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Scalar-tensor (ST) analogs of the Einstein pseudotensor, the von Freud superpotential, the
MgA. ler superpotential, and the Komar vector are derived and used to form conservation laws
appropriate to any version of the ST gravitational theory. When applied to a ST central-mass
field, the conservation laws are found to yield correct values for total energy and momentum.
The scalar field is shorn to affect, in general, not only the form of the conservation laws
but, through its symmetry properties, the identification of physically significant conserved
quantities. It is pointed out that ST-conserved complexes have units of energy and momen-
tum only in certain versions of the theory (e.g., the Brans-Dicke version).

I. INTRODUCTION

Since Einstein first published his theory of grav-
itation, a number of modifications have been pro-
posed which purport to incorporate into the theory
certain "desirabl" features lacking in the original
formulation. The most seriously considered of
these modifications to date has been the scalar-
tensor (ST) gravitational theory proposed in vari-
ous forms by Kaluza, ' Einstein and Bergmann, '
Jordan, ' Thiry, ~ and Brans and Dicke. ' During the
past decade, extensive examination of certain as-
pects of the ST theory (e.g., cosmology, gravita-
tional red shift, deflection of light, planetary mo-
tion, etc.) has revealed significant points of simi-
larity and contrast in ST and Einsteinian gravita-
tion. Work in the important area of ST conserva-
tion laws, however, has been meager, "and the
results obtained were either limited in applicabil-
ity or incapable of yielding correct global con-
served quantities when applied to simple ST fields,
or both. -It thus seems appropriate to consider
here the derivation of correct ST conservation
lairs applicable to any version of the ST theory and
the related problem of the symmetry properties of
a ST field.

In Sec. II a generalized version of the ST theory,
encompassing the various forms mentioned above,
is introduced and ST differential identities are ob-
tained. In Sec. III ST "double-index" differential
conservation laws {laws involving conserved quan-
tities with two indices) are derived and the ST ana-
logs of the Einstein pseudotensor, ' the von Freud
superpotential, ' and the Mgller superpotential"
are deduced. "Single-index" differential conserva-
tion laws (laws involving conserved quantities with
one index) are discussed in Sec. IV, the ST Komar
generator is determined, and symmetry properties
of the ST theory ate examined. Section V deals

with integral conservation laws and the application
of the results of Secs. III and IV to the spherically
symmetric ST gravitational field of a central mass.

H. A GENERALIZED SCALAR-TENSOR THEORY

All. versions of the ST theory are based on the
introduction of a scalar field variable Q(x) (where
x represents the four generalized coordinates x',
x', x', and x') into general relativity (GR); this
scalar field together with the metric tensor g„.(x)
(Latin indices take on the values 0, I, 2, 3; Greek
indices take on the values I, 2, 3) forms the ST
gravitational field. The actual incorporation of the
scalar field into the theory is accomplished by re-
placing Einstein's gravitational Lagrangian density

I,=( g)1™z"&-;,

with an appropriate ST I agrangian density. We
shall consi.der a generalized form suggested by
Bergmann, "

L g =fg(4)I g+f, (4)S

{bars will be used to indicate ST analogs of GR ex-
pressions), where I,~ is given by Eq. (I), 8 is a
function of the metric tensor and the first deriva-
tives of the scalar field,

s =(-g)'"8"4,~ 4, ~

{commas denote ordinary derivatives; semicolons
denote covariant derivatives), and f~(P) and fz{Q)
are arbitrary scalar functions of Q. The form of
S is determined by the condition that the field equa-
tions be of no higher than the second differential
order and contain the highest derivative linearly.
It is possible to reduce f~(P) and/or fa(p) to con-
stant terms by suitable redefinition of the scalar
and/or metric-tensor fields, but in the interest of
generality we shall not do so.
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Matter and other nongravitational fields may be

included in the theory by introducing a term

I-g = (-g)' 'fg(4)/if

into the X agrangian density. The tern1 M is a phe-
nomenological representation of the nongravita-
tional fields, and the variational derivative of
(-g)'"M with respect to the metric tensor yieMs
the stress-energy tensor density of aQ nongravita-
tional contributions, (-g)'"T', The total ST
Lagrangian density

I ~=I g+I~
=f&(4)L ~+f.(4)S+f (4)(-g)'"/t/I

can be specialized to give various versions of the
theory by appropriate choices of fo, f„and f„. It
should be noted here that f„(P) is an arbitrary func-
tion except for the restriction that in the general-
relativistic limit f„/f~ must approach 81IG/e' (G is
the gravitational constant). The ST field equations
are obtained by varying L ~ with respect to g, j and

