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A nucleon system interacting by means of the Reid soft-core potential is considered at the
very high densities which would be found in the core regions of neutron stars. The question
of nucleon localization is considered, first with a simple Wigner-type calculation and then
with a variational calculation in which the degree of crystallization is used as a variational
parameter. The conclusion is that for some range of densities between x() =0.2 F and F0=0.8
F (V//N =4m'03/3) nucleons should localize in the sense that a crystal-like wave function which
introduces particle anticorrelations by localizing the particles with respect to a periodic
lattice is preferable to a plane-wave type of wave function which has only statistical corre-
lations and that this is probably not true outside this region. There is no attempt to distin-
guish liquids from crystals, merely a gas from a crystal. The energy upper bounds resulting
from the variational calculation are also given.

I. INTRODUCTION

Densities in the central regions of neutron stars
range from near nuclear to infinite. Somewhere
in this range of densities it would seem likely that
the system would crystallize. In one of the
simplest high-density approximations, nucleons
can be described as classical hard spheres with
a 0.4-F radius. The computer simulations of this
system by Wood eI; al. ' indicate a gas-crystal
phase change at V,/V=0. 667 which corresponds
to an interparticle spacing of r, =0 5F [N/V.

=3/(4mr, ')]. This is not a realistic potential at
these densities; a better one is Q, V; exp( p, r)/r-
which at extremely high densities behaves like a
Coulomb potential. signer' has shown that the
electron system (to which this corresponds) also
has a "crystalline" region at low density (ro» as,
the Bohr radius). The nuclear "Bohr radius" is
of the order of 0.03 F (Reid' soft-core potential),
so that a relatively high-density nuclear system
can still behave like a low-density electron gas.
The picture which is here considered then, is of

a low-density region in which the nucleons make
up essentially a hard-sphere gas, an intermedi-
ate region in which they make up either a high-
density crystal of the hard-sphere variety or a
low-density electron crystal, and finally a very
high-density region in which the system is like a
high-density electron gas. The crystallization
considered here is localization in the sense that
no attempt is made to distinguish a liquid from a
crystal. All comparisons are between gas and
crystal.

This paper treats the question of nucleon
localization in three sections: The first is a
simple argument along the same lines as the
Wigner' analysis of the low-density electron gas.
The second is a variational calculation of the
ground-state energy, first in the standard manner
with plane waves and then with Mathieu functions
which allow the degree of crystallization of the
system to be a parameter. These variational
calculations are strictly Hartree-Pock in that
each particle is assumed to move in the average
field of the others. The third section is an at-
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tempt to extrapolate from these results to deduce
the direction further correlations might be ex-
pected to move the system. The electron system
is treated in tandem with the nucleon system in
order to provide both a check on the analysis and
a better understood system to refer to. The
Reid' soft-core potentials after suitable averag-
ing (see Appendix) were used as a kind of worst
possible case. The only way that the system can
escape crystallizing is for the hard-sphere gas
region and the high-density electron gas region to
overlap, and the Reid soft-core potentials repre-
sent as Coulomb-like a system as is consistent
with nuclear data. Harder cores, by making it
more advantageous for particles to avoid being
close together, would be expected to make the
system like localization even more.

II. LOCALIZATION IN A SIMPLE-

WIGNER- LIKE APPROXIMATION

The Wigner-Seitz approximation that the unit
cell can be replaced by a sphere of radius r, with
the same volume is used, the spheres are as-
sumed not to interact, and it is assumed that the
particle density outside a given sphere can be ap-
proximated by p =3/(4mr, '). Then the single-
particle Hartree wave function is (I =2m = 1)

[P'+ V(r,.)]u, (r, ) = e,.u,.(r,.),

v(r, ) =g lu, (r)l2v(r, . —r) d'r

v(r, —r) d'. r.
)rJ & ro

For small displacements and Yukawa potentials
[v(r) =exp(-pr)/r] this can be expanded as

Noting that r, = r,/a~ = ro(me /5') = ~e'ro and that
1 Ry = me4/(28') = —,'e4 in the customary electron-
gas units, it canbe seenthat, as p-0,

&u' - 33e'/ros = es/4r

so that
—,'~- (3/r. ) —,'e'

(4)

I.O

in agreement with the electron-crystal result' al-
though of course for the electron system the back-
ground is needed to cancel the infinity in V(0}. In
the nucleon system with v(r) =Q; V& exp( p.;r)/r-
and 5'/2m=20. "14 MeVF', V(0) and uP are given by

V(0) = (3/r, )g V; exp(- p, ;ro)(1+ p;ro)/(p. ;ra)', ,

(5)
&o'= (2/ro') p V, exp(- p, ,.ro)(1+ p;ro)/. 20 74 M. eV F'.

