
HIGH-ENERGY LIMIT OF LOWE ST-ORDER WEAK. ..
so that

f~ (z) r c, exp([-1+ (1 —2n/m)'"](1nz}/2).
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(f~(s, t)( ~ c~(s) exp(-(n/2w) lnt).

The other equations may be solved in a similar
manner.

~T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. 15,
381 (1965);

2L.-F. Li, Phys. Bev. D 2, 614 (1970).
BS. M. Herman and A. Sirlin, Ann. Phys. (¹Y.) 20,

20 (1962).
.4M. Levy and J. Sucher, Phys. Rev. 186, 1656 (1969).
~H. S. Green, Phys. Rev. 97, 540 (1955). See also G. C.

Wick, iNd. 96, 1124 (1954),
8V. P. Sudakov, Zh. Eksperim. i Teor. Fiz. 30, 87

(1956) [Soviet Phys. JETP 3, 65 (1956)].
R. Jackiw, Ann. Phys. (N. Y.) 48, 292 (1968).
T. Appelquist and J. R. Primack, Phys. Rev. D 1,

1144 (1970).
K. Johnson, M. Baker, and R. Willey, Phys. Rev. Let-

ters 11,518 (1963).

R. Haag and Th. Maris, Phys. Rev. 132, 2325 (1963).
S. K. Bose and S. ¹ Biswas, J. Math. Phys. 6, 1227

(1965).
R. Acharya and P. Narayanaswamy, Phys. Rev. 138,

B1196 (1965).
~3R. S. Willey, Phys. Rev. 155, 1364 (1967).
~4We follow the notation of J. D. Bjorken and S-. D.

Drell, Relativistic Quantum Mechanics (McGraw-Hill,
New York, 1964) ~ (g—= y A).

~~Note the over-all positive sign in our case; this is
because of our using a time-preferred metric.

~8A. Erdelyi, Duke Mathematical Journal 9, 48 (1942).
~~Equations (15) and (20) are Heun's equations (Ref. 16),

whereas Eq. (16) is a simple hypergeometric equation.
~ See Eqs. gV-29 a) and {IV-29 b) of Ref. 7.

PHYSICAL REVIEW D VOLUME 5, NUMBE R 6 15 MARCH 1972

Statistics of a Composite Photon Formed of Two Fermions*
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'A modification of the author's earlier version of the neutrino theory of photons is present-
ed. A composite-photon distribution is obtained which is similar enough to Planck's dis-
tribution to satisfy experimental results. Linearly polarized photon operators are construct-
ed and the theory is shown to describe truly neutral photons, thus removing an objection that
had been raised against the earlier version by Berezinskii.

I. INTRODUCTION

The "neutrino theory of light" as developed by
Jordan and Kronig was postulated on the basis that
exact Bose statistics must be satisfied. In satis-
fying the Bose statistics it was necessary to postu-
late a Raman effect wherein one neutrino could
simulate a photon. For this reason it was also
postulated that there was no interaction between
the neutrino and antineutrino. Work on this theory
was brought to a halt in 1938 when Pryce' showed
that Bose commutation relations and invariance
under rotation of the coordinate system could not
be satisfied simultaneously for a neutrino theory
of photons. (The Jordan-Kronig theory satisfied
Bose commutation relations but it was not invari-
ant under spatial rotation. ) Since 1957 there has
been some renewed interest in a composite-photon

theory. ' " In an early paper' the author has sug-
gested that the requirement of Bose statistics for
the theory be dropped. This allows one to circum-
vent Pryce's theorem. In a rather straightforward
manner a composite-photon theory was constructed
by describing the annihilation and creation of pho-
tons in terms of neutrino and antineutrino process-
es. The electric and magnetic fields so formed
were shown to satisfy Maxwell's equations, and
thereby the polarization problems of the old Jor-
dan-Kronig theory were solved. Also the opera-
tions of space inversion and charge conjugation
were defined in terms of the neutrino operators in
such a way that the electric and magnetic fields
transform in the usual manner under these sym-
metry operations.

