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Light-cone current commutators are used to derive relations between the structure func-
tions of the vector-vector part of neutrino-nucleon scattering and the structure functions of
the vector-axial-vector part.

Reasonable expressions for the commutator of
currents restricted to a lightlike surface have been
derived from the quark model. " These expres-
sions involve bilocal operators and it is possible
to derive sum rules which relate the structure
functions of inelastic lepton-nucleon scattering to
the matrix elements of these bilocal operators. '
In particular, if the matrix elements of the bilocal
operators are written out in terms of form factors,
then, by using the light-cone version' of the
Bjorken-Johnson-Low (BJL) limit, ' the deep-in-
elastic limits of the structure functions become
simply Fourier transforms of the form factors. In
Ref. 3 it was found that the structure functions of a
scattering process involving only vector currents
were related to the form factors in a one-to-one
manner.

A basic assumption of the light-cone-commutator
method is that the commutators are invariant un-
der SU(3)xSU(3) symmetry Theref. ore the com-
mutator of a (conserved) axial-vector current with
a vector current involves the same bilocal opera-
tors as the commutator of two vector currents and
the matrix element of the commutator involves the
game form factors. Deep-inelastic neutrino-nu-
cleon scattering, for example, will have structure
functions for the vector-axial-vector (VA) cross
terms as well as the structure functions for the
vector-vector or axial-vector-axial-vector terms.
However, the relations between the structure func-

tions and the form factors will involve only the
form factors from vector-vector scattering. Thus
the structure functions for the VA cross terms are
all related, through the form factors, to the struc-
ture functions of the VV terms.

In the case where the nucleon spin is summed
over, the relation is well known. It was first de-
rived from the parton model by I lewellyn Smith'
and has been derived from light-cone commutators
by several people. "' In the present work we
shall find the relations among the spin-dependent
structure functions as well. These results are in-
teresting in that they can be compared with other
models, most of which give the same answer for
the spin-independent vector-vector structure func-
tions but differ in the spin-dependent and/or vec-
tor-axial-vector structure functions. ' In addition,
if electron scattering should verify the essential
correctness of the light-cone-commutator ap-
proach then these relations can provide a handle
on neutrino scattering.

There are four independent invariant amplitudes
for vector-spinor- vector-spinor scattering in the
forward direction, two spin-dependent and two
spin-independent. For spinor-vector - spinor-ax-
ial-vector scattering there are also four but only
one is independent of spin. ' The time-ordered
product of two currents J,"(x)= V,"(x)—A,"(x) can be
written as
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where the nucleon spin, s", is an axial vector given in terms of the nucleon momentum P" = (E, p) and the,
direction of quantization, I, as

'n
~ =p I, s=mn+ p.E+m (2)

The terms with Tz (q', v) and T; (q'„v) are the spin-independent, VV+ AA contribution; T (q', v) and
T,"(q', v) mark the spin-dependent, VV+AA contribution. The term with T (q', v) is the only spin-indepen-
dent, VA +AV part, while T", (q', v), T,"(q', v), and T", (q', v) give the spin-dependent, VA+ AV terms.

The final two terms in (1) are the f-channel poles, where we have defined I", and I;" in terms of the ma-
trix elements of the vector and axial-vector currents,

&ul v."(0)I p& =u"I;,
&PIA."(0)I»= "I;".

(3a)

(sb)

The cross section in the laboratory frame for the scattering of a neutrino v6th a nucj.eon whose spin is
aligned parallel (+) or antiparallel (-) to the direction of motion of the incoming neutrino is written in
terms of the imaginary parts, W;(q', v), of the T;(q, v) as

Ijp (k) GR Et
[-q'WI(q', v) + (E'+E"+-,'q')m'W, (q', v) + mq'(E+ E' cos8) W, (q', v)

+ m'q'(E+E')(E E' co-s8) W,(q', v) ,'m q'(-E-+E') W (q', v) w m q'(E —E' cos8) W', (q', v)

+ m, '(E E' cos—8)(E'+E"+ 2q') W,(q', v) + 2m'EE'(I+ cos8) W, (q', v)],

where E is the energy of the original neutrino, E' is the energy of the final electron, 8 is the scattering
angle, m is the mass of the nucleon, 6 is the Fermi coupling constant, q' = -2EE'(1- cos8), and
v=m(E E') Th—e ele.ctron mass has been set equal to zero. '0 In writing (4) we have neglected the
Cabibbo angle (since sin8c=0. 05=0) and so have only the b.8=0 cross section. For the scattering of an
antineutrino we replace W (v, q') by -W (-v, q') for i = L„2,4, 8 and by +W (-v, q') for i = 3, 5, 6, 7.

