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The expansion of the unequal-mass scattering amplitude in terms of Poincark-group rep-
resentations was considered for positive and zero values of s, the squared total four-momen-
tum. The usual singulaxity problem at s = 0 was avoidable, but it turned out that the relevant
variable is not j, the total angular momentum, but a quantity nonsingularly related to the
Poincarb-invariant S'& 8'I' even at s = 0. The notion of complex angular momentum and sig-
nature was reexamined, and some modification of the old formalism seemed useful. The

. xesults are perfectly compatible with dispersion xelations and with the requirements of
Regge behavior. In an appendix a theorem is proved for the expansion of a class of functions
which are not square-integrable, but have Regge behavior with respect to unitary E(2) rep-
x'esentations (that is, fox' Fourier-Bessel expansions).

I. INTRODUCTION

The difficulties of Regge-pole theory at zero en-
ex gy in the case of unequal-mass scattering have
inspired many authors, and many different ap-
proaches have been proposed to solve the problem.
The general attitude is to take for granted the
presence of unpleasant singularities in the %'atson-
Sommerfeld transformed form of the unequal-
mass scattering amplitude, and the task is to dis-
cover how to remove the singularities. On the
other hand, one must realize that even the pres-
ence of these singularities is questionable. What
actually happens in the Heggeization procedux'e is
that some fox mulas, weH. defined in the s channel,
are extrapolated to new regions, into the t or u
channel. It is far from trivial that, although the
stRl ting sltuRtlon ls very similar, everything must
be learned from the equal-mass case. Instead,
Fourier analysis on the Poincar6 group is probably
the "magic word" one is to remember in the Reg-
geization procedure.

Many authox s have investigated the connection
between the forms of the scattering amplitude ob-
tained by Watson-Sommerfeld transformations and
from direct group-theoretic expansions, mostly
for spacelike total four-momentum, s &O.' 4 The
present paper is mainly devoted to the problems
at 8 =0 in the unequal-mass case. Some steps of
oui RpproRC11 wex'e made ln Refs. 5 Rnd 6, but oQx'

results go far beyond their s.
We deal both with the s =0 limit of the Watson-

Sommerfeld transform Rnd with the connection of
this limit with the group-theoretical expansion in
terms of bghtlike Poincare-representation matrix
elements. These investigations lead to the follow-
ing conclusion: The appropriate variable at s =0

is not j, but gg, the eigenvalue of the Poincare-
invariant lV„W", 9'„being the Pauli-Lubanski op-
erator. As is mell known, at s=O real positive
values of se correspond to unitary Poincare rep-
resentations (infinite-spin representations), they
are sufficient to expand a square-integrable scat-
tering amplitude. Complex values of te correspond
to nonunitary representations, and a complex-
angular-momentum theory is to be formulated in
terms of functions of the complex variable m.
Obviously, when g is not zero, one may equally
well use zv or j. On the other hand, one cannot
provide a (Poincare) group-theoretical interpre-
tation to a theory mhich uses the variable j at
s =0. (Our way of looking at the problems with
unequal-mass scattering is very strongly support-
ed by Hermann. ') In other words our suggestion is
that s and j are not the "most economical" vari-
aMes to formulate a complex-angular momentum
theory, but s and so are. (Also, Feldman and Mat-
thews have suggested that the correct variable to
be used is not j but m.' See also Ref. 8.) The un-
desirable singularity at s =0 is a consequence only
of the uneconomical choice of variables. (The
analog of this phenomenon is well known in the con-
text of the singularities which arise when using
the variaMes s and cos8, instead of the "most eco-
nomical" pair s, t.) In arriving at this conclusion,
group-theoretical interpretability is only a hint
rather than R necessary condition.

In this paper the scattering of two spinless par-
ticles with masses m and p, (pion-nucleon-type
kinematics) will be examined. In Sec. D some re-
marks on Poincare representations are presented
(for a detailed discussion see Ref. 9), which are
of basic importance in the subsequent investiga-
tions. In Sec. III the Watson-Sommerfeld repre-
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sentation of the scattering amplitude is given, and
our modifications of the complex angular momen-
tum are described in comparison with the conven-
tional treatments. In Sec. IV the s =0 limit is cal-
culated, and in Sec. V a comparison is made be-
tween the Sommerfeld-Watson representation and
the expansion with respect to Poincard-represen-
tation matrix elements. In Sec. VI some details
of our approach are discussed, and in two appen-
dixes mathematical statements made in the previ-
ous sections are proved.

II. REMARKS ON POINCARE REPRESENTATIONS

If one takes the standpoint that the Regge-Wat-
son-Sommerfeld representation of the scattering
amplitude is nothing but essentially a group-theo-
retical expansion in terms of Poincare represen-
tations (this is supported, e.g. , by the fact that
resonances are classified by putting them on Regge
trajectories), then the s = 0 problem of uneciual-
mass scattering can be, at least in part, trans-
ferred to the representation theory of the Poincare
group. Namely, the question arises of whether the
representations of the Poincard group can be de-
scribed in a form that is continuous in the Casimir-
.operator eigenvalue P&'=s at 8 =0 when the four-
momentum P„bee ome slightlike. This problem
was thoroughly investigated in Ref. 9, and we sum-
marize its most important points here.