Getting back to statistics, one notes than an in-
tegral-spin particle composed of two fermions



(such as the deuteron} does not obey Bose statis-
tics. '3'4 The commutation relations~'4 for com-
posite particles (formed of two fermions} are sim-
Qar to Bose commutation relations, and the non-
Bose terms become important only when the fer-
mion wave functions of the particles overlap. In
most cases the wave functions of nuclei do not
overlap sufficiently to give observable effects. If
the photon is composed of tmo fermions it will
similarly not obey exact Bose statistics. (This is
true for any composite particle formed from a fi-
nite number of fermions. ")

If the composite photon does not obey Bose sta-
tistics, it is necessary to shorn that this does not
lead to disagreement with experimental observa-
tions. In particular, either Planck's distribution
(or a radiation distribution sufficiently similar to
satisfy the experiments) must result from the
theory. By an additional condition in the previous
paper' the author attempted to derive an energy
distribution for the composite photon. More re-
cently Berezinskii" has correctly shown that this
additional condition is not relativistically invari-
ant. In his payer Berezinskii further argues that
certain commutation relations must be satisfied
for the photon to be neutral and to allow construc-
tion of linearly polarized photons. We construct
linearly polarized photon operators in Sec. II whose
commutation relations differ from Berezinskii's,
but whose transformation properties under charge
conjugation nevertheless show that the theory de-
scribes strictly neutral photons.

In order to obtain a satisfactory radiation distri-
bution for the composite photon, a modification of
the earlier theoxy' mas necessax'y. Although me

have assumed a neutrino-antineutrino interaction,
we also assumed that the neutrinos, interacting
with an electron for example, combined to form a
photon only when their momenta were parallel. In
this paper me mill generalize the theory and allow
the neutrinos interacting with an electron to have
both parallel and antipara/le/ momenta. This al-
lows more photons to be in the low-energy part of
the dlstx'Ibutlon.

1
e

q
y/3 ny +Zn 2

U,",(n)= '
~

l+n,
2

0

()+n,)'"
-ni+Zn 2

1 +n3
1
0
0

(5)

0
0

nj +zn2
1+n,

1

0
0
1

nj. +Zna
1 +n3

The subscript on U refex's to spin state while the
superscript refers to energy state. Thus, the heli-
city operator (8 = a ~ n) has eigenvalues of +l for the
spinors of (4) and (7) and -l for the spinors of (5)
and (6). Similarly the energy operator (W~=n n)
has eigenvalues of +l for (4) and (|)) and -l for (5)
and (7).

For negative momentum (-n) we obtain the re-
lations

Letting

y = V(n)e"P "-"&,

we obtain four normalized solutions for U for posi-
tive n (=p/P):

II. CONSTRUCTION OF PHOTON FIELD
FROM NEUTRINO FIELD

We will use the representation with

0'= ~
q Qf =

-o 0 ' 4 10
-1 0

Ys Y].Yp Y3 Y4 0 1

The Dlx'ac equation fox' sl = 0 ls

U, ',(-n) = U",(n) .
We will use the notation that v, is the neutrino

(positive-energy state) with spin parallel to its mo-
mentum and v, is the neutrino (positive-energy
state) with spin antiParallel to its momentum. Let
a, (k, n), c,(k, n), a, (k, n), and c,(k, n) be the annihi-
lation operators with momentum kn for v„v„
and v„respectively. Then, the general neutrino
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field in terms of particles and antiparticles (not
holes} is

g(x, t) = dk[a, (k, n)U,",(n) e'~"'" "
+c~(k, n) U '(-n) e ' "'"

ia (k n)U+'(n) c't"'" ~

+ct(k n)U '(-n)e ""'"'"]

more general to take (P = (&))(P, k); previously we had
used' (p(p, k) = 1/Wp.

Comparing E&ls. (8), (9), and (10), one notes that
the spinor combinations that go along with y(P, n)
of E(I. (10) are of the form

[U-', (n)]'O, U", ,(n),

[U",(n)]'O,.„,U, (n),

where j' is used to designate Hermitian conjugate.
We define the annihilation operators for right and

left circularly polarized photons in terms of the
neutrino operators respectively as

g(p, n) = dk yt(k)c, (i —,'p —k i, -n)a, (i —,'p+k i, n)
0/2

P/2

+ dk (t) (k)c,( i &p+ k i, n)a, ( i
—,'p —k i, n)

-P/2

+ t dk(Pt(k)c, (i —,'P+k i, n)a, (i —,'P —k i, -n)
P/2

[U ",(n)]to;„,U",(-n) .

The possible choices for 0 t are

0&= y4y

Oy —y4y~ &

0,=ir4(r, r), —yur„),

O~ = &y4ypy5

0~ = y4y5.