Q and setting these expressions equal to zero; i.e.,

an arbitrary function of the coordinates, the field
variables, and the first and second derivatives of
the field variables

D(x', y„(x),y, ,(x),y, ,„(x))=-D(x; y„)
(y„represents the field variables g„. and P) which
transforms as a scalar density under the group of
general space-time coordinate transformations.
Under an arbitrary infinitesimal coordinate trans-
formation

x*' = x' + &*(x) (I('(x)l« I),
the scalar density will satisfy the equation

D(x';y„'(x')d'x' = D(x;y„(x))d'x,

where d~x is an element of four-volume. Expand-
ing the above and using the notation 5'yA=—y„'(x)
—y„(x) {the I ie derivative of yA), we find

5D
Q/y +gtÃ OA, m

A

where

5X~

5g, ,
(4) A ~PA ~PA, + ~ ~A,

+ D$~7$+ g p

where the above expressions represent variational
derivatives.

As is ihe case in Einstein's theory, it is possible
to split the ST gravitational I agrangian density in-
to two parts,

X~=A+B' i,

lleltllel* of wlllcll con'taills del'lvatlves ofg. . and Q
of higher than the first order. The explicit forms
of A and IT' are

A =f~A+ f~S —f~,B*

B' =f~B',

The y„can be shown to transform according to the
law

8 yA ~ +Ak ~ .I~A2&

with y~ and y~ given by

n
~k ~,ky 4 ~ ~ijk gij, ky

4 jk i~A j jgki»

Equation (10) can then be expressed' as

5D '50
g

~i4k g 40
I'~A, ~A, /

where

( g)1/2gjj(pk pIp2 pt )'

vrith C a function of the y~, the (k, and their de-
rivatives,

BI ( g}1/2(g IjPI g jl ltj )

are the corresponding parts of the Einstein I.a-
gran gian density

Integrating Eq. (l5) ever an arbitrary region B of
space-time and applying Gauss's theorem, we ob-
tain

87 differential identities analogous to the Hi-
anchi identities of GR are derived' by considering

~A, g, ' HS

where HS is the hypersurface bounding A. If we



1258 HAROLD B. HART

now require that the $k and their derivatives van-
ish on HS while remaining arbitrary inside R, we
obtain the dif'ferential identities The conserved quantity

(21)

5L(;& 5L~)
~ik (18)

III. DOUBLE-INDEX CONSERVATION LAWS

In deriving double-index conservation laws it is
clear that, instead of using the Bianchi identities
(as was suggested by Brans'}, one should employ
the differential identities (18) of the ST theory.
Expanding the covariant derivative in Eq. (18) we
find

gkj ——', gj k
- ~ k

=0. 19

6D 6D
yAk g yAk

SA XA b l

Letting D=L~ and expanding the above by means of
Eq. (14) yields the four differential identities of the
ST theory,

6', = (-g-}'"f„(r',+ t', )

is the ST analog of the Einstein energy-momentum
complex', however, we should note carefully that
while it resembles closely the energy-momentum
complexes of GR it has appropriate dimensions
only in the special case where f„ is dimensionless.
Iff„ is constant (not necessarily dimensionless),
we can define a new conserved complex

elll = (fil} 6i
which has the correct dimensions. These com-
ments will be seen to apply to all of the ST com-
plexes derived in this paper.

In determining the ST analog of the von Freud
superpotential' we shall follow an approach first
used by Mgtllerib in GR and applied to the Jordan
version of the ST theory by Just. ' By means of
Eqs. (13), (6), (12), and (16) we can rewrite Eq.
(15) (with D replaced by L~) as

By using the fact that the variational derivative of
a total divergence vanishes it is clear that

SLY 5A

5g, j 6g, j

tk ~ (Igm tk+ gmagk +

~aback

) p

where

5Lc, GLED
yAk g yAk

(23)

GLED 6A
6Q 5Q'

Equation (19) can then be written as

gkjg &@j.k g

GLED

BA
Yk =~ yAk

—
yAk ~

+B —5 A —5 B
~A ~A, m

QBm 8Bm

e y~+yAk a yAk e +yA'j
~A, m ~A ~A, a ~A, j

(24)

It is easily verified that

BA BA
k S ~lmk Sy 4k g

%m, i ~ I ~ 1

tt' gBm
Mmab=ya

~k Ak gy

Expanding the divergence term and recombining,
we find

tk(X, —r;.) —tk .(ab', + V';)

and defining the ST Einstein gravitational pseudo-
tensor' as

~At, =,(f„) (-g)
~ g, ,+ g, -gg ),~Am, ~

(2P)

we obtain the differential conservation law

(
6A

Zkl 5
+ (-8') flltZk

5g;j , t

When the field equations for the combined ST and
nongravitational fields are valid, the above be-
comes

tk (Mcab +~ba) tk (~gab) p

Since the $k are arbitrary, each coefficient must
vanish separately. The first term [by Eq. (17)]
yields a differential conservation law

