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We propose a method for regularizing and renormalizing the nonlinear a model based on
the limit of the linear fT model when the 0 mass tends to infinity. The linear o model being
renormalized using Ward identities, this procedure ensures automatically the soft-pion
theorems. It also retains the properties of transformations of the Green's functions under
the chiral group. In the one-loop approximation, we show that the pion propagator has a
finite limit when the o mass tends to infinity, while the four-pion Green's function diverges
only logarithmically with the a mass.

I. INTRODUCTION

The problem of the renormalization of perturba-
tion series in the theory of broken symmetries is
an important problem in strong-interaction physics.
One of the oldest cases where this situation occurs
is SU(2) symmetry broken by electromagnetic in-
teractions. This problem is not yet solved in the
sense that we do not know how to express a certain
number of physical quantities in a finite way in
terms of the symmetrical quantities. For instance,
we do not know how to compute electromagnetic
differences of masses.

In the case of the chiral symmetry SU(2) xSU(2),
recent progress has been made. First Lee' showed
how to renormalize the linear 0 model whose La-
grangian reads

Symanzik' then solved in a more systematic way
the problem of the renormalization of theories in
which the symmetry is broken in the Lagrangian
by terms linear in the fields, making an extensive
use of the Ward identities. He also generalized
his method for breaking terms quadratic or cubic
in the fields. In Symanzik's method, it makes
sense to speak of broken symmetries only as long
as the breaking terms in the Lagrangian are less
singular than the symmetric terms, from the point
of view of power counting in the perturbation
series.

In all the preceding cases, we have to deal with
Lagrangians which are renormalizable in the or-
dinary sense, and the fields are linear representa-
tions of the symmetry group. However, in the
case of SU(2) xSU(2) chiral symmetry, a very
popular idea is that the pion transforms nonlinearly
under the action of the chiral group. Moreover,
certain attempts to use the linear o model to com-
pute mN phase shifts have not given very satisfying

results. (References on calculation with the Pade
method can be found in Ref. 3).

Therefore it is interesting to study nonlinear
realizations of the chiral symmetry. A passible
model is the nonlinear o mode14 which also fulfills
the requirements of current algebra, but in which
the 0 field is eliminated through the condition

o'(x)+P(x) =E,'. (1.2)

The Lagrangian with pions only becomes

0

In this case we are faced with a completely dif-
ferent problem. Because the Lagrangian is not
renormalizable in the usual sense, and because
the symmetry acts nonlinearly on the pion field,
the problem of defining a finite perturbation
series, even in the limit of the exact symmetry
(c=0) without destroying the symmetry properties
is still open, Even by the "superpropagator"
methods" it does not seem easy to solve this
problem. "

lf one expands the perturbation series in power
of a parameter associated with the number of
loops (here I/E'), considering functions of
E' —w'(x) as equivalent to their Ts,ylor series ex-
pansions, then even the renormalization of the one-
loop graphs in the symmetric case is not obvious,
even if one is careful in the definition of the Feyn-
man rules 8

If one takes the point of view of the Feynman
integral, which generates the time-ordered Green's
functions, it is important to integrate with an in-
variant measure. '

A convenient way to write the functional genera-
ting the Green's functions is to introduce an auxil-
liary field o(x) and to make explicit the constraint
(1.2):

5
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G= 5 n'+o'-E, ' dfdoexp i —,
'

B„n +-,' B„o +c,o d x;
5(w'+o3 F—,3) can be formally rewritten introducing a new field (w(x):

Q= d7TdO'dQQxp i 'p 07T + 2 80 +COO+ & 7F +0 —ED d Xr .

(1.4)

Now from this expression it is easy to recover the linear o model. If we add a term (w3(x)/X, in the La-
grangian we obtain

(1.6)

(1.8)

2

G(X,) =fdirdhdeexp((f d'xd(ir, k)+ k(ir'+k'-P, ')+—
0-

g(w, o) = 3[(a„w)3+ (a„o)3]+c,o ——,'p, 3(w3+ o').

