amplitude mould foGow directly from the coherent
impulse approxi. mation. At v=0, the Compton am-
plitude on a nucleus is given by the Thomson lim-
it» f, (0) = -(g'n/M„„„,„,) whereas at energies high
compared to the binding energy, but below thresh-
old for photoproduction of mesons, the forward
amplitude is given by the coherent sum of the in-
dividual nucleon amplitudes,

Q'

f, (v)- -g— (&u, =m, ).

ln fact, for the case of a composite proton the
analogous high-energy behavior would be giVen by
the coherent sum of "seagull" terms for the indi-
vidual proton constituents (Iluarks, bare hadrons)
and the formulas (7), (ll) we give later corre-
spond to this picture.

Field theory gives us the clearest example of a
fuQy covariant, gauge-invariant .Compton ampli-
tude vrhieh ean also incorporate the composite na-
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ture of the nucleon. As an example, consider a
$3 field theory in which a scalar "proton" inter-
acts with neutral scalar particles. We calculate
the form factor E, (q') using old-fashioned per-
turbation theory in an infinite-momentum frame '
by evaluating the matrix element of the electro-
magnetic current through second order from the
time-ordered contributions of the Feynman dia-
grams 1(a)-1(c).

At q'=0 we obtain

(a} (b) (c)

E, (0) = f(x)dx,
0

where f (x) is the probability for the charged con-
stituent to be in the one- or two-body state and to
have fractional longitudinal momentum x (defined
in the infinite-momentum frame) 'lt .is given by

2

f(x)=Z 5(1-x)+(
)

d k

with D =k,'+xg'+ (1 —x)'M', where M (p) is the
mass of the charged (uncharged) constituent and

Z, =-(1 —B) '=1+B(2)+O(g4) is the familiar wave-
function renormalization constant. From Figs.
1(b) and 1(c) one finds thatg', ' x(1 -x)

Qo) L((2)) 3 4 k J 4X
(2v) 0 D

2x

(g)

FIG. 1. (a)-(c) The vertex Feynman diagrams. (d) -(h)
The Feynman diagrams contributing to 7 &.

and so E, (0) =1 (a consequence of the Ward iden-
tity). One can similarly sum the contributions to
Compton scattering 1(d)-1(h) and obtain

g', ' 1 2k,-*(1-x)
T~(v q)t= — Zl+16 3 d k~ dx(1 —x) 2 '

2[ r (1 )( 2 2~ ) j I.r (2)

phoo

(-2Nv/q )= co=fixed

2vtv, (,e')—: tmvr (,e )I2'
=xf (x)I

(4)

where D"=D(k~') with k,'=k, —(1-x)q~; k,. is the
component of k~ in the direction orthogonal to both
p and q~. After integrating by parts on 4k~2 and
taking the limit v -0[for q'(= -q ') =Of, one re-
covers the Thomson limit,

lim T, (v, 0}= -2 = T,'"". -
v~O

et

On the other hand, at Iarge energies only the sea-
gull terms [Figs. 1(d)-1(f)J survive and

lim T, (v, q2) =-2 Z, +16, d'kg', 'dx(1 —x)
0

'dx
T))ortt f (x}

Q X

We can also compute T, to the same order in per-
turbation theory and we find the following results:

(ii) lim v T( qv~)- -q T,~&" —f—(x),
Ij ~06 p o. X

and the gauge-invariance condition (q2/v')T2+ T,
=O(q') is satisfied as q2-0.