(12)

(13)

(10)

~(p, n) = " dk(pt(k)c, (i-,'p-ki, -n)a, (i-,'p+ki, n)
~ P/2

P/2
+ dk Pf(k)c, (I ~P+k i, n)a, (i-,'P —@i,n)

-P/2

+ dk yt(k)c, (i(.'p+k I, n)a, (-l-'p- k I, :n),
0/2

(11)
where &t)(k) is as yet an unspecified function of k.

These photon operators are more general than
those used in a previous paper' in which only the
integrals from -p/2 to p/2 were taken. Physically,
we are now allowing the neutrinos (that are annihi-
lated when a photon is annihilated} to have anti-
paralleL as well as parallel momentum. This mod-
ification is important in determining the photon en-
ergy distribution; the photon commutation relations
are non-Bose in either case. It would have been

and

v(n} = U",(n).

(14)

It should be noted that u(n) and v(n) refer to posi-
tive-energy states with spin parallel and antipar-
allel to the direction of propagation, respectively.

We now form the electric and magnetic fields
[see Eq. (32) and E(I. (34) of Ref. 7]:

The only nonvanishing terms resulting from sub-
stituting E&I. (13) into E(I. (12) can be put in the
form

[U",(n)]'r„U,",(n).

Similarly, for e(P, n) of E(I. (11)we have only
terms of the form

[U+',(n)]'r„U",(n).

For convenience let

u(n) = U,",(n)

oo

E(x, t) = dpP"'[[X(P, n)v~(n)yu(n)+ ur(P, n)ut(n)yv(n)] e'~)'" ~'~

—[y~(p, n)ut(n)yv(n)+ su~(p, n)vt(n)yu(n)] e '~('" ~' ],

((&*, ()=2
q f di)'"(()((&', ~)v'(n)~( )-~() ) '(~)i &K)le"'*'"

+ [g~(p, n)ui(n)yv(n) —(ut(p, n)v t(n)yu(n)] e ')'" ~").

(18}

'The vectors E- and H are real as E~ = E and H = 8 and they satisfy Maxwell's equations. " To write the
fields in terms of linear photon operators, let

((p, n)=(I/~2)[~(p, n)+y(p, n)],

n(p, n}=(i/~2)[~(p, n) -X(P, n)j,
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e,(n) = &[v (n)yu(n)+u (n)yv(n)],

e2(n) = (i/2)[v (n)yu(n} —u (n)yv(n}].

With the use of (1V)-(20), Eels. (15) and (16)become
4 OQ

E(x, t) =
2

" dpP'~'f[t'(P, n)e, (n)+q(P, n)e, (n)]e'C&" ~'~-[(t(P, n)e, (n)+qt(P, n)e, (n)] e ' &'" ~']
2+ jp

and

(19)

(2o)

H(x, t) = —
I dpP'I'( [$(P, n)e, (n) -q(P, n)c, (n)] e ~'" '~- [( (P, n)e«(n) —gt(P, n)e, (n)) e ' ~'" ~' ]. (22)
0

(23)

(24}nxTc(n) = iTc(n)

and

We note that Tc(n) = (1/v 2 }u (n)yv(n) is a self-orthogonal complex unit vector [i.e., «(n) Tc(n) =Tc*(n) Tc*(n)
=0; Tc(n) Tc*(n) =1] while e, and e, are real unit vectors. The photons are transversely polarized since"

n «(n) =n Tc~(n}=0,

Tc(n}xTc*(n}= in . (25}

III. COMMUTATION RELATIONS FOR PHOTON OPERATORS

The neutrinos are assumed to obey Fermi-Dirac commutation relations:

[a,(k, n), at(k ', n')], = [a2(k, n), a«t(k', n')]

= [c,(k, n), ct(k', n')]+ ——[c,(k, n}, c,(k', n'}]+ = 5(k —k')5(n —n') (26)

while all other combinations anticommute.
With the use of (26) one can determine the commutation relations for the circularly polarized photon op-

erators of Eels. (10) and (ll):

[x(P, n),

I.x(P, n),

[(u(p, n),

[(o(p, n),

[x(p, ),

I.x(P, n),

[c0(p, n),

where

X(q, n')] = 0,

X~(q, n')] = 5(n —n')[5(p —q) —n»(p, q, n}],

cv(q, n')] =0,

cot(q, n')] =5(n-n')[5(p —q) -a»(p, q, n)j,

(o(q, n')] = 0,
c0'c(q, n')] =-5(n+n')p»(p, q, n),

Xt(q, n')] =-5(n+n')p»(p, q, n),

(27)

(28)

(29)

(30}

(31)

(32)