The Poincare group has been represented on a
sufficiently large function space, and explicit func-
tions in this space could be found with the follow-
ing properties:

(1) They are eigenfunctions of the four-momen-
tum P„, with arbitrary real eigenvalues p„; of
W&W, with arbitrary complex eigenvalues sj(j+1)
=re' —~s, where s =p„'; and of W, with eigenvalue
pA. , where p is the magnitude of the three-momen-
tum p and X is the helicity. That is, the functions
with given s and m form an irreducible set for
representing the Poincard group in a helicity basis.

(2) They are continuous functions of the four
momentum p„, and consequently of s as well. Ap-
propriate normalization is essential to achieve
continuity at s =0. (The point p„=0 is a very pe-
culiar one, and is unimportant in this paper.
Hereafter s = 0 will always be associated with light-
like four -vectors).

After obtaining the basis functions, representa-
tion matrix elements of the Poincard group have
been calculated. The result is of the following
form:

(p„,w, X [(a, A) ( p'„, w ', X'&

=N(s, w, w')5'(p„—Ap'„)D~„(p, 8, g)exp(-ip&a„),

(2.1)

(
IP.1+0 )"',

(2 2)

and 8" is now a continuous function of s even at
s =0. (For the representations of little groups for
four-vectors like (p„0, 0, p) see, for example,
Ref. 11.)

The significance of choosing Euler variables
which are continuous functions of s becomes clear
when we come to the next relevant point, the or-
thogonality relations of the matrix elements:

I, = d'adp, (A)(P„,w, X~(a, A)~P'„, w', A. '}

g (pll w II /II ~(a A) ~pirl will /Ill) )Ic

(2.3)

where the integration goes over the translation and
the homogeneous-Lorentz-group part of the Poin-

where N(s, w, w') is a continuous function of p„' = s
when w and w' are fixed. The functions D» de-
note the familiar representation functions of the
groups SU(2), SU(1, 1), or E(2) depending on wheth-
er s is positive, negative, or zero, respectively. "
(In the cases where s x0, more conventionally the
label j is used instead of w. ) The Euler angles p,
8, g in the D~„ function are functions of the six
parameters of the homogeneous-Lorentz-group
element A and of the four components of p„. The
method of determining the functions p(A, p„),
8(A, p„), and g(A, p„) is well known since they are
the Euler angles of the Wigner rotation L~ 'ALJ;j.~,
where L~ and L~-j.~ are boosts which transform the
four-vector (Ws, 0, 3, 0) (for s & 0), or (0, 0, 0; v'-s)
(for s &0) to p„and (Ap)„, respectively. It can be
checked again that the functions Dz„(P, 8, g) are
continuous functions of the components of p„when
av is fixed. This might be surprising since a simi-
lar statement is not true for 8(A, p„}. Namely,
lim, 08(A, p„) -=0 (p„becomes lightlike) indepen-

dently of A. Qn the other hand, if we calculate the
matrix element (2.1) directly for lightlike repre-
sentations [that is, also the Euler angles of the
"Wigner rotation" L~ 'AL~-i~ with boosts L and

L~ i» transforming a four-vector (p, 0, 0,p) to p„
and (Ap)„, respectively], we find that 8(A, p~)
g(0 ao).

This discrepancy can be very easily eliminated
by reinterpreting the function D~), in the following
manner: It is the representation matrix element
Dzq (P", 8", g") [—=Dqq (P, 8, g}] of the little group of
the four-vector (P„0,0, P}, P,' —P'=P&'=s, the
Euler angles of which being those of L&„'ALq-i~„
where L» and Xq-~~„are boosts transforming the
four-vector (P„O, O, P} to P„and (AP)„, respec-
tively. It is easy to verify that



EXPANSIONS OF THE UNEQUAL-MASS SCATTERING AMPLITUDE. . . 1299

care group. [Concerning the measure dp, (A) on
the 'Lorentz group see, e.g., Ref. 10.] After per-
forming trivial integrations one obtains

I, = dV (y", 8", 0")~;;(y",8", 0")D;-";-(y",8", 0")

= (l po l +p) N(s& w& w )5yyri 5~i par . (2,5)

I, =N(s, w, w')N(s, w", w'")5(p„' —p„")

x5 (pq pq"-) 5 Qq —P~')I2, (2.4)

In the expression (2.5), dp. (p", 8", g") is the mea-
sure for the little group of (P„O, 0, p). Lengthy but
straightforward calculation gives, e.g. , for s &0

I

)&os+I
dp, ( ", 8", rp) = ' sin ' 8" dp"d8"dg"=' "

— d(cos8)dpdg -=' ' dp(p, 8, g) (2.&)

N(8~ w~ w' ) =, , 5gg» ~ (2.V)

=(»}'5'(j,+j.-ps -j.) 2' (lj.l+j)'
xE &x,x,x x (& j}(22+1)d(.p(8 }

(2.8)
where A. =As -A~, p =A., —A, and 8, is the scatter-
ing angle in the center-of-mass (c.m. ) frame for
the s channel. The partial-wave amplitudes are
defined as foDows:

(IP.I+f )'
Fxxxz(s j)

x d(cos8, )E~~~m~, x,(s, t)d„'~(8,) .
(2.9)

The symbol d&~~ denotes the familiar Wigner d
func tlons .