If A., goes to infinity we recover G = G(~). If we integrate over the field n(x) we see that G(A. ) generates the
Green's functions of the linear o model,

P(X,) =Idtrdirexpjf d x[i(ir, tr) --,X(ir' etd -P')')}.

The fact that, if A., tends towards infinity, the
generating functional of the linear v model has for
a limit the generating functional of the nonlinear
o model, reflects the well-known fact' that the
tree graphs of the linear o model tend towards the
tree graphs of the nonlinear o model.

But it is possible now to renormalize completely
the linear cr model" and give a finite sense to the
perturbation series. Because the tree graphs of
the linear o model have the tree graphs of the non-
linear model for their limit, we can therefore con-
sider the renormalized perturbation series of the
nonlinear model. We have then to study the be-
havior of the series, in the linear model, when
the coupling constant A., goes to infinity. Diver-
gent terms will appear. Because the model is
symmetric for any value of ~„ the divergent terms
will be also symmetric, and we can compensate
them by adding counterterms to the Lagrangian.
Following those lines we have a method of regular-
izing and renormalizing at each finite order the
nonlinear o model.

We have made an explicit calculation for the pion
propagator and the four-point function in the one-
loop approximation. A p~ori one could think that
terms will appear rising as powers of A,, or, equiv-
alently, as powers of M, ' (M, is the o mass and is
related by a Ward identity to A.}. Actually the pion
propagator has a finite limit and the pion-pion
amplitude rises as lnM, '. Qnly one counterterm is
needed at this order and only one renormalization
constant occurs. Similar results will be published
later for the 0 model with pions and nucleons. We
do not know if this result generalizes for an arbi-
trary number of loops, but in any case the method
seems a promising method of renormalizing the
nonlinear 0 model. Also the method can be used
for more general models.

We shall now discuss the infinite-mass limit in
the one-loop approximation.

II. THE TREE APPROXIMATION

We first expand the nonlinear Lagrangian (1.2} in
powers of the pion field and get

1 (w ~ ag)3 1 c, w' 1 w'(w ~ Btw)3
y2 16 g P4 2 y 2

(2.1}

We have expanded 8 nonlinear only up to the sixth
degree in the pion fields because for a zero- or
one-loop calculation in which we are interested,
and for the two- and four-pion Green's functions,
the other terms will not contribute.

Setting c,= p, ,'E„where p, , is the unrenormalized
pion mass, we replace the Lagrangian (2.1}by the
effective Lagrangian

21 ~ 2 1 2~2 I 0= —(s„w) ——p, , w —,w

0

p. () ~3 1 w (w ' S)(w)+,(w ~ P)'-, +—

(2.2)

We shall represent the pion or o propagator by
D„(s) or D, (s) and call F the vacuum expectation
value of the renormalized o field. We shall repre-
sent the connected amputated four-pion Green's
function by

ill!i (Pl) P3l P3)P4} ll ill (P) l P37 P3l P4)

+ ~;36;l&(Pl, -P3, -P3 P4)

+ 6„6,,&(P„-P„P„-P,), (2.8)
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FIG. 1. One-loop contribution to the pion progaga-
tor in the nonlinear model.

FIG. 2. One-loop contribution to the four-pion
Green'8 function in the nonlinear model.

iD„'(s) = s —m„', (2 4)

iD, '(s) = s —v2 with &8 =- M, 2 = -iD, '(0), (2.5)

v —m~ s-m2 2 2

(Pl) P24 P34 P4) F2 S O
2

with

s = (P~ +P2}',

(2.6)

the amplitude A being symmetric in the interchange

p3 p4 and al so p, —p, simu ltaneous ly with p, —p4.
To distinguish between the Green's functions of

the linear and nonlinear models, we shall put a bar
on the second ones. We can immediately derive
the tree approximation or Born terms for the two
Lagrangians. For the linear model we obtain

We see immediately that the barred quantities are
obtained from the previous ones by letting o -~.