(33}

a, (p, q, n)= I dk p~( 2p+k)p(p —'
q 2k)+[ (fcq--p-k I, -n)c, (fkf, -n)+a, (fq-p-kf, -n)a. (lkl, -n)]

»p(p. a-P)

+ t dky'(2P-k)y(p--'q-k)[ai(lq-p+kl, n)ax(lkl n) +c(mal -qp+Ikn)ca(lkl n)]
~ »p(O, P-a)

f.sup(P/2, a -P/2)
+

i
dkp'(k)%(ap-kq+k)[c. '(Iq-kp-kl, ) n(cl~ 2pkl, -n)

~I p/2

+ a, ( I q —&p —k I, n) a, ( I
—,'p —k I, -n)]

and

gup(a/2, P -a/2)
+ dk pt(&p —2q —k)p(k)[c, (f —,'q —k I, -n)c, ( I p ——,'q —k I, n)

a/2

+a,( I
—,'q-k I, -n)a, (IP- —,'q-k I, n)] (34)
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p.(p q n) = dk(p'(q+ 'p+-k)I(kq+k)[a~&(lkj n)ai(l q+ p+k I n)+c,'(1k
I n)c.(l q+ p+k I, n)]

0

+ y'(l p+ k)y( p+ lq+ k&[c,'(I q+ p+ kj, -n)c, (lkj, -n&+ a.'(I q+ p+ kj, :n)a.(lkj, -n)]}

+ dk»pt(~ap+ k)qb( q - k)[am~( I q - k
I » -n)ax(1 p+k I» n)+ c|~(l q- k

I »:n)cm(l p+ k
I » n)]

0

+ t dky~(-'p-k)»p(lq+k)[a, '(Iq+kj, :n)a,(lp-kl, n)+c,'(lq+kl, -n)c.(lp-kl»n)]»
0

with sup(a, b) being the larger of a and b. The expectation values of a»(P, q, n) and P»(P, q, n) are

(35)

(n„(p, q, n)) = 5(p —q) dk(pt(-,'p+k)»p(-,'p+k)[ci~( fk I, -n)c, ( I
k I, -n)+a2~( fk I, -n)a, ( fk f, -n)]

0

+ Ipi(—',p —k)»p(~p —k)[a~( fk I, n)a, (l k I, n)+ cd( I
k I, n)c, (l k I, n)]} (36)

&P„(P, q, n}&=0.

In obtaining these commutation relations we have taken P(k) to satisfy

dk k 2=1. and -k = k.
oo

Etluations (2V), (29), and (31) are obtained by using the fact that in these cases all the fermion operators
anticommute and therefore an even number of interchanges mill result in the photon operators commuting.
Equation (28) is obtained as follows:

I.x(P, n), x'(q, n')l

dk t

dk'0'(krak'&([ci(lip

—k I, -n)ai(12»p+kj, n), a,'(12q+ k' I, n') ct(l-,'q —O' I, -n')]
P/2 q/2

+[c,(l'p+kl n)a2(12p —kl -n), am~(12q —k'I -n')c~(l'q+k'I n')] }
P/2 q/2

+~(n-n') dk dk'p~(k)»p(k')[c2(1~2P+kl n)ai(l ~p —kj»n)» it(alkq-"'I»n')cat(lkq+k'I, n')]
-P/2 m/2

oo q/2

+6(n-n') dk dk'»pt(k)p(k')(c, ( I ~p —k I, -n)ca~(1&q+O' I, n')[a, (l —,'p+k I, n), a»~(1 —,'q —k'I, n')],
P/2 q/2

+a.(l 2P - k I:n)ai'(12q k'
I n'&[c2(-l ap+ k I, n), cm'(12q+ k'

I» n'&].}
P/2

+ 6(n-n') dk' dk pt(k)Q(k') (c~( f zp+k I, n)c, (12q-k' I, -n')[a, (l-.'p —k I, n), a,'(I-,'q+k' I, n')],
q/2 -P/2

+ a,(lip —k I, n)a,'(jaq —k' I, -n')[c2(l ap+ kj» n» ca(12q+ k' I, n')]+}

(39)

Considering the first term,

[c,(12P —k I, :n)a»(12P+ k I, n), a,'(12q+ k' I, n)c,'(12q —k' I, n)]

=6( I-,'p-k I- I-,'q-k' f)6( I-,'p+k
I

- f-,'q+k'I)
—6(13P —k

I
—

I kq -k' l)a»(lkq+ k' I, n)ai(lip+ k I, n& - 6(12P+k
I
- ikq+ k'