III. COMPLEX ANGULAR MOMENTUM

In this section we describe a complex-angular-
momentum theory for unequal-mass scattering

w =sf(j+I}+48~ w =sj (j +1)+as.
We eall attention to the fact that in the integral
(2.5) the measure dp. (P", 8", g") has appeared, rath-
er than dp, (P, 8, g). This is strongly correlated
with the singular behavior of the angle 8 at s =0.

The formulas (2.5)-(2.V) make it possible to
write down the partial-wave expansion, that is,
the expansion with respect to irreducible, time-
like Poincare representations for an unequal-mass
scattering amplitude, in a form which we. expect,
after Reggeization, to have nice analytic properties
even at zero energy:

&P3*ss 3 j. s~, &41TIPi, si, &„js ~2 4
=(»)'Fx„x,~,x,(s t)5'(j|+j'2 -Ps -P4}

which, on the one hand, is related to that for
equal-mass scattering as strongly as possibl,
but, on the other hand, makes use of the remarks
of the previous section. In other words, first, the
scatteri. ng amplitude is to be expanded in terms of
Poincare representations in a frame in which the
total four-momentum I'„=p,z+p» is of the form
(p„0,0, p}. Second, the appropriate variable to
be used in a complex-angular-momentum theory
is w rather than j (O. f course, this distinction
is irrelevant when s g 0, and we shall use the var-
iable j until we do not want to go to s = 0.)

The crucial points of conventional complex-an-
gular-momentum theory (see Refs. 12 and 13) are
the following:

(1) Using Carlson's theorem, one defines two
functions over the complex j plane from the s-
channel par tial-wave amplitudes.

(2) By a Watson-Sommerfeld transformation one
casts the partial-wave series into an integral along
a curve of the j plane from -& —i~ to -&+i~.

(3) After analytic continuation in the s and t
Mandelstam variables one obtains the crossed-
channel scattering amplitude represented by the
background integral (along the line Rej = ——,') and
the residues of poles appearing on the half plane
Rej ) -2. (Cuts will not be considered ln this pa-
per. ) It is assumed that the contribution of the
integral along the infinite half-circle is still neg-
ligible.

Now we consider the elastic scattering of two
spinless particles with masses m and p. , p, '=p, '
= nP, p, '=p, '= p. '. The Mandelstam variables are

s=(j'&+pa)'=(j 3+&.)'

t =(ji-js)'=(pm-j. }',

I =(j, -p,}'=(p2-j~)'

2st
cos8» = 1+, 2 g)4(s, mph,

where 8, is the s-channel scattering angle in the
e.m. frame, and
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n(s, m', pR) =[s -(m+ p)2][s -(m- p)Rj.

In the s channel the partial-wave series for the
scattering amplitude F(s, t) looks like

( I ) (~2 2 +~1/2)2 2

x Q F(s,j)(2j+1)P/(cose, ), (3.3)

where the partial-wave amplitudes E{s,j) are de-
fined as follows:

(mR -p.R+a'/'}' —S'
E(s,j)=

x d(cose, )E{s,t)P/(cose, ) .
4 wy

(3.4)

In the spinless case the d functions of (2.8) a«
(2.9) are the familiar I.egendre polynomials P/(z).
The kinematical factor

Correspondingly, we define

F(s,j)=S,'(s,j)+F„(s,j)
and obtain

2 (mR-p, R+a'/2)2 -sR
F,(sj =—

dt'A, (s, f')Q,: 1+ 2sg

~ 4mR & sy RII yM

(3 6)

2 (mR -ilR+al/2)2 —S'„(,j)=-,

t (m A(3~-s

dt'A. „(s,t')Q, 1+2sE

(S.V)

In (S.V) the real, & -1 argument of the Q/ function
is to be understood as a limit from the lower half
plane.

It is usual at this stage to introduce complex

SWP,
(WR QR +61/2)2 SR

in (3.3) and (3.4) corresponds to the s/(~ p, ~
+P)' of

(2.8}and (2.9). It could have been included into

E(s,j), but it has significance when we go to s =0;
therefore we prefer to write it explicitly. In the
equal-mass case it is only a numerical factor ——,'.

We assume E(s, t) to satisfy an unsubtracted dis-
persion relation in the variable t at fixed 8:

F(s, f)=F,(s, f)+E„(s,f)

X (2 t') 1 I -»'-' /I ( t)dt' ' +- Cia
m 4&~2 t'-t m. „ t'-t

angular momentum. As is mell known, the mathe-
matical problem of defining an analytic function
having prescribed values at non-negative integer
values of j involves an essential nonuniqueness.
The tradition in Regge-pole theory is to look for
analytic continuations satisfying the conditions of
Carlson's theorem, and this leads to the signa-
tured functions

E,(s,j)=F~(s,j)pE'„(s,j)s'"'. (3.8)

W'e are not going to follow this tradition, but rath-
er we define complex angular momentum directly
through (3.6) and (3.V). Some problems arising
from the use of FI „(s,j) instead of E,(s, j) will be
discussed at the end of this section. The merits
of our choice will become clear only in the sub-
sequent sections.