III. ONE-LOOP CALCULATION OF THE
NONLINEAR MODEL

For the pion propagator, we have only one graph
represented in Fig. 1. An important point is that
this kind of graph cannot be ignored as in usual re-
normalizable theory. ' Actually here we shall find
for it a well-defined finite value. This graph gives
clearly a polynomial of the form

(3.1)

O2- m&2
~aw(((P14P24 P3} F

while, for the nonlinear model, we have

iD, '(s)=s-m, ',
s- m& 2

A (Pg 4 P24 P34 P4)
with

S = (Pg + P2) ~

(2.'t)

(2 6)

(2.9)

where y is to be fixed in some way.
For the four-pion Green's function we have the

graphs represented in Fig, 2, plus the crossed
graphs in the u and t channels. A straightforward
calculation leads to

A(s, t, u, P, ', P,', P,', P,')=, , (As+A, s), (3.2)

where

I(s)
A2 = (s- m„')(2s+ t +u-3m, ')

m 2

+ ———«- m. '(s —u} — " (A' —P3'}(P2' —P.'}+(P,'P, '+ P,'P.')+ 2(p, 'P4'+ P,'P, ')
J

m 2

+ —
2

- tu - m„'(s - t) - " (Pi' - P4')(P2' -P3') + (P,'P2'+ P3'P4'}+ -2'(P, 'P3'+ P2'P4') . (3.3)

f(s) is the Mandelstam function defined by

(4m, '+s 's' (s)'s's(4m, 'ss)'~'
s 2.

Here s, t, and u are the usual invariants.
The second piece A,~can be written, taking into account the symmetry properties of A, as

(3.4)

A» = As'+ B(P+u')+ Dtu+ Cs(t + u)+Em„'s+F m, (t + u)+ Gm +X(p,'+ p, ')(p, '+ p, ')+Z(p, 'p, '+ p, 'p4').
(3 5)

Of course only the "bubble" graph of Fig. 2 con-
tributes to A~, while the other graph contributes
only to the "infinite" part of A, that is A,~.

These new nine parameters A, J3, . . . , H as well
as y must be fixed in some way. We could think

to-use the relations among those parameters im-
posed by the Adler" and the Weinberg" conditions.
However, these conditions are not sufficient to
determine all the parameters. We propose to fix
these constants by using the linear 0 model as re-
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Contraction

FIG, 3. Contraction of the propagator.

v'- ~ of the linear v model, important cancella-
tions occur, principally between the one-particle
irreducible graphs and the reducible ones. The
result is the following (see Appendixes A and B for
the demonstration):

(4.1)
gulator of the nonlinear model, and obtain them
from the limit of an infinite 0 mass in the linear
model.

IV. THE ONE-LOOP GRAPHS AND THEIR LIMIT

IN THE LINEAR MODEL

~= —", ——,
' In(o'/m, ') ——,I(-a'),

B=O,

D = ',' ——',—In((x'/m, '),

C= ——', + —', In(o'/m, '),

(4.2)

(4.8}

(4.4)

(4.5)

Linear Model Contraction Nonlinear Model

r
JVWK

To ea,ch graph of the linear model, we shall as-
sociate a graph of the nonlinear model, obtained
from the previous one, by reducing to a point any
internal 0 propagator. We shall call such an op-
eration a "contraction. "

For the propagator we have only one graph (Fig.
3). For the four-pion Green's function we have the
correspondence (Fig. 4) (we do not draw the graphs
deduced by crossing lines). In taking the limit

F.= ——,+ —,
' ln(o'/m„') + BI(-a'),

E = 1 ——,In(o'/m, '},

G = —,
' --,'I(-a'),

I = --', + —', In(o'/m, 2),

II= -'9' + —', ln(o'/m, '}.

(4.6)

(4 I)

(4.8)

(4 8)

(4.10)

Before going forward we shall make two re-
marks: first, that the o4, v'lno', and 0' terms
are absent. This absence allows us to hope that it
is possible to renormalize the model at all orders.
Second, we remark that a "new" parameter -a'
has appeared. s = -a' is the point where the v pro-
pagator has been subtracted in the linear model.
These terms involving I(-a') are absolutely neces-
sary if one wants to avoid infrared divergences
when the pion mass goes to zero.