i

The appropriate combinations of Reid potentials
for use in the above is discussed in the Appendix.
A measure of the spread of the single-particle
wave function and hence of the self-consistency of
this approximation is provided by (r')/r, '= 3/(~ra').
This is shown in Fig. 1. As expected, there is a
minimum at ~,= 0.4 F and a region up to about
0.8 F for which the wave function can be reasonably-
well localized. The energy estimate is shown in
Fig. 2. There is a mild dependence on whether the
system is taken as normal (neutrons and protons
of both spins), all neutron, or all neutron and fer-
romagnetic which enters into the determination of
the potentials. Below so= 0.2 F, the all neutron

V(r) = V(0)+ ,' r'(V'V-), ,

V(0) = 3 exp(-pr, )(1+pr, )/(p, 'ro'},

(v'V)o= p.'V(0) = 2uP,

so that the single-particle equation becomes

[p'+ V(0)+-,'(u'r']u, .(r}=e,u, (r),

(2)

N 0

0.6

which is the equation for a harmonic oscillator
with ground-state eigenvaxues

e, = V(0)+-,'(u.

The energy of the system is then given by

&=Z e; ——g lu;(r, )l'lu, (r.)l'
i 2 ivy'j

x v(r, —r, ) d'r, d'r,

A

0.4-

0.2-

00 0.4 0.6
r (F)

0.8 I.O

e; ——,'p2Q
i /rJ & ro

=N[—,
' V(0)+ 2&v].

v(r) d'r FIG. 1. (r )/rp vs t'p from the simple Wigner-like
calculation of Sec. II. Small values of (x )/rp are nec-
essary for the calculation to be self-consistent.
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crystal in the Wigner-like approximation
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system is slightly lower, while elsewhere the nor-
mal system is lowest At r, =.1.0 F where (r')/r, '
indicates self-consistency problems, the energy
estimate is 96 MeV/particle instead of -16 MeV/
particle which may give a handle on the expected
accuracy. The estimates are not variational, and
hence are not upper bounds to the energy; that
comes in Sec. III.

III. VARIATIONAL CALCULATIONS

A. Plane Waves

A straightforward method of approximating the
ground-state energy of a many-particle system is
to assume that the single-particle wave functions
are plane waves, to construct from these a proper-
ly symmetrized many-body wave function, and
then to use this to calculate the expectation value
of the Hamiltonian. This is the standard plane-
wave Hartree-Fock approximation. Since the only
approximations are made in the wave function, it
is variational, which guarantees that the energy
arrived at in this manner is an upper bound to the
ground-state energy of the system. The game in

this section will be to use, instead of plane waves,
single-particle wave functions which reduce in one
limit to plane waves and in another limit to crystal-
like wave functions, so that the expectation value
of the energy can be minimized with respect to the
degree of crystallization present in the trial wave
function. It should be noted at the outset that the
concept of a single-particle wave function implies
that each particle moves in the average field of
the others which is a serious limitation in the types
of trial functions included in this method. In order
to provide an example for the calculation to follow,
let us first consider the plane-wave Hartree-Pock
approximation.

The Hamiltonian and wave function are

a=+- V, '+-,'g v(r, -r,.),

p = (I/N!)'~'det[y (r, )].

In these equations v(r) is the sum of Yukawa
potentials mentioned earlier, and q„(r,)is the.
single-particle wave function

ef(r;) = (I/fl)'"e'"'~o. (&)r(n),

(6}

(c1r14)/~ = ,*p /.:, -

(C1V, 1
)C/X =[3/(2r, ')]g V;/~, ",

while the exchange part of the potential can be
given as

(8)

(c1v,„1c)/x=-(3/~r, )pgv, f„„(u,r,/p). . .
i

The indicated function is an integral which was
evaluated numerically for a number of values of
y, and the results fit to an inverse polynomial
which reproduced them to three significant figures
for y = 1.25 and somehat less accurately beyond
that'

(9)

fH„(y}= dxxe ""[(sinx-xcosx}/x']'
0

1/(4. 000+ V.996y + 3.948y'+ 1.432y~).

(10)
With ir /2m= 20.V4 MeV F' and E in MeV and ro in

with a(-,') = (0) and o.(-~2}= (', ) in spin space, and y
the same in isospin space. The largest value of
k is related to the density through

kr =(9g/[2 x(2) x(2)]}'I'/ro= p/ro,

with both (2)'s present for a system with both spins
and both isospins, one (2) for a system with only
one spin or isospin, and neither (2) present for a
system of only one spin and only one isospi. n.

The expectation value of the kinetic energy and
of the direct part of the potential energy can be
found analytically as
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F, this yields expectation values of the energy for
the following three possible cases:

Normal (neutrons and protons, both spine),

(@~H ~c')/N = 28. 9/x~' +320 4/. r~'

—(1.455/r, )Q V,f„„(0.6565r,u,.);

(11)

neutron (all neutrons, both spina),

(4 ~H(4) /N = 45.8/r, '+ 313.4/r, s

—(1.833/ro)g V;f„„(0.5211rou, );

(12)

ferromagnetic (all neutron, spine aligned),

(C IH~C)/N = 72.8/r, '+415 1/r,.'
—(2.309/r~)p V,fHF (0.4133r~u,.).