Now, still in the s channel, we can write the
integral

s~=—. St
tss( I } 22 (BIRR gR +~1/2)2 sR

&( dj ~ E (s,j)P/)-I—2j+1 . . ( 2st I

(3.9)

on the j plane instead of writing the original par-
tial-wave series. The contour C encircles the
positive real half axis. Until we are in the s chan-
nel all the poles of the integrand in (3.9) are due
to the zeros of sinzj at integer values of j. After
analytic continuation into the t or u channel also
the functions E, „(s,j ) have poles at real j = a(s)
values. Then also the contribution of these poles
is to be included in the expression (3.9). The
basic assumption of Regge-pole phenomenology is
that the contribution of these latter poles domi-
nates over the remainder, the contribution of the
poles due to singj. The usual "proof" for this is
to deform the contour C into a straight line along
Rej = -2 and an infinite half circle on the right
half plane. If one assumes that the integral along
this half circle is zero, it is easy to see from the
asymptotic expressions for the P/(2) functions that,
for large values of cos8„ the background integral
is reasonably neglected in comparison with the
Regge-pole contributions. Obviously, this "proof"
relies very strongly on the appropriate asymptotic
behavior of the E(s,j) functions in the variable j.
In the t or u channel this cannot be justified simp-
ly by looking Rt tile illtegl'Rlld of (3.6) RI1d (S.V) Rlld

it cannot be done either for the signatured func-
tions F,(s,j) even in. the more familiar equal-mass
case."" On the other hand, the successes of
Regge-pole phenomenology serve as a justifica-
tion of the assumption. In our treatment, E,(s,j}
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and E„(s,j) must be well behaved, instead of
E,(s, j). This assumption may very well be com-
patible with phenomenology since, although there
is an exp(i') factor present in (3.6), E, „(s,j) and
E~(st j) lilRy 11Rve tl18 suitable plopel'ties ev811
simultaneously.

There is only one thing we certainly lost by
using E, „(s,j) instead of E,(s, j). Namely, in the
case of signatured functions, the analogs of ex-
pressions (3.6) and (3.V) make it possible to prove
that in the s channel the functions E,(s, j) decrease
[since the functions Q,.(z) do so] fast enough for
the contribution of the infinite half circle to be
zero. This is not the case with E„(s,j). However,
one must note that in the s channel this problem
has no partlculax' slgnlflcaDce. TI16 eontoux' in-
tegral has no advantages over the partial-@rave
series; either the contribution of the half circle
must or need not be kept.

Gill' flllRl fol'BllllRS fol' Et g(st i) Rl'8

E, „(s,i) = E,'„(s, f) +Ef„(s,i),

where E,' „(s, i) is the background term:

j sBf p,

2i (m'-y, '+n."')' —s'

x dj — Q~ s j Q.

s. That is, we consider the formulas (3.6), (3.V),
(3.11), and (3.12) fors-i0, u+i0, 0&s & (m- p, )2,

g+ il)2&u & (m' —u')'/s, and, keeping u fixed, we
let s go to zero. It is vrorth remarking that still
we are on the lower edge of the cut of the Q~ func-
tion in (3.V).

In the usual treatments the limit s =0 is taken at
fixed values of j, and the singularity problem
arises due to the singularity of I,.(z) at z = -1 and
of i()l (z) at z =1. In our approach w is the funda-
mental variable, and we calculate the limit keeping
u) fixed. Indeed, first we introduce a (dimension-
less) variable e, instead of j, which is not singu-
larly connected with I even at s =0:

(m'- u')',u)'=sj(j+1)+-,'s =
4m' (4.1)

The, most economical way to calculate the limit of
the Legendx'6 funetloDS ls to use the following lDte-
gx al representations'4:

1
P~(z) =— [z+ (z'-I)'"cos(t)t~d(t),

iargz i&-,'v

t) () ft[ (z*z--z)' toots] sstttt

iarg(z+1)i&v. (4.3)
At the end of the calculations one recognizes
Bessel functions of the fix'st RI1d third klDd ln the
f0110%'lng forms

and Ef„{s,i) denotes the Regge-pole part:

(3.11)
Z, (z) =- exp(iz cos4 )d@,

((.(z) f szs(-z oos)tt)ttt, )sr(to( —,'z.

(4.4)

(4 6)

S' st= —. sBl p,

2i (m' —ll'+a"')' — '

j sins'
2j+ j. . 2sg

poles C &

{3.12)

Also the relations between Hankel's functions and
the K function are useful:

If & ) (z) = Z,.(z)+ il;.Q)

= —(»/v) exp(-i jhow)A, (z exp(-i-.'v)), «.6)

As was discussed, we assume the representation
(3.10)-(3.12) of the functions E, „(s, i) to be valid
in the t and u channels.

If,"'(z) = ~~(z) i&j(z)-
=i(2/v) exp(ij-,'v)K~(z exp(i-,'n)). (4.V)

Having fixed our definitions fox' a complex-angu-
lar-momentum theory at s eO, we investigate its
s =0 limit, which is a physical point for the u chan-
nel. %'6 make use of the fact that there is a finite
piece of the u-channel physical region above s =0,
and in the present paper we restrict ourselves to
reaching the point s =0 through positive values of

Here I;(z) stands for the Bessel functions of the
second kind.

