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Light-cone current commutators are used to derive relations between the structure func-
tions of the vector-vector part of neutrino-nucleon scattering and the structure functions of

the vector—axial-vector part.

Reasonable expressions for the commutator of
currents restricted to a lightlike surface have been
derived from the quark model.'?> These expres-
sions involve bilocal operators and it is possible
to derive sum rules which relate the structure
functions of inelastic lepton-nucleon scattering to
the matrix elements of these bilocal operators.®
In particular, if the matrix elements of the bilocal
operators are written out in terms of form factors,
then, by using the light-cone version® of the
Bjorken-Johnson-Low (BJL) limit,* the deep-in-
elastic limits of the structure functions become
simply Fourier transforms of the form factors. In
Ref. 3 it was found that the structure functions of a
scattering process involving only vector currents
were related to the form factors in a one-to-one
manner.

A basic assumption of the light-cone-commutator
method is that the commutators are invariant un-
der SU(3)xSU(3) symmetry. Therefore the com-
mutator of a (conserved) axial-vector current with
a vector current involves the same bilocal opera-
tors as the commutator of two vector currents and
the matrix element of the commutator involves the
same form factors. Deep-inelastic neutrino-nu-
cleon scattering, for example, will have structure
functions for the vector—axial-vector (VA) cross
terms as well as the structure functions for the
vector-vector or axial-vector-axial-vector terms.
However, the relations between the structure func-
J
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tions and the form factors will involve only the
form factors from vector-vector scattering. Thus
the structure functions for the VA cross terms are
all related, through the form factors, to the struc-
ture functions of the VV terms.

In the case where the nucleon spin is summed
over, the relation is well known. It was first de- -
rived from the parton model by Llewellyn Smith®
and has been derived from light-cone commutators
by several people.>*®'” In the present work we
shall find the relations among the spin-dependent
structure functions as well. These results are in-
teresting in that they can be compared with other
models, most of which give the same answer for
the spin-independent vector-vector structure func-
tions but differ in the spin-dependent and/or vec-
tor-axial-vector structure functions.® In addition,
if electron scattering should verify the essential
correctness of the light-cone-commutator ap-
proach then these relations can provide a handle
on neutrino scattering.

There are four independent invariant amplitudes
for vector-spinor - vector-spinor scattering in the
forward direction, two spin-dependent and two
spin-independent. For spinor-vector - spinor-ax-
ial-vector scattering there are also four but only
one is independent of spin.® The time-ordered
product of two currents JX(x)=V¥(x) - AL(x) can be
written as
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where the nucleon spin, s*, is an axial vector given in terms of the nucleon momentum p* = (£, p) and the.
direction of quantization, 7, as

> A
-

0_D . Bempe 2T
$'=p*#t, S=mi+—D. (2)

The terms with T§(¢? v) and T3°(¢? v) are the spin-independent, VV +AA contribution; 7%(¢? v) and
T%(¢% v) mark the spin-dependent, VV +AA contribution. The term with T¢(g? v) is the only spin-indepen-
dent, VA + AV part, while T%(¢? v), T®(¢? v), and T%(¢? v) give the spin-dependent, VA + AV terms.

The final two terms in (1) are the {-channel poles, where we have defined I', and I"4 in terms of the ma-
trix elements of the vector and axial-vector currents,

(p|VEO)|py=p*T, (3a)
(pIAL0)|p)=sPT2. (3b)

The cross section in the laboratory frame for the scattering of a neutrino with a nucleon whose spin is
aligned parallel (+) or antiparallel (-) to the direction of motion of the incoming neutrino is written in
terms of the imaginary parts, W;(¢? v), of the T;(d%, v) as
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where E is the energy of the original neutrino, E’ is the energy of the final electron, 0 is the scattering
angle, m is the mass of the nucleon, G is the Fermi coupling constant, ¢*=-2EE’(1 - cos6), and
v=m(E —E’). The electron mass has been set equal to zero.'® In writing (4) we have neglected the
Cabibbo angle (since sinf;~0.05~0) and so have only the AS=0 cross section. For the scattering of an
antineutrino we replace W;(v, ¢*) by =W;(-v, ¢?) for i=L, 2, 4, 8 and by +W;(-v, ¢°) for =3, 5, 6, 7.