Now we shall give a simple way to reconstruct
the subtraction polynomial A», as well as a simple
explanation for the absence of the 0, v'Inv', and
v' terms.

V. SIMPLIFIED RECONSTRUCTION OF THE
SUBTRACTION TERMS IN THE ONE-LOOP

APPROXIMATION OF THE NONLINEAR MODEL

A. The Propagators

Since the pion and the v propagators involve only
simple functions in the one-loop approximation for
the linear model, it is very easy to take the limit
v- ~. We set

iD, '(s) =s —m, '-Z, (s),

iD '(s) = s —v' —Z, (s).

(5.1)

(5.2)

We recall that in the linear model, the 0 propaga-
tor was defined using the convention of renormali-
zation:

iD.-'(-a') = -(o'+ a'), (5.3)

FIG. 4. Contractions of the four-pion Green's function.

where a' is any positive number. (To avoid in-
frared divergences when the pion mass tends to
zero, it is necessary that a' be different from
zero. ) In the nonlinear model, -a' represents
the point where the connected two-point o(x) func-



tloll VR11181168 wl1611 0'(x) is I'eplRced by [E —ll (x)]
Using the results of Appendix A, we find

(s —mo')'
95"Z

or in the one-loop approximation,

EA'"'P(0 s s 0 0 s s)
2

yl looP(0; s, s)
mr

E.(s) = »„.F. tl(s) —I(-a')]+ o("). (5.5)

nz 2

f„=—,i O„'(0}= 0( }—, ,). (5.5)

We see that the difference between f„and F is ex-
tremely small,

: p. The Yard Identities

%'e recall that for the linear model, we have two
Ward identities (see Ref. 10), which read

F&(po', Ps', P4' o P2' P3' P4'}

. iD.-'(p:)
OOO(P2 i pa }P4 } „- -I

(p 4)

(s.v)

In particular, using (5.4) we obtain the value of f„:

yo lOOp (o2 ill 2}/F.

we shall use Eq. (5.14) for o-~.
C. Appbcation

(5.15}

B6111g 111depelldellt of the v II1Rss, Elis. (5.11) Rlld

(5.12) must be true separately for each term of
the double expansion in the 0 mass and the number
of loops. On the other hand, the expansion of
A(s, t, u) at the one loop is of the form

0' 0 0' 0 2

F4 I 1+ 2 +F4 a2 I 2@1+ 2mr E mr

m 2 V
+ 2

I lOOP(Q) PI looP(Q) O

0 0

(s.14}
taking into account that

ZV..„(q'; q', 0}= iD.-I(q') —iD.-'(q'). (5.8)

By combining (5.V) and (5.8), we can derive the
relation

E'A(q', q', 0, 0, q', q', 0) = iD„'(q') —"
. ",

(5.9)
Setting q' = -a' in (5.9) and letting o -~, we then
obtain

E'A(-a', -a', 0, 0, -a', -a', 0) =iD„'(-a').
(5.10)

Taking the derivative of (5.9) with respect to q',
and setting q' = m, ' we also recover the %einberg
conditions:

E', A(q', q2, 0, 0, q', q', 0) =Z, '=+ l.d

(s.11)
The Adler condition is obtained from (5.7) for P,

'
—m R.r

A(m„', p, ',p, ', 0, m, ', p,', p4') = 0, v0 p, ', p,'.
(s.l2)

Being independent of the o mass, the relations
(5.11)and (5.12) remain true when o'-~, and so
we can write them vzith a bar on A.