First we deal with the limits of the functions
E,,.(s,j):

lim E,(s,j) -=E, (0, q)
oo

dt'A, (0, )t') K,(~ (i'/mal)'"),
fl' PREP

(4 6)
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lim E„(s,j) = F„(0,e)
g~0

4i 8 ~dt'A„(0, t')H't2'(q(-t'/mph'~')+ —— dt'A„(0, t') K,(e(t'/mg)'") (4.9)

Next we calculate the limit of the background integral term (3.11). It is easy to see that

t
i&, '(e (-t/mp)'") for Imc & 0

lim . .P~(-1 -2st/a)=
0 Sl117Tjl -tjf,"'(~(-t/mp)'") for Ime &0.

(4.10)

This yields

1
Ft „(0,t) =—

J E, „(0,e)If''(g( t/mp, )'~2)gdg
0

0

F~ „(0,&)H,"'(e (-t/mg)'")edE .

00

Eq „(0, t) =— ed@ Et „(0,e) Ja{e(-t/mg) )
0

(4.12)

This last expression looks exactly like an expan-
sion with respect to lightlike, unitary representa-
tions of the Poincarh group. (A similar result was
obtained also. in Ref. 6.) Our assumption about the
asymptotic behavior of the function E,(0, e) is ob-
viously correct. The situation is more complicated
in the case of E„(0,e). The integral representation
(4.9) defines it only for Ime & 0, where our assump-
tion about its asymptotic behavior can be again
verified. For Ime & 0 it remains unverified, just
as for s w0. It will be shown later, however, that
the assumptions we made are reasonable.

The calculation of the pole terms leads to an in-
teresting result, if one supposes that at s =0 the
poles are placed at real e,.(s = 0) = e, points. Due to
(4.10), the contour integrals of (3.12) must be eval-
uated not by the theorem of residues, but by apply-
ing the formula

1 P
. =—+iw6(x).x+i0 x

The result is

F& „(0, t) =g P, „(~,.)r,(~,.(-t/mp)'"},
poles

(4.13)

where P, „(e,) denotes the residues of the functions
E, „(0,e). It is remarkable that the second kind of
function I', has appeared in (4.13).

All the calculations of this section were per-

(4.11)

If E, „(0,e} behaves at most like a polynomial in
the right e plane for ~e

~

-~, Eq. (4.11)can be
written also as

formed by changing the order of integrations and
limiting in s. Obviously, had we not used the func-
tions F, „(s,j ) instead of F,(s,j ), we should have
obtained meaningless results. On the other hand,
the limit of the functions E,(s,j ) may very well
exist, even if the limit of the integrands does not.
[We remind the reader of theorems about the exis-
tence of

lim '
f(x) sinpxdx

/~00 ~

for example. ] However, simply making the as-
sumption that lim F,(s,j ) exists would lead to un-
controllable expressions.

V. SELF-CONSISTENCY AND COMPATIBILITY

WITH DISPERSION RELATIONS

This section is devoted to the examination of .two
problem. The first is related to the connection
of complex-angular-momentum theory and expan-
sions. with respect to Poincare representations.
Our concept (in fact, it is due to Hermann ) is that
complex angular momentum is important even if
the scattering amplitude is square-integrable: It
is a tool for continuing into each other the Poin-
care expansions of the scattering amplitude for
total four-momenta of different character. This
interpretation makes use of the fact that those uni-
tary representations of the Poincare group which
appear to be relevant for the expansion of square-
integrable functions in the timelike, lightlike, and
spacelike cases can be characterized by the eigen-
values of one and the same Casimir oper'ator
W„W" (beyond, of course, P&' ——s). It is not a
priori obvious that there exists an analytic func-
tion E(s, so} which, at the appropriate values of s
and zo, takes on the values of the expansion coef-
ficients for the previous three expansions. [It is
very difficult to say anything about the effect of
non-square-integrability, beyond that it presum-
ably corresponds to certain se singularities of
E(s, u)). ]

The second question is independent of group the-
ory, and is probably more important from the
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and

F,„(0,s) = )d)F, „(0,t) J,(eg)
Jo

(5.2)

into a form comparable to those previously ob-
tained in Secs. III and IV. Our notation is

c =- cos8, = 1+2st/d, (s, m', p, 2),

t' = (-t/m ll) 1/2 .
(5.3)

(5.4)

For this purpose, at s ~0, we should apply the
identity

/' 1 P.(c)
q1(x}=-.' dc

1

point of view of theories based on the well-estab-
lished analytic properties of the scattering ampli-
tude. Namely, the question arises of whether our
prescription for the s =0 limit is compatible with
dispersion relations we assumed to be valid also
for the u-channel amplitude.

To answer the first Question we compare the for-
mulas for the u channel obtained by the analytic
continuation of the Watson-Sommerfeld trans-
formed form of the s-channel scattering amplitude
[that is, the formulas (3.6), (3.V), (3.10), (3.11),
and (4.8), (4.9}, (4.11), and (4.12)] and the appro-
priate crossed-channel expansions we are going to
write down assuming a square-integrable (in cose, )
scattering amplitude also in the u channel. Clear-
ly, the main task is to cast the inverse formulas
for these latter expansions.