Equations (1) and (3)-(5) in terms of f(x) hold
also for the case of spin- —,

' constituents interacting
either br peeueoeuaiar or vector eaohaabe, but the
precise form of f (x) is different for each case. '

These results can be generalized to all orders
in perturbation theory as follows. %'e calculate
the form factor (using the infinite-momentum
frame of Ref. 5) by evaluating the matrix element
of Ke jo current from the tiihe-ordered contribu-
tions of all Feynman graphs, through arbitrary or-
der. The contributions can be classified according
to the ~umber of intermediate constituents present
at the time the currents acts [Fig. 2(a)] and the
type of constituent, a, with charge [e(X„upon
which it acts. Atq'=0 we obtain~

E,(0) =1 = dx g X.g X."f".(x)
0 e n
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a
dx Q X,f, (x), (6)

0 a

where N,"is the multiplicity of parton type a in the
n-constituent state. Provided Z, v0, f,"(x) retains
its interpretation as the probability for parton type
a to have fractional longitudinal momentum x and
to be in the n-body state. The index a runs over
both the partons and antipartons present. If Z, =0,
then f",(x) may lose its interpretation as a proba
bility; Q„Jf,(x)dx can be infinite. The generalized
seagull, or p graph, contribution [Fig. 2(b)] yields
a constant term in T, at high energy,

V2—TFP
q2 2

analogous to the nuclear-physics result. (Here
"FP" means "fixed pole.") In the scaling limit we
can identify

vW, (x) =x Q ~.'f, (x) =-xf (x) [Fig. 2(c)]. (8)

The question of convergence of Eq. (7) is very
important and must be considered carefully. On
the one hand, it is possible that f (x) is well be-
haved and vanishes as x-0. In this case Regge
behavior in the structure function vS', cannot re-
sult from the parton distribution. Equation (7)
then gives the exact parton contribution to the

constant term in T, and -(v'/q')T, . On the other
hand, the parton distribution for small x (i.e.,
wee partons) may give rise to leading Regge be-
havior as discussed in Refs. 8 and 9. In such
a case f(x)-Q, ox "y for x-0 and the integral
in Eq. (7) diverges. [The integral for E, (0) does
not diverge because of the cancellation of the Po-
meranchon n =1 contribution, and in general all
C =+exchanges, of a given parton with the anal-
ogous contribution of its antiparton. ] One can see
from Eq. (2) that the nonseagull terms play an im-
portant role in removing the apparent divergence
at x = 0. In fact, despite the presence of Regge
terms, the fixed pole -constant real part —sur-
vives in a slightly altered form. To see this we
now turn to the covariant, nonperturbative parton
model developed in Ref. 9, which allows one to
incorporate leading Regge behavior in a natural
way.

We restrict ourselves to spinless partons for
which the required distribution function is

f'(x) =
I dsd'K ImTs(s, p,,')

Ax

p, '=x(s -K')j(x —I)+xM'+K', where K is space-
like, two-dimensional, and orthogonal to P and q;
and p,,' is the invariant four-momeritum squared of
the interacting parton. The integral over s is over
the right-hand cut of the forward parton-proton
scattering amplitude, ImTs(s, p.') [Fig. 3(a)] (which
includes the propagators of the partons and is as-
sumed to vanish as g'- ~). That f (x) is related
to the forwa, rd parton-proton scattering amplitude
is already apparent in the perturbation-theory ap-
proach. " One notices that for small x'((L,'=-s+K2)

(a) p2/ i p2

T

(b)

I-+Crossed
i'

Crossed

(c) (c)

FIG. 2. Generalized time-ordered diagram for the (a)
form factor; (b) "seagull"; (c) v@2. The matrix ele-
ments are proportional to Q, X,N, Q(X, t/x~)N, ,

pg, X,x, s(x, -Qt/2Mv) ~ respectively. iv, is the num-
ber operator for parton a.

FIG. 3. (a) The parton-proton scattering amplitude.
(b) The generalized seagull contribution. (c) The free-
ly propagating parton graphs. [The self-energy modi-
fications included in p, (~ ), Eq. (11), are not drawn. ]
(d) The fully connected diagram.
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f'(x)-Ax- dz d'X~ P:(-s+Z') =x-"y'„
0

lmT'„(s, p,') -s P„'(tt').