Finally we shall use EII. (5.7) for p,' = 0. We have

2, 2)
F/(Q ~2 qR Q 0 q2 q2) 'D -l(0) oo}0(~0 q 0 q )}q 0 1 & I 1 'o ' .D I(0)

+ F—4 P, + Q, ln, — + Ap(s, i, u)+ C(In(o'/m ')

(5.16)

By only dimensional considerations we see that
a» b» a» 6, are constants independent of the ex-
ternal momenta P„while P, and Q, are first-degree
polynomials and P, and Q, are second-degree
polynomials in the invariants s, t, u, and p;2. The
reason for this is that the pion mass cannot occur
111 the dellonllllRtol'8 of aI0 a2, f}l, f}o (110 Hlf1'Rl'ed

divergences).
I', and Q, are of the form

lIs+ P(t + u) + sm, '. (5.1'I)

The Adler condition then tells us that

P=Q and @+5=0, (5.19)

while the Weinberg condition states for the one-
loop contribution

(5.20)

Therefore +=p=5=0, and we are left with only
the logarithmic and finite terms.

We now determine the polynomials P, and 14},.
They. are best represented in the form (3.5). Ap-
plying the Adler condition, we derive the set of
relations
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B=O,

D+Il =0,

I'+I+ C=0,

A+E+ G=0.
The Weinberg condition implies

2(A+ B+C+I}+E+E=0,

while the equation (5.10) gives

(5.21)

(A+8+ C+I)a' —(E+E)m„'a'+ Gm„4

+ (a'+ m„')'-,'I(-a') = —', (a'+ m, '}'.
(5.23)

Combining (5.21) —(5.23) we obtain a first system:

a=p,

8+II =0,

E+E= --', +3I(-a'),
A=-(Z+ C),

I+ C=-I',

C = —,
' - —.'I(-a').

(s.24)

We shall now determine the value of F by using
Eq. (5.14) for o mass going to infinity. A short
calculation (see Appendix C} gives finally the iden-
tity

A -ln(o'/m, '),

g~p

C--,' In(o'/m„'),

D- --', In(o'/m, '),
II--', In(o'/m„'),

I - —', ln(o'/m„').

(6.2)

VII. ANOTHER POSSIBLE RENORMALIZATION

One could think of renormalizing the o propaga-
tor not at an arbitrary point -a', but at a point as-
sociated with the physical o mass. But because o'
becomes positive and large, we cannot require the
o-mass operator to vanish at its physical mass be-
cause it is now complex in the second sheet.

A possible choice which will not violate unitarity
18

One sees from Eqs. (4.2)-(4.10) that the conditions
(6.2) are fulfilled. In particular, we see the neces-
sity of the presence of the term —,'I(-a') in (4.2) to
compensate part of the infrared divergence: With-
out this term (which would be the case if one chose
a' =0}, a spurious infrared divergence would ap-
pear because I(s) would have been subtracted at a
singular point. (the point s =0 is now singular for
the zero-mass ease).

E= 1 — In(o'/m„'). (s.26)

All coefficients have been fixed up, except D and
II, and C and I, fo~ which we know only the sum.
It is evident that the most general Ward identities
cannot help us to fix these last constants because
when one momentum is zero, D Rnd II, as well as
I and C, always appear only through their sum.
Only the complete calculation can give these coef-
ficients.

VI. THE GOLDSTONE MODE

When we want to take the limit of an exactly
chiral nonlinear o model, we must send the pion
mass equal to zero. We know that there must not
occur infrared divergences, the pion being only
emitted in pairs. ' " By asking that no infrared
divergences be present, we ean completely fix
their logarithmic contribution in D, II, I, and C.
In fact, when m, '-0, we have

I(s) -+ lnm„'. (6.1)

To avoid infrared divergences, we must have

-=2m„'s[1 ——,
' ln(o'/m, ')]+ ,'m, 'I(-a')+ —,'m„'.—

(5.25)

Using this relation, we ean find the coefficient I':

that is,

I(-a') - -In(o'/m„') + —", —n ~3

VIII. CONCLUSION

(V.3)

We hRve pl esented R Inethod fo1 1'egula1 izing Rnd

renormalizing the nonlinear 0 model. Using the
well-known fact that in the limit of an infinite o

mass (or the infinite coupling constant) the tree
graphs of the linear o model tend towards the tree
graphs of the nonlinear 0 model, we have proposed
considering the linear 0 model as the regulariza-
tion of the nonlinear model. The advantages of the
method are clear. The regularization in this way
respects at each order the symmetry structuxe
under chiral transformations.