(m2 g2 y gl/2)2 s2 t' 1

F,„(s,j) =
2

dcF, „(s, t)P, (c)2sm p, 1
(5.1)

and \/(t' —t+i0) denotes the generalized function"
P/(t' —t) —iw5(t' —t). The plus sign before i0 in
(5.8) comes from the i~ prescription of S-matrix
theory. The condition -1&c & 1 remains true, but
it is easy to see that now we need (5.5) also for
values of z on the real axis between -1 and +1,
when (5.5) fails to be valid in the sense of classical
functions. It remains, however, true in the sense
of generalized functions. Namely, it is shown in
Appendix A that

«1 P (c)
Q/(x+ i0) =-,' dc x- caz0 (5.9)

which is valid in classical sense for
~
argt'~ & w.

However, it is shown in Appendix A that, for argt'
=+w, Eq. (5.12) remains true, and it is to be un-
derstood as

is true-for -1&c&1, and for any value of x. Then
it is obvious that the formulas (3.6) and (3.V) ap-
pear for the expansion coefficients also in the u
channel. This shows that, starting either from the
s or the u channel, one can define one and the same
complex angular momentum. It is clear, more-
over, that no simple trick (like the introducing of
signatured functions in the s-channel) makes it
possible to define an analytic continuation satisfy-
ing Carlson's theorem. In fact, complex angular
momentum functions satisfying Carlson' s theorem
in the u channel would be incompatible with the
ones defined in the s channel.

In the case of s =0 the basic formula one must
apply is"

J',(e(-t/m p)'/2}
dt ', =K,(e(t'/mp, )1/2) (5.10)

4 -a/s

P/(1 + 2st/tl)
I dt (5.5) 0 J,(e(-t/my)'/2)

dt '
. =+i-2'wH '"(e(t'/m p)'")t' —t~ i0

where

x = 1+2st'/tl(s, m', p, 2) . (5.6)

There was no problem with (5.5) in the s channel,
where we needed it only for t' —tg0, -1&c&1,

~
s

~

& 1. When we are in the u channel, in the re-
gion 0 & s & (m —tl )', (m + p. )2 & u & (m' —p.2)2/s, the
situation changes, and can be summarized as fol-
lows. From a detailed study of the original Cauchy
integral one can see that the dispersion relation
(3.5} is to be rewritten as

(5.11)
These relations assure that the formulas of the
crossed-channel expansion and the ones obtained
in Sec. IV from the s-channel expansion coincide
also at s=0.

The problem of compatibility with dispersion
relations, mentioned at the beginning of this sec-
tion, can be formulated in the following manner.
The expansion procedure followed in the previous
sections consists, first, in giving the kernel of
(5.'I} the form

( )
"", (, ')

w 4 „ t' —t+ z0'

where

(5.7)
.0= ~ Q(2j+1)P/(c}Q/(x+i0)

1 2s

/=0

A, (s, t') if t' & 4m'
A(s, t') = 0 if (m-tl)2-s&t'&4m' (5.8)

A„(s, t') if t'& (m —tl)2- s, or, for s =0,

d . . P (-c)q (x+ io), (5.12)
s 2j+1
ia ~

~ sinnj
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)t ed& J,(e(-t/mt1)»2)
0

xK,(e[(t'+ i0)/m p, ]»') . (5.13)

Second, substituting the right-hand side of (5.12)
or (5.13) into (5.7), and changing the order of inte-
grations, one gets

E,(s, t) =—. —
J dj . . P&( c) -A.,(s, t')Q& 1+ dt'1 s " . 2j+1 ", 2st'

iw S ~ sinn' ' (5.14)

or, when s =0,

1 1
F((0, t) =— Ede Ja(e( t/m-p. ) )

K SZQ ~G
(5.15)

[The reader can easily write down the correspond-
ing expressions for F„(s, t).] We consider a limiting
prescription compatible with the dispersion rela-
tion if the limit of the expression for 1/(t —t+ iO)

given at s & 0 is identical with the expression given
at s =0. Obviously, our prescription has this prop-
erty.

Another problem arising is the question of
whether changing the order of integrations is
a legal step. In fact, ,this is the question of the
convergence of our expansions. We are not going
to discuss this delicate problem for sg0, where
we have the more or less familiar, old formulas.
For s =0 and the function E,(0, t) we state the fol-
lowing theorem: If the function E,(0, t) can be rep-
resented for 8& 0 by an integral

,A, O, t'
E,(0, t) =- dt'

4m2

where the discontinuity A, (0, t ) is integrable in any
finite interval of (4m', ~), and behaves like t'" for
t'- ~, then the equality (5.15) is true. (Obviously,
this theorem makes it possible to write a Fourier-
Bessel integral for a non-square-integrable class
of functions. ) The proof of this theorem is given
in Appendix B. To get a corresponding theorem
also for E„(0, t) we need further work.