It is easy to see, by writing (4) in terms of the variables e = —. q'/2v and x = v/mE, that each term in

(4) increases linearly with E as E goes to infinity. Such behavior is well known for the spin-independent
terms.

To derive the relations we use the light-cone BJL theorem, "

(4)
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vIV'; (q', v)-~&'((u)+ —,G&'((u), i =2, 3, 5, 6, 8

(121)
v'W (q', v)-E' ((u)+ —G', "((o), i =4, 7. (12c)

Using P ((o) =E,"((u)+iE," ((u) we have our re-
sults:

~g'((o) = o,

E~a"((o)=(uf...Jj dne ' "V',(0, n), (14a)

E';"((u) = 2d„, )j dn e ' 'V', (o, n), (141)

E';"(~)= '&ud...f da e "'v;(D, a), (15a)

where Q,"(x(0), 6,"(x(0), ev(x(0), and K,"(x(0) are
the bilocal operators defined in Ref. 3. The form
factors are defined by

&Pl~."( I0)lp}=p"V',(+, p)+ V,( ', p),
(10)

(pie,"(xi0)ip}=s"A;(x',x p)+p"x ~ sA;(x', x p)

+x"x sA'(x' x p) {11)

with similar definitions for '0,"(x~0) in terms of
V';(x', x p) and e,"(x~0) in terms ofA;(x', x p).

The scaling limits (v-~, q'-~, -q'f2v=— (u fixed)
of the structure functions are

w" (q', v)- —E"(w) + p~G"(~)},2

E(~[))(~) ~d J) dn -i(ante(0 ) (20a)
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(20b)

G[,'(~) = -Sisi' J da e ' a[@,. „V.;(0, a)

+f.[.V:(o n)] (21)
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(22)

E(Iuation (13}follows from the fact that there is
no q-number Schminger term on the right-hand
side of (6).' In the same way if. there were a
Schwinger term in (7) of the form 8 8 [P"(x~0)
xe(x )5'{x~)], where P"{x~0)is a pseudoscalar
whose matrix element can be written as x ~ s
x P"(x', x p), then the right-hand side of (16)
would be the Fourier transform of x pP' (0 x p}.

E(Iuations (13), (14), (15), (17a), {18a), (19a),
{20a), and (21) have been derived before. '2'
E(luations (16}, (17b), (181), (19b), (20b), and {22)
are new. These can be used to derive many suIQ
rules. One that is well known" ' used (15) to re-
late E,{(u) for electron-nucleon scattering with

E,((o) for neutrino-nucleon scattering (neglecting
the Cabibbo angle):

6[E,"( ) -E:"( )] = [E,'"( ) -E."'{ )l. (23)

~"E~( )(u=2if„, jj dn e ' "V',(0, n),

(uE,"((u) +E' ( 8)=(u0,

E&"j((o) = ,' if„,Jj dn e ' —"A;(0,n),

In the same way (18) and (20) give

6(u[E,'~((u) '- E,'"((o)]= [E',"((u) E;~((u}], —

6(u[E',~((u) —E,'"((o)]= [E,'"((o).+ E","( )(u

—E,"'((u) —E". ((u)].
Equation (18a) implies'

(24)
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d I" = —
Jl d(uE ' ((u)

where I;" is the matrix element of the axial-vector
current as defined in {3b). From (181), (20b), and
(16}we have
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The Dashen-Fubini-Qell-Mann sum rule in the
deep-inelastic region follows from (14a)":
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(28)

1

J d&u F~~' ~(&u) = 2&d,„,1
0

(29)

In the same way the other sum rules derived in

where F' is defined in (3a). Now we also get a sum
rule froni (14b)":

Ref. 3 for F (&o), F,"(&o), and F (ur) now have ana-
logs in terms of F", (ar), F (&o), F', ((u), and F,' (tu)
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The asymptotic lowest-order weak amplitude for the process v&+v~ —p-+e+ is found to be
modified by a factor expt-(n/2x) lnt] on account of radiative corrections in the ladder ap-
proximation. This is in conformity with the result obtained earlier by Li in the perturbation
theory.

I. iNTRODUCTION

It is well known that cross sections for the pure-
ly leptonic weak scattering processes, such as
v&+e -p. +v„v&+v, -p. +e', etc. , increa. se
quadratically with the center-of-mass energy of
the system, in the lowest order in the weak inter-
action in the current~current theory. ' Recently
Li' has investigated the effect of electromagnetic

radiative corrections to the high-energy behavior
of lowest-order weak amplitudes in perturbation
theory. He finds that the damping thus obtained,
though calculated to all orders in o., does not pro-
duce a significant change in the behavior of these
amplitudes at the available experimental energy
resolutions. His method essentially consists in re-
placing all the fermion propagators in the matrix
element for the nth-order Feynman diagram by