We then studied explicitly the l,imit of an in-
finite o mass in the one-loop approximation for
the propagator Rnd the four-pion Green's function.
To do this, we used the Ward-Takahashi identities
in order to renormalize the linear 0 model and

HeD '(cr ') =0.

Now, using (5.9) it is easy to compute the change
in the four-pion Green's functions. It is found that
one must change I(-a') as follows:

I(-a')- lim [HeI(o')--'+3(2--'v&3)] (7 2)
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then we took the limit for an infinite o mass. The
propagator has a finite limit, and the four-pion
Green's function diverges only logarithmically with
the o mass. This result holds also for the pion-
nucleon and nucleon-nucleon amplitudes (see a
forthcoming paper). " This generalizes a result on

the pion-nucleon vertex previously obtained. "
'We showed also how to obtain rapidly some coef-

ficients of the second-degree subtraction polyno-
mial of the four-pion Green's function, by using
the limit of the Ward identities of the linear o mo-
del. (They contain clearly the Adler self-consis-
tency relation and the Weinberg conditions. )

However, we showed that two coefficients of the
nine remain arbitrary, and can only be fixed by
our procedure. Also, the pion propagator depends
on an orbitrary parameter which is determined in
our method.

These results show that, in the one-loop ap-
proximation, and due to our limiting procedure,
the nonlinear o model depends on the same number

of parameters as the linear 0 model. Only one
counterterm is needed, in place of the 0 mass of
the linear model. We do not know if this result
generalizes for any order. In order to be able to
answer to this question it is necessary to find an
efficient way to take the'limits in the linear 0 mo-
del, different from the direct and tedious calcula-
tion. But what is sure is that the method we pro-
pose reduces in a sensitive way the number of sub-
traction parameters in the nonlinear a model and
respects all the current-algebra requirements.
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APPENDIX A: EXPANSION OF THE PION AND e PROPAGATORS AND THE cr-n-g VERTEX

IN TERMS OF THE 0 MASS

We use the results of Ref. 10, slightly modified by the following. In Ref. 10 the pion and the 0 propagator
were renormalized by giving their values, as well as those of their derivatives at zero external momenta.
Such a procedure is inconvenient for two reasons: First, when the 0 mass tends to infinity, we shall not
obtain the most general solution; and second, when the pion mass tends to zero we shall encounter infrared
divergences due to an improper choice of the point of subtraction in such a case.

Therefore we shall renormalize the pion at its physical mass by the conditions

iD. -'(m„2}= 0,

d .iD„'(s)—
fr

The 0 propagator is defined by the Ward identity

iD, '(s)=iD, '(s)-EV, „,(s; s, 0);

(A 1)

(A2)

since V „,is logarithmically divergent, we need an extra condition to fix iD, (s). We impose its value in

a point we choose to be -a':
iD, '(-a') = -(g'+ a2).

o is a parameter of the theory, which will be sent equal to infinity, to obtain the nonlinear model.
We first give the formulas which permit us to go, for the linear o model, from the case a' =0 to a'0.

For the one-loop approximation in which we are interested a short calculation gives

Z~; (s) = Z ~;
= '&(s) —Z@= '&(m, ') —(s —m„') —Z~„' = '&(s)

d

g= m„~
(A4)

Z&; (s) =Z&;=' (s) —Z&;='&(-a') —(s+ a') —Z&'='&(s)
s= m„

where Z(s) is the mass operator:

iD, '~'(s} =s —m ' —Z~;(s),

iD, "&(s)= s —a' —Z&;&(s).

