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V('S —'D) = (-10.463e "+102.012e '" -2915e 4'

+7800e ")/x. (57)

V('P, ) =(31.389e "—634.39e '"+2163.4e '*)/x.

58)(
Owing to the fact that for a crystal system

4 = k~a, the V('D) potentials were used for the
crystal calculations, while the V('S) potentials
were used with plane waves. This was not found
to affect significantly the results, those with V('D)

For particles with antiparallel spin and isospin,
T, =O and S,= 0, the potential is an average of V('A)
V('P, ), V('S —'D), and V('S) or V('D).

being only about 10% higher than those with V('S).
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The field equations of a noncovariant theory of gravitation, based on the existence of a
preferred frame of reference in the universe, are applied to the homogeneous isotropic
cosmological model. One is naturally led to a particular value of the previously undeter-
mined constant present in the equations. The second-order equation determining the radius
of the universe can be integrated to give a first-order equation similar to that of general
relativity, but with an additional term that can lead to oscillations without any singular
state. One obtains a conservation law for the total energy, which is found to be positive
definite.

I. INTRODUCTION

Recently a noncovariant theory of gravitation
was proposed by one of the authors, "based on

the idea that there exists a preferred frame of
reference in the universe, determined by the dis-
tribution of matter and energy. The field equa-
tions chosen were associated with a variational
integral which depended on three constants. By
considering the case of a weak, static field and
comparing the field equations with those of New-
ton and Einstein one could fix two of the constants,
while the third remained undetermined. However,
it turned out that, in the case of a static, spheri-

cally symmetric field in empty space, the theory
agreed with the general relativity theory to the
accuracy required for comparison with the well-
known crucial tests, for arbitrary values of this
constant.

In principle, the remaining constant could be
determined from observations on gravitational
waves. However, it would be desirable to fix this
constant by means of theoretical considerations.
The purpose of the present paper is to attempt to
do this by applying the field equations to a model
of the universe. Aside from the question of the
value of the constant, such an application is of
interest since, after all, the theory was arrived
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at fx'.om cosmological considerations.

II. APPLICATION TO COSMOLOGY

In the paper referred to' it is assumed that, in
the preferred frame of reference and with a suit-
able choice of coordinate system, one can write
the line element in the form

ds'=4'dP -e'(dx'+dy'+de').

The functions 4 and 4 are determined by tmo field
equations, involving these functions and their first
and second derivatives and also the quantities

TO p IT%

mhere the tensor T"' is assumed to satisfy the re-
lation

(3)

To begin with, the field equations contain three
constants, n, P, y. However, by comparing the
equations with those of Newton and Einstein in the
case of a weak, static field one arrives at the re-
lations

P=Q +2q += 2Q ~

so that only the constant n is left in the field equa-
tions.

Let us now consider the case of a homogeneous,
isotrepic universe, the preferred system being
the comoving system. In the line element of (1)
one has

c =c(t},
e =Z/Z, (I+kr'/4R, '), Z =Z(t)

where k, describing the curvature, can be +1 or
0, and R might be referred to as the radius of the
universe. If one writes down the field equations'
and makes use of (4), one gets relations which
can be combined to give the following equations:

4 4~ 4R R—+a —,+(3+2n) +o. —,= -4''(p+ Sp),

R 42 4R 42
2

—-(1+@+3/n)—-(4+2n) +(' —n) —+3k—
42 4R R'

= 4wC'[p+ {3+6/n)p] .

Here dots denote derivatives with respect to t.
The density p and the pressure P are functions on-
ly of t, and Eq. (3) gives the relation

p+3(R/R)(p+p) =0. (7)

Let us now take advantage of the fact that 4 de-
pends only on t by introducing a new time variable
T defined by the relation

(6)

R ll g l2
C lRI

R
—(-'+ o. + 3/o. ) —(3+2n)

@,2

R' 3k
+(g -a), +2 —,=4w[p+(3+6/o. )p].

In Eq. (7) one can simply replace the dots by
primes.