One can calculate in a similar fashion the contri-
bution for the antiyarton amplitude. Note the as-
sumption that the parton-nucleon amplitude has
normal Regge behavior. The resulting expressions
for F, (0), the seagull term, and vW2 are formally

the same as Egs. (1), (3), and (4). Note that the
leading Pomeranchon exchange in the parton-pro-
ton scattering amplitude does not survive. in F, (0)
aft y j tio t th J=l, C=-q a t
bers of the photon channel. The seaguQ contribu-
tion [Fig. 3(b)] diverges as x-0 from e&0 con-
tributions, but there is a compensating divergence
in the real parts from Fig. 3(c). The compensat-
ing terms can be written (for q =0)~~

1

0
(10)

where p.(nP) is the spectral function for the prop-
agator of parton a. As in the second-order per-
turbation-theory case, a partial-integration iden-
tity on lmT„' must be obeyed (in order that the low-
energy theorem be satisfied). One then finds that
for large v the sum of these terms and the seagull
gives a constant real part to T, of the form (for
ail q' and v)

tain the leading (i.e., divergent) x behavior
Z„x y, contributes. The remaining part is ab-
sorbed into the normal leading Regge behavior of
the fuQ Compton amplitude. The distribution func-
tion f(x), which vanishes as x-0, may be asso-
ciated with short-range terms in the space-time
structure of the current correlation function, as
shown by suri and Yennie. ' We note that the sea-
gull (or corresponding Z graph) contribution to the
real part of the general Comyton amplitude
T„„(q,', q, ', s, t) is independent of the photon masses
and depends only upon t = (q, -q, )' in the form

~~, "' f (, )d„g~v~ ~a
e 40

r," ~:& ( ~ sg-g ~ )x2;~ („u)-,& f'(x) 1

where the f'are defined by

f (x)=f (x) —Q y„x-..
a&0

The remaining contributions from the above dia-
grams, and also the tota1 contribution of diagram
3(d), yield conventional leading Regge behavior
with the expected phases. As before we also find
a corresponding real part in vT2 = -(q'/v)TP.
Thus a fixed poLe arises in the Compton amplitude
due to Eoca/ photon interactions even though the
parton-proton amP/itude has no such term.

The q'-independent value of the fixed pole in Eq.
(11) ls precisely the finite-energy sum-rule (FESR)
result wbich one obtains in the scaling limit. Ex-
plicitly the FESR (in the scaling limit) is

and. has dependence on t similar to that of the elas-
tic form factor, "

1

, x, t dx=Eq t.
As before leading Regge terms must be subtracted
from the seagull contribution to obtain the fixed
pole. This form ean be tested in both nonforward
(elastic or inelastic) Compton scattering and photo-
yroduetion of lepton pairs, since the leading Regge
contributions are expected to disappear much more
rapidly than the fixed-pole contribution as t grows.
Our .results also have interesting implications for
the processes y+y-X which are accessible in
ee -eeX measurements. '

In the case of a simple three-quark model of the
nucleon with the same distribution function for {P
and St quarks, then T,"~( )=n—,'TF~(p). '~ ln general a
composite theory of the neutron with charged con-
stituents leads to a nonzero fixed-pole contribu-
tion; accordingly, direct measurements of the real
part of the nucleon Comyton amplitude from Bethe-
Heitler interference experiments for both proton
and deuteron targets will be very interesting.

—y = i En((d)d(d = 2Tp,
~ f(x) 1 &"- &FEsR) vl

0 + a&0 + 0

We thank our colleagues at SLAC for interesting
and helpful discussions.

which is precisely the result we obtain for all q,
P ~GO

Thus we find that fixed-pole —real-part contri-
butions are always associated with the existence
of seagull or corresponding Z-graph couplings to
the charged constituents of the target. Apart from
the term Q„(1jo)y~ which results from the con-
ventional Reggeization procedure, only f (x), that
part of the distribution function which does not con-
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Cg6'p
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1 P q P'q 2+ ~~

3oth T& 2 are crossing-symmetric so they Reggeize as

~ (1+g 21l'c)
pter +C

1 w(x) pox 2 Cq2/p2

where the terms involving the real number C' are pos-
sible fixed poles at J=0. Note that the fixed pole is de-
fined relative to Regge terms with the correct phase.
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