The vertex undergoes the transformation

(A5)

(A6)

(A f)
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VV..(p, ';p;, p:)= V':; (p—;;p:,p:).~ ~(:-"(-")-~':-"(-")-(". .') —d,
~(:-"( )(~= 0)

while the one-particle irreducible four-pion amplitude is expressed by

S = if'~»-'

Q(~(c)(s f ~ p2 p2 p2 pE) ~IR(a=0)(~ f ~ p2 p2 p2 p2) gIR(s=o)( g2 g2 () () 2 2) g( )

Finally we give the expression for the reducible four-pion amplitude:

A +(s, f, ~,p,', p,', p,',p,')=-, '
(
',), +—,' [V(;„,(s,p, ', p, ')+ V( „(~,p, ', p,')1. (A10)

Using Eqs. (X.25) and (X.26) of Ref. 10, we have

iD. '(s)l. =o=~-('- . [l.~(&}-»'~(0}]
(o'- V')'

(A11)

iD, '(s) ~, ,= s -o'-," [-,'I„„(s)+—,'I„(s)—»,',(0)], (A12)

where pP=—m, » and

1,„(s}= — — ([s' —(o+ u)'][&' —(o —p) ]],2(,„)» 16' s"(s' —s)

The expansions for I,„and I„for large o are

8 1 sp, lno' 8 3»» x 1
2~ ~* 16

(A12)

s j. s' "=-16"6" "10"' (A15)

It is easy, setting

I(s) —= 16(('I„„(-s),

to obtain Eqs. (5.4) and (5.5) through a trivial calculation.

(A 16)

APPENDIX 8: EXPANSION OF THE FOUR-PION GREEN'S FUNCTION IN TERMS QF THE o MASS

As previously, we first do the calculation for a'=0 and connect it to a'o0 by Eqs. (A9}, (AS), (A4), and

(As).
The contributions of the various graphs of the one-loop approximation are given in Table 1 (see Fig. 5)

for the irreducible part of the amplitude. We see that we need the expansion of the following functions:

D,„(s, f, u, P,2, P~~, P3', P4') = -16(('[D ~(s, t, P 2, P,2, P,S,P4~) —D~~(01, 0, 0, 0, 0, 0)],

V(,(&,P&' p2') = -1«'[V(,(&,pg', p,') —V„(o, o, 0)],

V, (&,P,', P,') =-16(('[V,(s,P,', P,') —V, (0, 0, 0)],

re

op F6+2 2

(Bl).

(a2)

(aS)

(a4)

Cap= &2ass &&&J (('-i(ask ~co'A o'ao(4ps ~2&4 4 +o ((x2+ o'3)+ & (o'x+ (x4)~

V(P,';P.', p.') =—
16& A»Qspj + Qt3CEgp» + QfgQ2ps —Ag~ N»~2 —Q3~3» »» 2» .

8»' (as)
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FIG. 5. The four-pion one-particle irreducible graphs at the one loop in the linear 0 model.

In (86) we have either m, = m, = p, and m, = o( V,) or m, = m, = o and m, = p( V„). By applying standard meth-
ods" for expanding multiple integrals in terms of a large parameters, and setting

P =Pj. +~2 +~3 +~4 i

P Pl P2 P3 +P4 Pl P2 +Pl P3 +P2 P4 +P3 P4 + 2P1 P4 2P2 P3

P Pl +P2 +P3 +P4 +Pl P2 2P), P3 2P2 P4 +P3 P4 PjP4 P2 P3t, (BS)

we get to order (lno )/o"

D(s, t, p, ', P,', P,',P,') =, + (-,'p -t), + —,(l(t)[~p -t+2p2l+ , s+2t- -,pj—
+ 3 [t + 3 st t(p+6(LI, ) sjl + 2 j(rp+ 3P]

ln(o'/jl') 2 1 P 2 9

1 2+—,t(t) t'+ ', t t( tp)-p-'.+pter p+t-, +'pp—-pp—-tp')ptt'

+ —33s ——,st-2t -s(—„p+—,p. )+t(2P+6((1 )- 2((1 p- , P+ 13P—
-In the same way, we obtain for V„(s,P, ', P,')

ln o'
V„(s,P,', P,') =-

4 .(3s+P,'+P2')+u'(Pl'+P2')

0 2

+ —,(-ttp(p, '+p, *)+ —', p t — ', [p, '+p, *+p, p, '+ ,'s(p, '+p, ')+ ,'„t'j)+ t)(",———
and to the same order,
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TABLE I. The four-pion one-particle irreducible contributions to the one-loop diagrams
of the linear 0 model (for a2 =0).