Since in Eq. (9) only the function 8 occurs, the
function 4 having disappeared from the line ele-
ment, one mould expect to determine R by means
of a second-order equation not depending on 4.
One readily sees that this mill be the case if, and
only if,

(12)

It seems reasonable therefore to adopt this value
for n. Equation (11) then has the form

Rll Rl2—+2 +-—= 4w(p —p) .R R 2R

Having solved this equation for R, one can go back
to Eq. (10), which now has the form

@ll f @l2 3 R!2
2

= -4w{p+Sp), (14)

and solve it for C. One can raise the question:
%hat is the physical significance of 4 in the coor-
dinate system having the line element (9)? We
shall see below that 4 is associated with the grav-
itational energy density.

It should be remarked that, for a = -& the grav-
itational energy density in the general case is not
positive definite. Howevex, the requirement is
satisfied that a physical system emitting gxavita-
tional radiation must lose energy. '

III. OSCILLATING UNIVERSE

l,et us go back to Eq. (13). It turns out that it
can be integrated. This follows from the fact that
Eq. {7)is equivalent to the relation

Then the line element (1) takes the form

ds' = dT' —[R'/It, '(I + kr'/4R, ')']{dx' + dy' + dr*)',

(9)

where R is now a function of T.
If one now rewrites Eqs. (5}and (6) in terms of

the nem variable, using primes to denote deriva-
tives with respect to T, one obtains

C
ll 4, l2 R l2

+(I+n), +(3+2o, ) +o. 2
= -4w(p+Sp),

CR R2
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d(pR')
3Q p)R

dR
(15)

If one multiplies Eq. (13) by 2R'R' and makes use
of (15) one obtains after integration

A
4R' (16)

where A is a constant of integration.
It is interesting to compare this equation with

that given by the general relativity theory4 for the
case of the line element (9} if we take the cosmo-
logical constant A to vanish,

t. (-g)"(T '+ 8„')],.= 0 (18)

1 C' 3 R' 3CR 3 k'x'C'
00 2@2 2R2 @R 8 R 2R2

-',k(C/4 +R/R)x'
R,'(1+kr'/4R ') '

Equation (18}then gives for p, =0

(19)

(20)

Using the expression given previously, ' one finds
that with t as the time coordinate

R' 8m

R 3 R
~p (17)

One sees that, except for the slightly different
coefficient of the second term, the essential dif-
ference between the equations is in the presence
of the third term on the right-hand side of Eq.
(16).

Now, if one takes 4=1 andA &0, this term can
lead to oscillations of the universe. This will be
the case if there is a domain of values of R for
which p is sufficiently large so that the right-hand
member of (16) is positive. Since, with any rea-
sonable equation of state, for large values of R
p decreases with increasing R more rapidly than
1/R', and for small values of R p increases with
decreasing R more slowly than 1/R', one sees
from (16) that there will be two finite turning
points of R as a function of T. Oscillations will
take place between these turning points, so that
the universe never goes through a singular state.

It might be remarked that in the past one of the
authors, ' in seeking a way to obtain an oscillatory
behavior of the universe without a singular state,
assumed the existence of a "cosmic field" de-
scribed by a scalar and thus obtained an equation
for R essentially of the same form as (16}. We
see that, in the framework of the present theory,
such an assumption is not necessary.

We see that the energy (with A &0) is positive de-
finite.

One can integrate the conservation relation (23)
to obtain the solution for C . If one denotes the
right-hand constant by 2B', one finds in the gen-
eral case

C =(8'/3A)R sin (BA) 'fdT/lt +C

where C is an integration constant.
For A = 0 the solution is given by

)2
C =R' 8 dT R3+D

)

(24)

(25)

where D is a constant of integration. For B= 0,
C is proportional to R'.

If one goes over from t to T, one can write

C, I2 3RI2 6C IR / 9$
CR 32mp+ — — ——=const. 22

C R CR R

The left-hand member is proportional to the total
energy. If one eliminates p by using Eq. (16), one
obtains

C ' 3R' 13kCR' —' — + = const.
C R R'

IV. ENERGY CONSERVATION

It has been shown' that one can define the grav-
itational energy-momentum density O„„so that a
conservation law holds:
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