(13)

The differences in the values-of the direct part of
the potential are due to the different potentials
implied by the different spins present. Of course,
since the exchange effect is only between particles
of the same spin and isospin, and since the kinetic
energy does not depend on the potentials used,
these terms change only because of the (2}'s dis-
cussed above. The results are plotted in Fig. 2.
The normal wave function does not give the lowest
upper bound to the ground-state energy anywhere
in the region shown (0.2&r, &1.2 F); instead the
lowest bound is given by the ferromagnetic wave
function. This is somewhat tentative evidence in
itself in favor of nuclear crystallization as it is
analogous to the situation in the crystal region of
the electron gas where the lowest bound to the
energy in a similar calculation is given by the
physically unreasonable ferromagnetic wave func-
tion instead of by the normal wave function, the
difficulty there being resolved by the fact that the
true wave function is a crystal wave function.

B. Mathieu Functions

In order to use the above method with a crystal-
line wave function, a method is needed for gen-
erating orthonormal single-particle wave functions
from which a many-body wave function can be
constructed. To that end, let V, (c, x)=csin'(vx/a)
be a generating potential whose sole purpose is to
generate crystal-like wave functions. c is an arbi-
trary parameter which will ultimately be varied to
find the energy minimum. The single-particle
wave function then is

y(k, c, x)= ff q(k, , c, x, )n(q)y(&),
'f s:y

with y(k, c, x) the solution to

[-S'/Sx'+ V~(c, x)]cp(k, c, x) =E(k, c)y(k, c, x),

(14)

and it will be noted that by virtue of being non-
degenerate eigenfunctions of the same equation
y(k, c, x) and y(k', c, x) are orthogonal.

In the limit as c goes to zero, y(k, 0, x) = e'~,
and the wave function becomes the plane-wave
one above. For ea0, near the origin the genera-
ting potential is given by

Vg(c, x) = c[(vx/a)' ——', (wx/a)'+ ];
near any other point, substitute x- na in the above.
For particles sufficiently localized that x/a«1,
this reduces to a harmonic-oscillator potential so
that the generating potential wiQ give a harmonic-
oscillator- or crystal-type single-particle wave
function in this limit.

With a little manipulation, the equation for y be-
comes

[-&'/By'+ a(k, q) —2q cos(2y)]y(k, q, ay/v) = 0,

(15)

with

q = (-a'/w')-, 'c and a(k, q}= a'E(k, q}/r'+ 2q,

which is Mathieu's equation. A solution to this
equation is

y(k, q, uy/v) = (I/I }'~me'~'Qc(r, k, q)e'2"'. (16)

periodic boundary conditions imply that k =2na/I,
which in turn implies that for large L,
Qa-(L/2a)f dk The funct. ions are automatically

orthogonal and will be orthonormal when we re-
quire the p„c (r, k, q) = 1.

The only difference between these functions and
the Mathieu functions normally encountered is
that k is not integral. The method of solution using
successive approximations and continued fractions
described in MCLachlan' and elsewhere is still
applicable. This method was incorporated into a
set of computer subroutines which for a given
value of q and k rapidly calculated the value of
a(k, q) and of the c(x k, q)'s for as many r values
as desired. In practice the series was rapidly
convergent so that only five to ten values of x
were ever needed.

In addition to the orthogonality produced by the
differential equation, there is that due to spin and
isospin. These were utilized by an arbitrary fix-
ing of the lattices around which the generating
potentials are built. The case with all spins paral-
lel, of course, has the simple cubic-lattice
structure of the generating potential in three
dimensions; with both spins but only one isospin



the structure is that of two generating-potential-
supplied cubic lattices of opposite spins, one in
the body-centered position of the other (bcc lat-
tice); for the case with both spine and both isospins
there are four cubic lattices, three of them in the
face-centered positions of the fourth (fcc lattice),
where in each case a is the lattice constant.
The reason for fixing the spins in this manner is
that it allows us to fill each set of states up to
the same value of 0„, and therefore to use the
same numerical work for all three cases. In the
plane-wave limit where each single-particle state
occupies the entire volume, this fixing of the lat-
tices has no meaning and no effect on the energies
calculated, while in the cxystal limit these are not
unreasonable ways to fix the spins. The obvious
overlapping of the generating potentials in the bee
and fcc lattices emphasizes the fact that these are

not physical potentials, but rather enter the prob-
lem only to produce the wave functions.

Proceeding now in the same way as for plane
waves, the expectation value of N is found from

9'&= P P&q(h, q, x)lq(k, q, x)&
C~n

(e/'e)g jd'a (l "I)
L, q

Using (L/a)' = N„ the number of particles of a
particular spin then becomes

~=N, g-' ja (,,8

which implies that the Fermi volume must be 8.
This fixing of the Fermi volume at a definite value
means that the connection with ~, now comes from
the relation between a and r„rather than through
k~ and ~, is above.