I &c,'(12q -k' I, -n)c,

(leap

- k I, -n),

(40)

by use of Eq. (26}. The first term of Eq. (39) is then
oo OO

5(n-n') t dk5(p —q)l|p(k)1' — t dkpt(k)p(~q ——,'p+k)a, (lq —a~p+kl, n)a, (l-,'p+kl, n)
0 e/2 P/2

+ i" dky'(k)P(2P aq+k)c,'(Iq-2P-kl»:n&ci(lip-kl»-n) .
~ sup(P/2, q-P/2)
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(42)

(43)[i}(p,n), q(q, n')] =0,

[i}(p, n), i} (q, n')] = 6(n - n') (6(p - q) —~[c'„(p, q, n) + n„(p, q, n)]j + 26(n+ n')[p„{p, q, n)+ p„(p, q, n)],

With similar operations for the other terms and by use of Eq. (38) one obtains Eq. (28). Equation (30) is
obtained by noting that interchange of subscripts 1 and 2 converts y to ~ [see Eqs. (10) and (11)]. By simi-
lar manipulations one obtains Eqs. (32) and (33).

The commutation relations for the linearly polarized photon operators [defined in Eqs. (1V) and (18)] are
obtained from Eqs. (2V}-(33):

[((P,n), ((q, n')j =o, (41)

[k(p, n), t (q, n')] =6(n-n')(5(p-q)-2[o„(p, q, n)+o'. ,(p, q, n)j)-26(n+n')[P (p q n) +P (p q n)],

[((P, n), n(q, n')j =o,

[t(p, n), i} (q, n')j = —,'i(6(n —n')[n„(p, q, n) —c.„(p, q, n)]+6{n+n')[P»(p, q, n) —p„(p, q, n)]],

[ii(p, n), ( (q, n')] = —,'i(6(n —n')[a„(p, q, n) —n„(p, q, n)j+6(n+n')[P»(p, q, n) —ii„(p, q, n)]j.

(44)

(45)

(46)

(4V)

These commutation relations for the circularly and linearly polarized photon operators are obviously non-

Bose owing to the terms involving o.»(P, q, n), o.»(P, q, n), P»(P, q, n}, and P»(P, q, n). In their proof that a
neutrino theory of photons is impossible, both Pryce' and Berezinskii" require that the commutators of
Eqs. (46}and (4V) equal zero. We question the need for this requirement; see Sec. VI.

IV. PHOTON ENERGY MSTRIBUTION

The method and notation used in this section are
similar to those of Hefs. 14 and 17. We define the
foQoming one-composite-pax ticle Green's functions:

G'(H, i; H', i') =(1/i)'&q(H, t)~'(H', i')& (48)

G'(H, i; R, f ) =(1/i)'&qt(H', i')q(H, t)&. (49)

For systems at finite temperature the expecta-
tion value of an operator S can be calculated with
the aid of the grand canonical ensemble

&S& = Tr[e-'"Sj/Tr[e "], (50

where P =1/kT. From Eqs. (49) and (50},

»[{1/i)'e '"X'(R', f')X(» o)j
Tr[e-ae]

or
G'(p, &u) = e ~ G'(p, (o) (56)

G'(p, ~)=,&. 1
[G'{p,~) —G'(p, ~)j.

Moreover,

through the combination r =H —8' and upon t and t'
through the combination T =t —t'. Thus (53) can be
written

G'(r, 7 ) = G'(r, ~ —iP) .
The Fourier transform of the Green's function is

defined by

G (p, (u}=(i) jI
idr jt«e .'-~:G.(r, 7), (5

with a similar equation for G'(p, v}. Taking the
Fourier transform of (54) results in

Using the cyclic invariance of the trace and insert-
ing e e, @re obtain

G'(H, 0; R', t') = (1/i)'&e'"X(R, 0) e-'"qt(R', t)&.