VI. DISCUSSION

In the previous sections we described the basic
ideas for calculating the limit of the Watson-Som-
merfeld transformed scattering amplitude to s =0
in the unequal-mass case. We discuss here some
characteristics of our result:

E(s =0, t) =—
J &d&[E,(0, &) +Eg(0, &)]

0

4~ ~G

E„(0, e) = — dt'A„(0, t')H&"(e(-t' /mp, )'")
0 mO()

p(m p)2
+—

I dt'A„(0, t') K (e(t'jm p, )»2)
t4 & Q

(6.3)
Our first observation is that the pole terms do

not exhibit the t"- power behavior for (-t)-~,
since the YG functions behave like

&,(z) ~ (2jsz)'" sin(z ——,'m) . (6.4)

On the other hand, the theorem stated at the end
of the previous section indicates that the first
"background" term of (6.1) is probably sufficient
to expand a scattering amplitude with Regge behav-
ior. [In fact, we proved it only for F,(0, t), but
similar statements seem to be valid also for
E„(0, t).] It follows that, if we believe in the t as-
ymptotic behavior, the usual rule concerning the
dominance of pole terms over the "background"
integral does not apply at s = 0. The formulas (6.2)
and (6.3) indicate that the pole terms of (6.1) are
probably not present at all. It is easy to see that
the usual assumptions

At(0, t') ~ t', A„(0, t') ~ (-t'), o. &0,

do not lead to any singularity on the half plane
Rem & 0.

To see some details we assume a very simple
model:

where

F~(0 Q) =— dt'A~(0, t')K,(e(t' /m I1)'"),8
7T POP + 4~

(6.2)

poles

(6.1) if
0 if t'&0, (6.5)
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0 if t'&0
A„(0, t') = (6.6)

where --,' & e & 0 and a, and a„are real constants.
The integrals corresponding to (6.2) and (6.3) yield

a,
F,(0, e) =- '

! dt't'"X, (e(t'/m p. )'12)
Z Blg, go

16a,'(4m') I'(o. +1)e '&"'", (6.V)

4ia„
E„(0, e) = — " dt'(-t') H,"(e(-t'/m p,)'")

82 /.

16ag"e '"(-4m'&, )"I"'(et+1)e ' "'"
(6.8}

We remind the reader that the integral (6.3) de-
fines E„(0, c) only for Ime & 0. After evaluating the
integral in this region the result can be extended
also for Ime & 0. [Equation (6.8) is just an example
of this. ] Finally, the integral (6.1) gives the ex-
pected result for the scattering amplitude:

E(0, t) = . [a,(-t)"-a„t ].1
sin@a

(6.9)

One could examine more-complicated models (with
more-complicated A.„A.„ functions, but with the
previous asymptotic behavior), but the following
features of this. simple model would remain un-
changed. There are no poles of the functions
E, „(0, e) in the e right-half plane. Instead, one al-
ways finds a branch point at e = 0 with the character-
istic power e '&"'". For large values of

~
t~ the

dominant contribution to the integral (6.1) comes
from the lower end of the integration path, and,
asymptotically, the form (6.9) is always repro-
duced.

It is worth noticing how nicely these results cor-
respond to the Lorentz pole picture, the usual so-
lution of the singularity problem at s =0. First,
we have seen that the "cause" of the t behavior is
"concentrated" at.the .e =0 point, which is the im-
age of the j plane (due to the singular mapping at
s =0). That is, the power behavior is something
deeply connected with the j plane. Second, it is
not very hard to imagine that the infinite sequence
of the (j -plane) daughters accumulates (on the e
plane) when s =0, and forms a branch point at e =0.
Of course, it is difficult to guess the nature of the
branch point. Just as in the case of considering
all the conspiring daughters, we did not find here
any singularity at s =0, only the t"behavior was
1'epl oduced.

Our last remark concerns signature. In the pre-
vious sections it was important that we did not
introduce signatured functions. Qf course, Eq.
(3.8) always makes it possible to restore the old

formalism with signature if sg0. For s=0, Eq.
(3.8)becomes singular. However, iatroducing the
quantities

ap = 2(ag. Tag),

Eq. (6.9) can be rewritten as follows:

(6.1o}

1 —exp(-i7& n)
+ a (-t

si.nn n (6.11)

Of course, this form follows for E(0, t) from the
assumptions of power behavior and symmetry be-
tween the t and u channels. It is more remarkable
that our formalism is compatible with it without
superimposing the formulas [notice the factor
exp( i7&n)-in (6.8)].

APPENDIX A

In Sec. V we stated the equalities
~l

q( x~i 0)= x- c*s0 (Al)

g (2j+ I)P,.(e)q, (x+ tO) = 1

j=O x- cd&0
(A3)

for -1 & c & +1. Their proof is straightforward by
using the identity

I p
+i7&6(x- c),x-c+ s0 x-c

the formula 16.3(6) of Ref. 1V:

P d '( )=-'q( )x —c

(P denotes the principal value of the integral), and
3.4(9) of Ref. 14:

q, (x~ iO) = q, (x)+i-,'vP, (x) .
Next we investigate the expression

e de (J(-et/mp)'i')t'- t+g0

XE,(e[(t' ~ io)/m p]
' t'), (A3)

'

where both t and t' are negative. VVe apply the
1 egularlzahon technique of Ref. I6~ and define the
integral (A3) as follows:
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=+i-,'slim c' 'Zo(e( t-/mti)'t')
t - t~s0

yrfh 2)(f( tt/mti)it2)df.

(A4)
It was found in Ref. 11 that

lim dc c'-' J,(e(- t/mti)' ') Z, (c(-t'/mt')' ')
s 2~0

=2m', b(t- t') .