The kinetic energy for any one spin is

&C
~
T)C» = (1T/a} /3&q/(k„q, x, ) (-8'/s(x7//a) ~q((k„q, x, )&,

k

which, using the equation fox q, becomes

= -3(}}/a}'Q[&q(k„q, x,) ~2q cos(2}(x,/a) - a{k„q)~{/ (k„q, x, )&]

I-/2
3(s/s}2+ Qc(~ k q)c(s k q) dx (e+ $2x(l/(( + e-f 2x(('/(()~'(2{8 t}x((/((-'

which with the fact that 1 ~//22 dxe' '/'= L5, and a little manipulation becomes

&4~ T~C» =3(n/a)'g [iz(k„q) -2qgc(r, k„q)c(~+1, k„q)],
k r

and numerical methods will be used to go further,
The potential energy from the interactions between particles on the same cubic lattice is given by

&@IT/I@&=l Z [&q(l, q, r}q(k', q, r')lv(r-r')lq(l, q, r)q(i ', q, r')&

(is}

—&q((k, q, r)q((k', q, r')
~
v(r —r') iy(k', q, r)cp(R, q, r')&].

Consider the first, the dix'eet, part of the potential first:

Using the fact that the integral over ~+ ~ is IA, as above, this can be put in the form

(e~ ( (n(»r/a e )jxd4'xU(xa) ju'ajd'(/nf(k„k', , x),
'

(2l)

where

f (k, k', x) = Qe"" E(v, k)E(v, k'),

or equivalently for spherically symmetric potentials,

=cocos(2}}xv)E(v, k)E(v, k'),

with

E(v, k) =pc(s, k, q)c(v+s, k, q); (23)
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and again this will be treated further.
In a similar manner the exchange part of the potential can be written as

1 L~2 dR;
&e~V,„~e)=-2 g d' ()Q,*( p (, k;, q) (t, k,', q) (u, k„q) (, k,', q}

-L!2 s, t, u, v
2

x exp[(-iwx, //a)(k, —k,'+ s —t+ u- v)]exp[iwR;(-2s -2t+2u+2v)]),

(24)

which simplifies much as did the direct potential on using the Kronecker 5 function with supplementary
functions somewhat more involved than in the direct potential defined as

$'(v, k,'., k,.) = gc(t, k,', q)c(t+ v, k, , q)
t

f,„(k,, k,', x,.) =+exp/i2wx, [-v+-,'(k,'- k, )pE'(v, k,', k;), (25)

which, using spherically symmetric potentials, is equivalent to

f,„(k, k', x) =2+(cos{2wx[-v+ 2(k'- k)])7'(v, k', k)+cos(2wx[-v+ —,'(k'+k}DF'(v, k', —k)}, (26}

so that

(6(t', (lk) = (N /2x64) -f d'xv(xa) fd'k fd'2 Q/, „(k„k;, ,)
i

(2't)

which will be treated further.
In principle, now the functions f and f,„can be

determined and a numerical scheme found to do the
necessary integrals so that, for example,

G,„(r)=coast fdG fd'k f6'2'n/, „(2,, 4,', x)
(28)

can be found which would give

(C~V ~O)= drv(ra)G (r)r'.
0

In fact, the limits of the k integrations have not
been determined, only that the volume is 8. Also
the various functions have discontinuities at k=n,
where n is any integer, and in particular they have
discontinuities at k =+1. These discontinuities are
the mathematical manifestations of the energy-
band gaps found in crystals and, as might be ex-
pected, the single-particle states with k=1' are
higher in energy by an amount proportional to the
degree of crystallization than those with k=1 .
This leads to the suspicion, confirmed by Monte
Carlo integrations of the above for the case of an
electron system, that for q values large enough to
be evidence for crystallization, the appropriate
Fermi surface is a cube with -1«k,. &+1. It should
be noted that, while this is the only choice for the
system with only one spin and isospin, it is our
lattice choice which makes it also the choice for
the other cases. In addition to the obvious simplifi-
cation in making the three cases have the same

Fermi surface, there is a suspicion that the max-
imum gain from crystallization is for those single-
particle states just below the discontinuity which
will get the most filling with these lattices.

For a cubical Fermi surface, the above integral
is considerably simplified owing to its separability.
For example,

d k d k' k], k], x]

f dk; f dk ,/(k, k,'. , x,.)',
or defining

1
F(v}= F(v, k),

-1

We flIld

1 2

Peas(2xx, ) f dktv(v, k)
V -1

(29)

(30)

G(r, )= —,
' icos. (2wr, v}F'(v). (32)

Similarly

(4 (tr„(~k) = ( N/2) f r drv(ra) fdQnG„-(r ),

(33}

(6
l Va(k) = (N /2) fr'dr v(ra) fdG QG(r ), (2 1)

i

where
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where

1 1
G,„(r,) = — dk dk'f, „(k, k', r,.), (34)

I.2

which is somewhat more difficult in that it in-
volves a double numerical integration instead of
the single one for the direct term above.