(52}

G'(p, ~)= jt«e'"&X'(p 0}X(p.~}& (58)

a'a~)= f&~e' (xt ~le'so)&,

where X(p, 7) is the Fourier transform of X(r, ~).
Since y(p, 0) removes a free particle with momen-
tum p, it must remove energy p (as the rest mass
is zero) from the system. Thus,

(53)

Using the prescription for converting Schrodingex
operators into Heisenberg operators yields

G'(H, 0; R', t') = (1/i)'&}t(R, —iP)}it(H', f')&

= G'(H, -iP; H', t') .
The Green's functions depend on 8 and R' only

X{p, i)=e'"'X(p o&e *"
e iPtx { 0)- (60)
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Substithting (60) into (58) and (59) and then substi-
tuting those results into (57) yields

2&5(ur —p)G tM &8~

&&(lX(p 0)X'(p o) - X'(p, 0)X(p, o)]&

Writing the left-hand side as fd~e' 'G'(p, r), inte-
trating over all v, and interchanging order of inte-

gration on the left-hand side results in

G'(p, r=0)=,~, 1&(X(p, o), X'(p' 0)] ) (62)

Note that G'(p, 7 =0) is the expectation value of the
operator representing the density of composite
particles with momentum p. Therefore, from Eq.
(62) it is apparent that if the y's obeyed Bose com-
mutation relations, Planck's distribution would be
obtained. From Eqs. (28) and (36) we obtain

(()((u, n), X'(u, n)] & =1 —
)I &k (y'(2P+k)4(2P+k)l&p, (lk ~)+&,(~k ~)l

0

+p'(2p —k)y( p-k)[x;, ((k))+x„(~k[)]]. (63)

Dropping the labels 1 and 2 for the neutrinos, changing the integration variable in (63), and then substi-
tuting into (62) results in

q I1 —
J

d&14'(&) I'IN, (I,P+0
I ) ~ N;(I!a+a

( )II. (64)

The neutrinos are taken to have the Fermi-Dirac
distribution

IO.O

Z„(k) = X;(k) = 1
(65)

We can obtain an approximate value for B (which
is a function of P) for the range of P in which this
second term of Eq. (64) can be neglected as fol-
lows. Integrating Eq. (64) over momentum and
real space, we obtain the total number of photons 1.0

2y 'o p2
, (4v) dp»

so the photon density is

N~ 2(1.202)
V w2P~

(66)

N
y'

Doing the same for Eq. (65), we obtain the neutri-
no density

O. I

Np 1 "
X

3 '& g ~

V v'p', Be"+ 1
' (67)

Equating the photon and neutrino densities, we
obtain B=0.73 from a digital computation.

If we knew P(k), the energy distributipn of our
composite photon would be determined. For con-
venience let P(k) have a Gaussian distribution

O.OI 0.2 0.3 0.4
Photon energy (eV)

0.5 0.7

P(k) = (2/&k ')"'e ' "o'. (68)

Note that Eq. (68) is consistent with Eq. (38). Sub-
stituting (65) and (68) into (64) results in

FIG. 1. The photon energy distribution for T = 1600 K
as calculated from Eq. (69) withko= 1 and 7 eV and
from Eq. (70). Also shown for comparison are the Planck
and Wien distributions.
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1
&y(p) =

Sp

2 2 "'
t'
" exp(-2k'/k, ')

k() v J „Bexp(i&p+kifl)+1

in determining the fit. Comparing the areas under
the curves in Fig. 1 shows that neglecting the sec-
ond term of Eq. (64} in obtaining B is a good ap-
proximation for ko& 7 eV, and T & 1600'K. (This
was checked by a numerical computation. }

(69)

If we had only allowed parallel neutrino momentum
as in the earlier theory, the composite-photon dis-
tribution would have been [with Q( p, k) = 1/Wp]

B ()t)= ~ (1 ——
)

dk(Be +1) '). (70)
1 | 2 r

ceP 1( p

In Fig. 1 we have plotted the following for
T =1600'K: (1) the Planck distribution; (2) Eq.
(69}for k, =1 eV, 7 eV; (3}the Wien distribution;
(4) Eq. (70). First we note that the curve of Eq.
(70) is lower than the Wien distribution and could
not possibly satisfy the experimental results. As

kp approaches infinity the composite -photon distri-
bution [Eq. (69)] approaches the Planck distribu-
tion. However, the experiments of Refs. 18-21
could be reasonably satisfied with k, ~ 7 eV. Since
the second term of Eq. (69) is not a function of the
product (AT), it was necessary to compare it with

temperature and wavelength variations. The ex-
perimental data are usually normalized to the the-
oretical curve so it is the variations with energy
(or wavelength) and temperature that are important

Pa, (k, n)P '=&~a, (k, —n),

Pa, (k, n)P '=spa, (k, —n),

Pc, (k, n}P ' = eg c,(k, —n),

Pc, (k, n)P ' = etc, (k, —n),

and the charge conjugation operator such that

Ca, (k, n)C '=ace, (k, n),

Ca, (k, n)C '= ace, (k, n),

Cc, (k, n)C '=e((,'a, (k, n),

Cc, (k, n) C ' = cga, (k, n).