1t is easy to see, by writing (4) in terms of the variables w=-¢%/2v and x=v/mE, that each term in
(4) increases linearly with E as E goes to infinity. Such behavior is well known for the spin-independent
terms.

To derive the relations we use the light-cone BJL theorem,!'3
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where V¥(x|0), 0¥(x|0), @*(x|0), and &@#(x|0) are
the bilocal operators defined in Ref. 3. The form
factors are defined by

(Plot(x|0)[p) =p* V(¥ x + p) +x* V5%, x + p),

v (10)
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with similar definitions for 0¥(x|0) in terms of
Ve(x% x - p) and @*(x|0) in terms of A(x2, x + p).

The scaling limits (v—~w, ¢?—-w, —¢?/2v=w fixed)
of the structure functions are

W(g?, v)—~ ;ul- (Fg”(w) + %G}f”(w)) , (12a)

vW(g, v)~ FP(w) + 312-6‘:"(«)), i=2,3,5,6,8
(12b)
vEW (e, v)~ FP(w) + ;;ac':”(w), i=4,7. (12¢)

Using F¥(w) = F®)w)+iF®)(w) we have our re-
sults:
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and
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Equation (13) follows from the fact that there is
no g-number Schwinger term on the right-hand
side of (6). In the same way if there were a
Schwinger term in (7) of the form 3_8_[P®(x|0)
x €(x7)6%(x,)], where P®(x|0) is a pseudoscalar
whose matrix element can be written as x-s
X P®(x2, x+ p), then the right-hand side of (16)
would be the Fourier transform of x « pP*(0, x - p).
Equations (13), (14), (15), (17a), (18a), (19a),
(20a), and (21) have been derived before.!:?:?
Equations (16), (17b), (18b), (19b), (20b), and (22)
are new. These can be used to derive many sum
rules. One that is well known?:5~7 used (15) to re-
late F,(w) for electron-nucleon scattering with
F4(w) for neutrino-nucleon scattering (neglecting
the Cabibbo angle):

8[F2(w) = F™(w)] = w[ F¥(w) = F¥(w)] . (23)
In the same way (18) and (20) give
8w FeP(w) = F(w)] = [Fur(w) - F¥(w)], (24)

6wl F(w) = F{(w)] = [F7(w)+ Fo'(w)
- FA(w)- F(w)].  (25)
Equation (18a) implies®

2 1
dpeTe =7 [ a0 FEw), (26)
where I'# is the matrix element of the axial-vector

current as defined in (3b). From (18b), (20b), and
(16) we have

1 (dw
FaTd=7 [ 22 Fi(0) (272)
0
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0
1 (id
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The Dashen-Fubini~Gell-Mann sum rule in the
deep-inelastic region follows from (14a)'!:
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1
f dos FE(0)=1f el (28)
o

where I is defined in (3a). Now we also get a sum
rule from (14b)'%:

1
f dw F () = 27d,,,T° . (29)
1]

In the same way the other sum rules derived in

Ref. 3 for Fi*(w), F2¥(w), and F%(w) now have ana-
logs in terms of F&(w), F&(w), F%(w), and F¥(w).
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The asymptotic lowest-order weak amplitude for the process v, +¥, —u~ +e* is found to be

L

modified by a factor expl—(e/27)Int]l on account of radiative corrections in the ladder ap-
proximation. This is in conformity with the result obtained earlier by Li in the perturbation

theory.

I. INTRODUCTION

It is well known that cross sections for the pure-
ly leptonic weak scattering processes, such as
VyteT =T 4V, v, +T,~p" +e", etc., increase
quadratically with the center-of-mass energy of
the system, in the lowest order in the weak inter-
action in the currentXcurrent theory.! Recently
Li? has investigated the effect of electromagnetic

radiative corrections to the high-energy behavior
of lowest-order weak amplitudes in perturbation
theory. He finds that the damping thus obtained,
though calculated to all orders in «, does not pro-
duce a significant change in the behavior of these
amplitudes at the available experimental energy
resolutions. His method essentially consists in re-
placing all the fermion propagators in the matrix
element for the nth-order Feynman diagram by