The potential energy is now in the form

(o)v)@) = (N/() Jr'drv(~a)

I.O

0.8

x dQ Gx, — dQ G,„x,
i

J d~ e-r a e-(( /&~ (()./2e r((/2~-
0

so that, for example, with v(ra) =P, V, e "&"'/ra,

(36)

(c)Vd)e) =+V, (2/~'")'Jt d« "' ' "
0

3
x dxe "~Ox

(3'1)

Furthermore

dxe " G(x)= — E'(v) dxe " " cos(2rrxv)
4

Since the terms coming from the interactions of
one lattice with another can be shown to be
trivially related to G(r,. ), the above is the potential
in the form of a single-particle potential times a
correlation function which is the result of doing
the angular integrations. Correlation functions,
which will be of interest in the extrapolation sec-
tion, are shown for the normal (fcc) nucleon systen.
along with that for ferromagnetic plane waves in
Fig. 3. These show the expected oscillations
typical of crystalline wave functions, and it is
fortunate that all of the separability coming from
the type of wave function and cubical Fermi sur-
face has not yet been exploited, since the ~ inte-
gration with these correlation functions would
converge only for very large values of r.

The spatial integral for (C'~ V~4) is already in
separable form except for the part involving v(~a}.
For Yukawa potentials this can be made separable
by using the fact that

0.4

0.2

0.4 Q.S
r/a

I.6

FIG. 3. Correlation functions for the normal (fcc) nu-
cleon crystal for various values of q along with that of
the ferromagnetic plane-wave system.
ferromagnetic plane wave, q =1.0, ——
q =2.0, — q =3.0 (gives minimum energy
bound for ra=0. 6 F).

Ed(y} = 4+E'(v)e— (40)

gives

« i Vdi4) =&g(~/e) dyyv(ye}Ed'(y) (4l)
0

The interaction of a lattice with one displaced
from it differs from its interaction with itself only
by a —,

' a which appears in q)'(k, , q, r, + —,'a) and then
in G(r, + —,') which finally results in

G(r; + ~) = Q[cos()(v) cos(2mr; v)E'(v)

+ sin(n v) sin(2)) r, v)E'(v)], (42)

where the sine terms will integrate to zero for any
symmetric potential and the cos(wv) is just (-l)",
so that

1(p1 /2/~}PE2(v)e[-(2ml) /4]

so that letting y =1/n, defining
22

v(y) g V e-(((g9/2)

(38}

(39)

(43)

«'IVb~l@&=&.(&/e) dyyv(ye)&. '(y},
0

(44)

2
E.(y) =-.Q(-&)"E'(v)e ("~) .

Then for the interaction of the direct lattice with
the bcc lattice
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n=1
n=2
n=3
n=4
n=5
n=6

15.93
2,36

-52,25
57.46

-20.99
1.60

—0.60
-2.98

-160.20
794.73

-957.39
334.20

24.20
—252,62

998.49
-3015.89

3599,61
-1311.57

-45.38
-275.42
3492.57

-3438.79
-1695.23

1689.40

72.53
1264.82

-11842.68
17485.41
—5615.97
-782.88

-99.13
—941.27

11062.66
—17 647.76

6956.61
129.31

51.18
135.19

-3283.88
5498.40

-2135.09
-81.22
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TABLE II. Coefficients A~ in the polynomial expansion f(((I, y) = Q t
& Q A~ ((I/O) (y/2)" valid in the region

0 ~q ~ 5, 0 ~y ~ 2. The standard deviatjon of the polynomial from the points to which it was fitted is 0 ~0.03 in the re-
gion 0 ~y ~ 0.4, 0 ~q ~ 5; fT ~ 0.08 in the region 0.4 «y ~ 2, 0 ~@~5; the sum of terms is -1.41.

-82.58
-148.66
1089.55

—1403.49
470.30

76.51

-144.02
1920.77

-10 936.86
20 697.47

—15277.80
3704,02

1723.02
-7692.94
34 714.55

-66 899.73
50 975.86

-12 670.65

-4161.87
14 626.38

-54 257.45
99201.36

-71401.62
15 695.34

4115.43
-13211.60

42 137.8()
-71053.32

45 798.54
-7505.51

-1466.76
4525.82

-12896.35
19862.81

-10 929.96
804.23

very well for reasonable numbers of points.
In the numerical work it was convenient to use

f...d(% y) =yf I",'(-0, yl&)'++a'(e, y/s) —l], (48)

f;(e, y)=yf& (ay/s) —ll,

ff,.(e, y) =y[&&'(e, y/s)&d(/f, y/s) —l].
This means that ( V,}=-,'p J„'d'r v(r) has been ex-
plicitly subtracted out and must be added on later
to get the total energy so that, for example, the
potential energy's expectation value in the case
where there is a single isospin and both spins is