The transformation of A(P, n) of Eq. (10) is

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

V. PARITY, CHARGE CONJUGATION,

AND ROTATION TRANSFORMATIONS

The transformation of E and H under the parity
P, charge conjugation t", and rotations about n
operators were given in a previous paper, ' so here
we will only show that the recent modifications do
not change that result.

The parity operator was defined' such that

PA'(P n)P = t dk 7tk'(k)Pc, (l( 'P kl(k -n-)P -'Pa (I2P+kl n)P '
~ P/2

P/2

+ dky'(k)Pc. (12p+kl, n)P 'Pa, (lkp-kl, n» '
-p /2

+ dk qk (k)Pc2(( a p+ k
( 7 n)P 'Pa2() 2 p —k ), -n) P '.

P/2

P~(p, n)P '=X(p, -n),

H(P, n)P-'= t(P, -n),

Pg(P, n)P '=-)7(P, -n),

pn„(p;q, n}P '=n„(p, q, -n),

pp„(p, q, n)P-' = p„(p, q, -n),

CX(P, n}C '=-A. (P, n)

(80)

(81)

(82)

(83)

(84)

(85}

By use of Eqs. (71)-(74) we obtain

Pr(p, n)P '=(d(p, -n).

Similarly, we obtain the transformation equations
for the other photon operators, n»(p, q, n) of Eq.
(34) and p»(pkq, n) of Eq. (35). The results are as
follows:

C(u(P, n)C '= -(c(P, n),

Ct'(p, n)C ' = -$(p, n),

Cg(p, n)C '=-q(p, n),

Cn»(p, q, n)C ' = n»(p, q, n),

Cn„(p, q, n)C '= n„(p, q, n),

cp„(p, q, n}c '= p,.(p, q, n),

Cp„(p, q, n)C-'= p„(p, q, n).

(86)

(87)

(88)

(89)

(90)

(91)

(92)

With the above transformations for the photon
operators it can be shown' that E and 8 transform
in the usual way. Also, it follows by inspection
that the photon commutation relations Eqs. (27)-
(33) and Eqs. (41)-(47) are invariant under P and
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C transformations.
Under a rotation of the coordinate system through

an angle 8 about n, the neutrino operators trans-
form as follows:

Roa, (k, n)R~ '=e ' ~a, (k, n),

R 8a, (k, n)R8 ' = e' "a,(k, n),

Rac, (k, n)RS '=8' "c,(k, n),

Rgc, (k, n)R8 '=e '8"c,(k, n),

Rea, (k, -n)Re '=e'8 "a,(k, -n),

R~a, (k, -n)Re ~=e ~ma2(k~ -n)

R,c,(k, -n)RH '=e ' "c,(k, -n),

Roc, (k, n)Re -'=e'8"c,(k, -n).

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(loo)

We thus see from Eqs. (10), (ll), (17), and (18)
that the photon operators transform so that

R~y(P, n)R~ '=e '8y(P, n),

Re&a(p, n)Re =e' &a(p, n),

(101)

(lo2)

R8$(p, n)Re '=t(p, n) cosg+g(p, n) sing, (103)

R~'O(p, n)R~ '=g(p, n) cos8- $(p, n) sing. (104)

With the above transformations for the photon
operators, it ean be shown' that E and 8 trans-
form as vectors under a rotation 8 of the coordi-
nate system.

VI. DISCUSSION

Firstly, we have attempted to show that a neu-
trino theory of photons is possible. To form a
composite-photon theory, one must give up exact
Bose statistics. Besides Pryce's theorem there
axe other reasons why exact Bose commutation
relations cannot be obtained for a composite photon.
To cancel out the e» and e» terms in the eommuta-
tation relations [Eqs. (28) and (30)j, Jordanm' pos-
tulated that the absorption of a photon of momentum

p could be simulated by a Raman effect of neutri-
nos or antineutrinos (i.e., one neutrino or antineu-
trino with momentum p+k is absorbed while moth-
er of the same energy state, opposite spin, and
momentum k is emitted) as well as the simulta-
neous absorption of a neutrino-antineutrino pair.
This Raman effect provided the additional terms
to give Bose commutation relations. Nowadays,
this Raman effect in which a single neutrino simu-
lates a photon is experimentally ruled out as it
would easily have been observed in the invexse-
beta-decay experiments.