From the remaining conditions we find that

(where the brackets indicate antisymmetry in the
indices i,k} and

ULikl &

(Milk JIfilb) +~ikj 3 j - j l j
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U[&kl is. thus seen to be a superpotential for the
conserved complex F'. . Using Eqs. (24), (20),
(14), (&), and (7), the above expressions become

y', = 2[(-z)'/'f t ', + (-z}'/'f &',]+ (&'&', -&'s*,),,

I/[ik] . ( g)l /2 2 fc (Sip, k Sky, i)
9f

i

+f (z"'z -z"'z ))
If we define the ST von Freud superpotential,
U~ [-"l by the equation

it is clear from the previous expressions that

U [ii)] [U[ik] + (I]kgi B!S«)]gd 2

1/Rg g klgtrt j g i lgyrtk

+(-z)'"r '"( k""s"-r'
k)) (26)

8f~

New complexes, pseudotensors, and superpo-
tentials can be formed by noting that the addition
of a quantity 8'[&jk]

k to O™~j&yields a new differential
conservation law

O" =0,

where

8' ) -Q~i)+W)'ri i [ik]

The new pseudotensor and superpotential become,
respectively,

i [ik]t ',. =t~~+5"~'k

vectors) and seem to be more appropriate to gen-
erally invariant theories than the double-index
quantities of Einstein, M][)lier, etc. One form in
particular, the locally covariant Komar vector, '
seems to possess the most satisfactory qualities
of any conserved quantity yet discovered.

ST single-index conservation laws can be derived
by considering Eq. (10) with D replaced by L c,

5L 'a y„+t', =O.
5y~

By Eq. (13) this becomes

6XC J 5LG ~t . + $ '4/ $, i'4/=0
5y~ Oy~

and by using the differential identities (17) we ob-
tain a differential conservation law

-t + y„', $
~

=0.sLc
5y~

' ] i

Since the above is an identity, it can be related to
a double-index superpotential through the equation

ti+ c& i gJ I/[!J]
(

5X
2) ~

Requiring the combined gravitational and non grav-
itational field equations to hold yields

[ ti+ 2f ( g)«/2Z i gi] I/[i j]

By comparing this expression with the conserva-
tion laws of Sec. IH it is clear that we can make the
associations

Ur [ik] U [jk]+gr[jk]

If we choose (in analogy with M][[lier's work in
GR")

+[jkl —U [ikl g j U [lk] + gkU [l jlj 8| j El j El

we obtain the ST analog of the Mufller, superpoten-
tial

U, '"'=(-g}'"g*'gk™[(g;.fc)., —(z ifc),.]..
IV. SINGLE-INDEX CONSERVATION LAWS

AND SYMMETRY PROPERTIES

A different approach to GR conservation laws,
initiated by the work of Bergmann'4 and based on
Noether's theorem, "indicates that every infinites-
imal coordinate transformation [i.e., every choice
of g' in Eq. (9)] leads to a differential conservation
law. The conserved quantities in this case have
only a single index (they are thus current or flux

U[i J] 2gk I/[i il

with t ',. and U[jk~l identified as ST pseudotensors and
three-index superpotentials, respectively. The
conserved vector quantity

6' =([k[/'») =(-g}'"f„~/(r',+/, .)..

is clearly dependent upon the choice of superpoten-
tial, and if, in particular, we use M])[lier's super-
potential (27), we find

O i (~«I/ [ii]}

= &'( g)'"g "g f™-[(g«fc} !—(g(kfc},4. .; ~

The ST Komar vector, O~, is obtained by adding a
quantity

][/[i» ( g)2/kg ilg Jk)[Q f gk } (g f (2 )]

to 0„'. Straightforward expansion gives
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(U f& 93)

=(-&)"g"g'"[(g,fg$'). , —(z„fc$') „]., ,
=(-z)'"[(f.&')" —(f.&')"],
=(-z)"[(f h')'*'-(f h*)"] (»)

Note that O~ is locally covariant and reduces to the
appropriate GR form when Q- const.