(y lyy Io) =-((/sw) I dy[v (ya/w)f q(yy)

+ v, (ya/s)f, (q, y)]+(I/b},

(5l}
where some of the spin and isospin dependence of
the soft-core nucleon potential fits can be taken
into account through differences in v, and v, . Ex-
amples of these functions are shown in Figs. 4 and
5 and polynomial fits to them are given in Tables
I-IV. This was done as follows: The e's and a' s
were generated for some given value of q and for
as many k's as were needed in the integrations
which were aQ done by the midpoint trapezoidal
rule (the only' exception to this was in the inte-
grals needed fox' the cox'x'elation functions which'
were done by five-point Gaussian integration),
then for about twenty different values of y, the

integrals needed for E,„(y), E~(y}, and F, (y) were
performed, and these results printed out. From
these the functions which actually are needed couM
be determined for various values of q and y. The
accuracy of these points was determined by de-
creasing the mesh size for selected ones. As ex-
pected from the nature of the integrand, the ac-
curacy was either not at all or very good for E,„
as mentioned above and much better than that for
I'd and I', which were determined at the same time.
The polynomials were fitted to these points by a
two-dimensional least-squares fitting routine in
which the points at y = O. I and 0.3 were weighted
10, those at 0.5 were weighted 3, at 0.7 were
weighted 2, at 0.9 were weighted 1.5, and for larger
values of y wex'e weighted 1. This we1ghtlng was
done so that the products off and v would have as
constant an error as possible; the points them-
selves were an order of magnitude more accurate
than the fit; they were just too few to be used
directly. The tables are the result of fitting 156
data points with 42 or fewer constants. Beyond
y =2, only f,„(y)=yZ, „'(y) is needed since the
others go exponentially to zero.

The kinetic energy was determined using Eti. (19)
at the same time as the E's above with the result
that

(0 i V'i0) =(3i.25/r, ')fc(q) MeV F'

(normal nucleon crystal fcc),

TABLE III. Coefficients A in the polynomial expansion f& ((I, y) =+ 6 g t ~ ((I/5)y) (y/2)y( valid m the region
0 «(I «5, 0«y «2. The standard deviation of the polynomial from the points to which it was fitted is o «0.01 in the re-
gion 0 ~y ~ 0.4, 0 ~q ~5; 0.~0.03 in the region 0.4 ~y ~ 1.0, 0 ~q ~ 5; o ~0.07 in the region 1.0 ~y ~ 2.0, 0 ~q ~ 5, The
sum of terms is 0.32.

-18.22
-0.81
19.71

209.39
-415.61

296.41

-388.16
-284.82
5256.14

-11821.09
11228.69
-4009.05

1826.64
1341.60

—28 686.11
70162.07

-70 618.04
26092.66

-3435.37
-2165.50
56 537.24

—145430.93
151406.23
-57 171.64

2974.53
1484.29

—49 173.46
130 748.48

-138963.05
53 174.08

-975.71
-360.84

159O7.O2

~3 298.79
46648.11

-18003.77
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m=o m=2

TABLE IV. Coefficients A in the polynomial expan-
sion g~(q, y) =g~ gs A (q/5)~(2/y)" valid in the
region 0 ~q ~ 5, y ~ 2 with a standard deviation from the
calculated points of 0=0.5. In the region y ~2, O~q~5,
f~ is given by f~(q, y) =-44.545/yt+g~(q, y)/y'. The
sum of terms is 8.5.

—8

0

O

2
lO

I I 1 I I I I I I I

n=1
n=2
n=3

18.8
33.6

-24.0

-143.2
3.1

74,1

280.6
-131.5
-64,9

-157.6
104.2
15.3

l4

12

(y~ T~y) = (49.60/r, ')K(q) MeVF'

(all neutron crystal bcc},

(y ~ T~ y) = (78.68/r, ')K(q) MeV F'

(ferromagnetic all neutron crystal cubic), with

K(q) = 0.9771+1.8210(—', q}+35.7420(—', q)'

-116.0312(—,
' q)'+ 177.7894(-,' q)4

-134.5125(—', q)'+ 40.0941(-',q)'+ 0.0025,

valid in the region 0 & q & 5.
The energy upper bounds are given in Fig. 2.

An estimate of the accuracy found by assuming
that the first neglected polynomial times o is the
error in the functions being integrated gives an
error estimate of about 2 MeV which is negligible
compared to the energies being calculated. A

sample of the integrand actually used in E(l. (51)
is shown in Fig. 6.