Figure Contribution

5(a)
(P 2)4

4 [D~t„(s,t,P(,P2,P3,P4 ) —D~ (0, 0, 0, 0, 0, 0)]

5(c)

5(d)

2 2 2 2[D p(&,~,P,P,P,P ) —D p(0, 0, 0, 0, 0, 0)]

(02 p2)2
2 IVV(')

(02 p2) 2

5(e)

5(f)

((y2 p 2)2

4 I~ p(u)

(02 p2)2
4 -'lao(»

5(g)

5(h)
(0 —p2) 3( -V) [V( 2 2) V(000)]

5(i)
(0' —v2) 3

4 [V~(S,P3,P4 ) —V~(0, 0, 0)]

5(j)

5(k)

(0 —P, )
&4 [ a(& Pg ~P2 ) —V~(0, 0, 0)]

(0' —rtf2) 3

[V (t,p,p ) —V (0, 0, 0)]

5(l)

5(m)

5(n)

4 [V (t,P,P ) —V (0, 0, 0)]

(O'- P')'
~4 [V~(+,p2,p 3 ) Va(0, 0, 0)]

(O2 2)3

[V, (u,p, ',p4') —V~ (0, 0, 0)]

1n o'
V, (S P,', P,')=-, + 2(S —P,'-P,'), " + , [l(S)(2S——2P,' —~P,

' —y.') —,'S+ —,'(P2'+P, ')-]

~2 Z 2 .2+ '; [-3s'+ 's(P2'+P. '+31 ') —-3V'(P, '+P.') — (P 3' P2.
'+P, '+P )~2

I

( ) -''+ '(p, '+p, ')+ -;-' - -',-g(p'+p, ') - '(p'+p'+p'p') - -'+ "(p'-p')'—
1nv

'
s —s'- s[—'(P, '+P, ')+29') + 49'(P, '+P, ')+ —„(199, +19P, ~ 22P, 'P, '}I+0(, . (B12)

It is then easy to obtain the irreducible part of the amplitude. For the reducible part, we give in Table II
(see Fig. 6) the contributions of the various graphs to V„,. The functions implied are the same as pre
viously.

By adding all contributions, we first get the amplitude for a' = 0, and then for a' e 0, by the use of for-
mulas of Appendix A.
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TABLE II. The one-loop contributions to the vertex
a-x-m in the linear cr model (for a2 =0).

(a) {b)

2

/

4

(e)

(c)

Figure

6{a)

6{b)

6(c)

6(d)

6(e)

6{f)

Contribution

(0'- v')3
F3 [Vg{p2 qp 3 ~p4') —V~{0,0, 0)]

3(0' —v')'
[V~{p2,p3 p4 ) —Vp{0,0, 0)]

{~'-v')'
I~p(p4 )

(O'- V')'
F 3 IaP{P3 )

5 (0 —p2)2 :.(p')

FIG, 6. The one-loop o-n-x vertex graphs in the
linear a model.

APPENDIX C: CALCULATION OF THE COEFFICIENT OF m {t+u)
IN THE SUBTRACTION POLYNOMIAL

To make use of Eq. (5.14) in the limit o- ~ we first need to give the expression for V,„,(0; s, s). It turns
out that this is just given by

)s„„(0;s, s)=, I, ())+ (sss'-S'), l,s(s)+H, l, s(s) )
.

(o 2 ~2)2 s s
8 JLt.

80' (~1)

Therefore, differentiating the expansion (A14) with respect to (()2 and a' we obtain the expansion for large
c of V,„,(0; s, s) and finally through a straightforward calculation we get the relation (5.25).
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