(A5)

The remaining task is to calculate the quantity

lim de e' 'Jp e -t mp. ' '
Fp e -t' ~p. "'

g~2 0

For this purpose one must use the formulas 6.8
(37, 38, 47) of Ref. 18:

tdd OO

J
x' 'Z, (b-x) I;(ax)dx

0

= )i '2' 'a ' sin-,')i(s —1)r '(-,'s) F(-,'s, —,
' s; I; b'/a'),

if a&b&0, 0&Res&2;

x' 'J (bx)1;(ax)dx
Jp

x' J ax Fp bxdx
0

),oo

——,cos-,'w(s —1)J
x' 'E', (bx}Ao(ax)dx,

7T' 0

if b&a&0, 0&Res&2;

x' 'Z, (ax)SC,(bx)d-x
40

S 4t

, , r'(-,'s)S(-,'s, —,'s, s; 1-b'/a'),I"(s)

if Re(a+ b) &0, Res &0. The result is

-i-,'viim e' 'Z,(e(—t/mti)' ')I;(e(-t'/mti)' ')de
8~2 0

= mqp/(t'-t),

(A8}

then

F(t) (=A(t') de( de-t)K( det )d'e)dt'
t0

"0
oo

eJO(f)t t )~ I( d4(t )If,(~)~t )dt'I«
(B2)

The proof will be performed in two steps. First
we prove that

oo ( to oo

( A(t')l ed. .(ed:t)K.(ePt')«)dt'
gp 5 '0

( 1/0
A(t )l 'e(de-t)K (edt' )de)dt'.

0~0 to (d 0

(B3)
Second, we show that

l
"a/0

Alt') e l dett ) tlKey) t)dedt '

t0
~t 0

z/o, (o oo

d,(ed-t)e A(t')K, (edt')dt')de.
0 ~d gp

(B4)

Combining (B3}and (B4) we just obtain (B2).
The proof is based on two mell-known theorems

of mathematical analysis:
(1) If the function f(x, y) can be written as

f(x, y) =g(x, y)k(y), where b(y) is integrable in any
finite interval of n& y &+~, g(x, y) is continuous
in a & x & b, 5 &y «, and the integral

K(*)=f f(x, y)dy

converges uniformly in [a, b], then the function
I (x) is continuous in [a, b], and, under the same
assumptions, the following equality is true:

Jf (J( y(x, y)dy)dx f(f f(x, y)dx)dy=.

(2) The integral f f(x, y)dy converges uniformly
in [a, b] if there exists a function G(y) such that

If (xy y) I
- G(y), for any a & x «b, 5 &y, and if the

integral J G(y)dy converges.
First we define two functions:

which completes the proof of (A3).

APPENDIX B

In this appendix we prove the theorem stated at
the end of Sec. V. The theorem is as follows:

If

and

i/0
f, (t', II)=- x Z, (x)SC, (x(- t'/t)'") dx,

0

1 ""
Z(t, n)-=-- f (t', a)X(t')dt'.

0

(B5)

(Be)

(Bl)
0

where A(t'} is integrable in any finite interval of
(t„~), and

(x(t')( ~ t'",

Obviously,

(B7)F(t) =E(t, 0) —= —— f,(t', 0)A(t')dt'.1

tp

We show that E(t, Q} is a continuous function of 0
in some 0&A&0, interval, where Qp is an arbi-
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trary positive number. The function A(t') is, by
assumption, integrable in any finite interval of
(t„~). It is easy to see that the integral in (B6) is
uniformly convergent in 0 & Q (0,. That is,

Ifd(t' Q)A(t')I-IA(t')I " 1~&0(~(-t'lt}'")Id~
0

00

=-
—,, IA(t')I

J ly&. (y)id&

The last integral is convergent, thus we have the
relation

valid for any Q in [0, Q,] and t' in [t„~). It is as-
sumed that

IA(t')I ~ t'", n(0;

therefore also the integral
- IA(t') I «,

s0

converges. Consequently, the integral (B6) con-

y/Q
/(t', t) d)=I xd (x)CC (x( t /t) t )-dx'

and consider

(BS)

1
E(t, Q, E)= —— —A(t')f (t', Q, E)dt'.

t

One can prove again that, at fixed t and 0, the
function E(t, Q, E) is a continuous function of E in
0- E ~ E„ that is,

verges uniformly. Lengthy but straightforward
calculation yields that the difference

If, (t'+6, Q+~) f,—(t', Q) I

If, (t'+6, Q+~) -f,(t'+|), Q)l

+ lf (t'+6, Q) -f (t', Q) I

can be made arbitrarily small for any 0 ~ 0 - 0„
It follows that E(t, Q) is a continuous func-

tion of 0 in 0 & 0 (0„ that is,

limE(t, Q) =E(t, 0},
0~0

The equality (B3) is proved.
Before starting with the proof of (B4}, we intro-

duce a new auxiliary function:

oo y/Q
d'(t tt, 0) tt(t tt) = ( i/t)l=—ittt -dt'd(t') xd (x)CC (x( t /t)' )dx). -'

z o 'o
(Bio)

Repeating the same reasoning as previously, it is easy to check that

Z/0 y/0 ~ 00

A(t ) xd (x)CC (x( t/t) )dx-dt'= ''l xd (x) A(t )CC(x( t'/t)'' ')dt') dx-
to ~S 4t

(Bll)

From Eqs. (B8), (B9), and (B3) the validity of (B2) follows.
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