The energy bounds have also been calculated
for the electron gas system with the results
shown in Fig. 7. The values of q;„ for both the
nucleon and electron systems are shown in Fig. 8.
In the electron system, it is possible to use per-
turbation theory to take into account the differences
between the generating potential and a harmonic-
oscillator potential and calculate explicitly the
value of q expected to minimize the energy of an
electron crystal (dashed line in Fig. 8).

IV. CONCLUSIONS (EXTRAPOLATIONS)

The correlation function of the normal (fcc) sys-
tem for various values of the crystallization pa-
rameter, q, along with that for ferromagnetic
plane waves is shown in Fig. 3. The correlation
functions are not particularly useful for computa-
tion owing to their slow damping with r; however,

they do give us some ideas about what the wave

functions are trying to say about the particles and

how to extrapolate beyond Hartree-Pock. The
first expected change in going beyond Hartree-Fock
is that since we are dealing with repulsive po-

& 8

O 6

6 4

0
O.l 0.5 0.9 l2 l.7 3.0

FIG. 6. Sample of the functions appearing in Eq. (51).
V(y) =P; V, exp[-(u~ya/2)tl as in Eq. (29). V; and u;
are from the Reid potential and a is the lattice constant
determined by rp. 'V'111&(y) = f,„&(q=1.0,y)V(y)/8, and is
the first of the integrands in Eq. (51), shown here for
q =1.0. ---——— rp=1.0 F, t p

=0.5 F.

tentials, the particles will try to stay out of each
other's way, and hence lower the value of the cor-
relation function for small separations. The nor-
mal plane-wave function (not shown) is 0.75 for
zero separation and therefore stands to make, and
certainly needs, the most improvement. This is
too much for us to guess at, so the ferromagnetic
wave function whose correlation function is zero
at zero separation will be considered to represent
the system as a gas despite the fact that the cor-
rect wave function is probably not ferromagnetic.
The comparison of interest is then between the
energy bound given by the ferromagnetic wave
function and that given by the crystal wave function
for the normal system with q= 3 (see Fig. 9 for
the energy comparison). The change expected in
the ferromagnetic system upon going beyond Har-
tree-Fock is that it will become a normal system
thereby lowering the kinetic energy (-200 MeV/
part at r0=0.6 F) towards the kinetic energy of the
normal plane-wave system (80 MeV/part at r,
=0.6 F) and a slight lowering of the correlation
function for small separations, r/a=0. 2, but not
much else. The change expected in the crystal
wave function with q=3 is a lowering of the coz-
relation function between r/a=0 and r/a=0. 3.
Since the potential in this region is on the order
of 1000 MeV and since the crystal correlation
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FIG. 7. Energy results for the electron system. normal plane-wave system, ferromag-
netic plane-wave system, ~ ~ ~ - ~ ~ ~ ferromagnetic crystal, -------- normal crystal, ————— Einstein crystal
(not variational) which is the original Wigner calculation (Ref. 2) for this system, ~ - Carr's result which
represents a detailed crystal expansion of the system with the first terms being those of Wigner (not variational).

function shows the most room for improvement,
it would be expected that calculations going be-
yond Hartree-Fock would lower the potential
energy of the crystal wave function more than that
of the ferromagnetic wave function by enough
extra to more than account for the fact that the
ferromagnetic wave function's kinetic energy
would also be lowered. In short, one would ex-
pect the crystal-wave-function energy bounds and
the gas-wave-function energy bounds as repre-
sented by the ferromagnetic wave function to be
both lowered, but roughly by the same amounts.
Especially in extrapolating, it should be noted
that liquids are a lot like crystals. The long-range
correlations may well be the first to go in any
subsequent improvements of the wave function.
The comparison is really between the type of cor-
relations in a liquid or a crystal, here represented
by a crystal-like wave function, and the statistical
plus, on extrapolating, the purely repulsive cor-
relations of a gas of plane waves.

For r, greater than 1.0 F, the lowest energy
bound is given by the ferromagnetic wave function.
This agrees with the crude crystal calculation
which showed that the value of (r')/r, ' becomes
large in this region. For r, greater than 1.0 F,
the system is undoubtedly not crystal-like.

For ~, between 0.2 F and 1.0 F, the lowest en-
ergy bound is given by the normal crystal. For
example, at ~, =0.6 F, the crystal wave function

gives an energy bound of 640 MeV/particle, while
the ferromagnetic wave function gives 900 MeV/
particle. Comparing this with the better-under-
stood electron system at ~, = 20, where it is com-
monly believed to be crystalline, the crystal
bound there is -0.040 Ry, the ferromagnetic
bound -0.035 By, and Carr's' calculation of the
actual energy -0.044 Ry. There is far more
change in the nuclear system's energy bound than
for the electron system. Furthermore, the
energy lowering is more than could be accounted
for by giv'ing the ferromagnetic wave function the
kinetic energy of the normal wave function. The
energy lowering has come about because the sys-
tem has been. able to pay -the price in kinetic
energy to lower the value of the correlation func-
tion between r/a=0. 2 and r/a=0. 6 and still show
a profit. The system is undoubtedly trying to
localize itself in this region. It is worth noting
that the peak improvement (Fig. 3) is at the
value of x, for which classical hard spheres would
crystallize. '