%e have assumed that the neutrino obeys Fermi
statistics. One might assume parafermion statis-
tics for the neutrino in hopes of obtaining Bose
statistics for a composite photon. Berezinskii has
shown" that this does not work for a composite
photon, and he has further arguments" against us-
ing Joxdan's Raman-effect hypothesis in which the
effects of a photon are simulated by a single neu-
trino.

%e also differ from Jordan's theory in assuming
a neutrino-antineutrino interaction to be necessary.
Indeed, without the interaction (or Raman-effect
hypothesis) one cannot obtain a satisfactory photon
distribution, since the neutrino pair being absorbed
or emitted by an electron can only have parallel
momentum. This would lead to a composite-photon
distribution differing greatly from Planck's distri-
bution and with the experiment (see Fig. 1). How-
ever, if the neutrinos being absorbed or emitted
in pairs by an electron are allowed to have either
parallel or antiparallel momentum, the resulting
distribution can be similar to Planck's distribution
and experiment (see Sec. IV). Unfortunately, the
exact form of the distribution depends on an un-
known function or parameter, so an experimental
test to decide between this distribution and Planck's
distribution is not possible at present.

Berezinskii'2 has claimed that the commutators
in Eqs. (32), (33), (46), and (47) must equal zero
so that: (1) the photon is neutral and (2) construc-
tion of linearly polarized photons is possible. We
have shown in Sec. V that our theory describes
neutral photons in the usual sense even though the
commutators in these equations do not vanish.
Also in Sec. II we have constructed linearly polar-
ized photons.

The consequences of the theory for quantum
electrodynamics have not been examined in this
paper. We do not know of any experimental result
that rules out the non-Bose commutation relations
of Sec. III. This is not to say that the difference
between these commutation relations and Bose
commutation relations cannot be detected by exper-
iment. On the contrary, we feel that this differ-
ence in commutation relations will lead to experi-
mental tests to determine if the photon i.s a com-
posite particle.
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We extend a class of parton models to a fully gauge-invariant theory for the full Compton
amplitude. The existence of local electromagnetic interactions is shown to always give rise
to R constRnt real pax't in the high-energy behRvior of the Rmplitude g&(p, q ). In the language
of ReggeizRtlon UQS is interpreted Rs R fixed pole Rt J =0 in Tl Rnd v+2, with residue poly-
nomial in the photon mass squared.

Recent inelRstic electropl oduetlon experiIQents
(wlllcll essentlany I118Rsu1'8 tile ilnRglllR1'y pR1't of
the forward off-shell Compton amplitude) hint at a
composite nature for the nucleon. This has been
represented by parton models involving pointlike
(possibly field-theoretic) constituents, but up to
the present time these concepts have only been ap-
plied to the scaling, incoherent impulse approxi-
mation, region. Gauge invariance and the love-en-

ergy theorem place further restrictions upon such
theories, and in this note we report the extension
of pRrton field-theoretic ldeRS to R discussion of
the full Compton amplitude. In particular ere shaQ
see that such models always give rise to a real
part at high energies additional to that expected
from the Regge behavior of the imaginary part.
This extra real part should be identified rvith the
"fixed pole" ' of conventional Regge analysis. Ev-
idence for such a fixed poli for on-shell photons
has been found phenomenologieaQy from dj.sper-
s1on relRt1ons. In Rdd1tion %'6 fiIld that the fixed
pole" appears as a constant real part, C, in T,
independent of g q

Rnd appeal s ln vT2 in the form

-Cq'/v. '
If the proton were as simple as the nucleus, then

the high-energy behavior of the forward Compton
amplitude mould foGow directly from the coherent
impulse approxi. mation. At v=0, the Compton am-
plitude on a nucleus is given by the Thomson lim-
it» f, (0) = -(g'n/M„„„,„,) whereas at energies high
compared to the binding energy, but below thresh-
old for photoproduction of mesons, the forward
amplitude is given by the coherent sum of the in-
dividual nucleon amplitudes,

Q'

f, (v)- -g— (&u, =m, ).

ln fact, for the case of a composite proton the
analogous high-energy behavior would be giVen by
the coherent sum of "seagull" terms for the indi-
vidual proton constituents (Iluarks, bare hadrons)
and the formulas (7), (ll) we give later corre-
spond to this picture.

Field theory gives us the clearest example of a
fuQy covariant, gauge-invariant .Compton ampli-
tude vrhieh ean also incorporate the composite na-