For r, =0.2 F, the lowest energy bound is still
given by the crystal wave function although this is
rapidly changing, but more ominously the fer-
romagnetic system is no longer lower than the
normal plane-wave system. The norma1 system,
moreover, stands to gain a lot when calculations
beyond Hartree-Fock are included. The trading
of kinetic energy (going as 1/r, ') for potential
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FIG. 9. Energy bound for the normal nucleon crystal,
E&, compared with that for the ferromagnetic plane-wave
system, E&.

APPENDIX
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FIG. 8. qmm vs xo and r, for the nucleon and electron
systems.

energy [now going as about 7000 exp(-4. 9r,)/r, ]
may no longer lower the energy. This is the con-
dition for the beginning of the region correspond-
ing to the dense electron gas, not crystalline.

The energies compared here are all variational,
and hence upper bounds to the true energy. They
have been fit to polynomials so that in the region
0.2 & r, - 1.0 F with r, in F the energy bounds are

To get numbers, it is necessary to have a poten-
tial. The potential used here is the Reid soft-core
potential. ' This potential is state-dependent which
for nonsymmetric states means that it has a non-
symmetric part which will average to zero in the
many-body problem considered here. For example,
between particles with parallel spin and isospin,
T, = 1 and S,= 1, the relevant potentials are V('p, ),
V('P, ), and V('P, -'E,). The dependence on S»
and L ~ S was removed from the first two by as-
suming it to be that explicitly given in the third,
and the results averaged to give

U('A) = (3.488e " —36.04e '"+134.32e '"

-573.74e '* —690.1e '"+6887.3e '*)/x,

normal nucleon gas (fcc), x=rx0.7 F
(54)

E 3550 1036't 10317
r '~2

0 ' 0 Q

3793 152+,g, —,+ 0.5'Fo) MeV;
ro ro

normal all-neutron gas (bcc),

E 2196 6371 6055
r0 Q 0

1844 184+,&, +, +0.5'4) MeV.
ro ro

(52)

(53)

+6484.2e '")/x. (56)

For particles with parallel spin and antiparallel
isospin, T, =O and S,=1, the space state may be
symmetric or antisymmetric so that the potential
is half V('A) and half V('S-'D),

For particles with parallel isospin and antiparallel
spin, T, = 1 and $, =0, the states are half triple-
antisymmetric and half singlet-symmetric. The
triplet potential is V(A), while the singlet is ei-
ther Reid's V('S) or V('D):

U('S) = (-10.463e "—1650.6e '*+6484.2e '")/x,
(55)

V('D) =(-10.463e "—12.322e 2" —1112.6e ~
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V('S —'D) = (-10.463e "+102.012e '" -2915e 4'

+7800e ")/x. (57)

V('P, ) =(31.389e "—634.39e '"+2163.4e '*)/x.

58)(
Owing to the fact that for a crystal system

4 = k~a, the V('D) potentials were used for the
crystal calculations, while the V('S) potentials
were used with plane waves. This was not found
to affect significantly the results, those with V('D)

For particles with antiparallel spin and isospin,
T, =O and S,= 0, the potential is an average of V('A)
V('P, ), V('S —'D), and V('S) or V('D).

being only about 10% higher than those with V('S).
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The field equations of a noncovariant theory of gravitation, based on the existence of a
preferred frame of reference in the universe, are applied to the homogeneous isotropic
cosmological model. One is naturally led to a particular value of the previously undeter-
mined constant present in the equations. The second-order equation determining the radius
of the universe can be integrated to give a first-order equation similar to that of general
relativity, but with an additional term that can lead to oscillations without any singular
state. One obtains a conservation law for the total energy, which is found to be positive
definite.

I. INTRODUCTION

Recently a noncovariant theory of gravitation
was proposed by one of the authors, "based on

the idea that there exists a preferred frame of
reference in the universe, determined by the dis-
tribution of matter and energy. The field equa-
tions chosen were associated with a variational
integral which depended on three constants. By
considering the case of a weak, static field and
comparing the field equations with those of New-
ton and Einstein one could fix two of the constants,
while the third remained undetermined. However,
it turned out that, in the case of a static, spheri-

cally symmetric field in empty space, the theory
agreed with the general relativity theory to the
accuracy required for comparison with the well-
known crucial tests, for arbitrary values of this
constant.

In principle, the remaining constant could be
determined from observations on gravitational
waves. However, it would be desirable to fix this
constant by means of theoretical considerations.
The purpose of the present paper is to attempt to
do this by applying the field equations to a model
of the universe. Aside from the question of the
value of the constant, such an application is of
interest since, after all, the theory was arrived