Since the above conserved vectors depend on the
choice of (', there will be an infinity of conserved
quantities corresponding to the infinite group of
general coordinate transformations. It is generally
thought, however, that physically significant con-
served quantities are generated only by those in-
finitesimal transformations which represent in-
trinsic symmetry properties of the gravitational
field" (when they exist). In GR, symmetry trans-
formations are those which leave the metric tensor
invariant and thus satisfy the equation

This expression can be expanded in terms of $' to
give Killing's equations

g&J + ~J;i Q

Since a ST field depends on both the metric tensor
and the scalar field, ST symmetry transformations
are those which simultaneously satisfy Killing's
equations and the scalar symmetry condition

.and

$"=C"sx +D

The temporal translations and generalized I orentz
transformations are not symmetry transformations
of this ST field and any conserved quantities gener-
ated by them will have no simple physical interpre-
tations. The scalar field thus affects not only the
functional form of conserved ST quantities but,
through its symmetry properties, plays a major
role in determining which conserved quantities are
to be considered physically meaningful.

V. INTEGRAL CONSERVATION LAWS AND

APPLICATIONS

Integral conservation laws for isolated gravitat-
ing systems are obtained directly from the differ-
ential conservation laws of Secs. III and IV by in-
tegration over a region of space-time enclosing the
system and application of Gauss's theorem. The
resulting conserved quantities

p„.=! 6,*,. «, ,

(30)

To illustrate the restriction imposed by the scalar
symmetry condition, consider the Brans-Dicke ST
DeSitter solution' in Cartesian coordinates:

ds' = -(dx')'+ a'(x')[(dx')'+ (dx')'+ (cbP)'],

y = y, (x'/x,') (x,', K = constants).

Solution of Killing's equations yields ten indepen-
dent Killing vectors having the fallowing compo-
nents:

P.(a) =
i 6.'(e)«

(where the integrals are taken over open timelike
hypersurfaces) are clearly related to the total en-
ergy and momentum of the systems involved but,
as mentioned in Sec. III, have dimensions appro-
priate to these quantities only if f„ is a dimension-
less quantity. In versions of the ST theory where

f„ is a constant (not necessarily dimensionless),
we can form the conserved quantities

p=C" x'+B"! +D"- —x"(A+B x'),dx c
s ( n2(„0)

Ps; =«f~) 'Peg

Pu, =(fu) "Ps;
(31)

where s= da/dx', -C"z-—C—s, B =B„. The ten
parameters A, B, C 8, D correspond to tempo-
ral translations, generalized Lorentx transforma-
tions, spatial rotations, and spatial translations,
respectively. Application of the ST symmetry con-
dition (29) gives

which requires that $0 =0. We thus obtain "re-
stricted Killing vectors" with components

g0 o

I"(h)=(f ) '& (5),
which have appropriate dimensions. Thus, in gen-
eral, the total conserved quantities of the ST theo-
ry a.re not total. energy and momentum but are
closely related quantities whose actual physical
meaning depends on the particular version of the
theory being considered.

In the BD version of ST theory, the exact static
sphericaQy symmetric vacuum gravitational field
of a body of mass M is given in isotropic Cartesian
coordinates by'
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ds' = —e'"dt '+ e'8 (dx'+ dy'+ dz') P,', =(f„)-'t& V,","dS„,

where

r = (x'+ y'+ z')'~'

4

fO

Pzc($) =(fu) '
t& UV"dSoi ~

(32)

2(X 2(XO

and

a o.-c- x & /xe"= e"0 (1+8/r)4 .1+B/r

G 3+ 2(a)

in order to agree with the weak-field limiting solu-
tion'

2M
(3+ 2(o)c'r '

2(4+ 2&@)M

c'(3+ 2(u) y,r

+ j. + c&c +lg +64(1+ (u)M

A previous calculation of the total energy of this
system, ' employing a conservation law derived
from the GR differential identities, gave

2'+ 2

a result related to but certainly not equal to the to-
tal energy Mc'. In order to calculate the total sys-
tem energy and momentum using the ST conserva-
tion laws derived above, we must work with Eqs.
(31) rather than (30) since the BD version assumes
a constant but not dimensionless f„. The superpo-
tentials (26), (27), and (28) can be employed to re-
duce the hypersurface integrals in Eqs. (31) to or
dinary surface integrals,

The quantity A. is given by

A.
' = (C + 1)' —C (1 ——,'&uC ),

where ~ is a numerical parameter satisfying v ~ 6;
n„P OJ3, &j&„and C are constants which must take
on the values

o.,=P, = 0, C = -1/(2+ ~),
2~+4 '~'

2C $0 24)+3

and

A straightforward calculation yields, in each case,
zero total momentum and total energy equal to Mc'.

The conservation laws are thus capable of giving
the correct values for the total energy and momen-
tum of a central-mass gravitational field, thereby
satisfying one of the minimum requirements of any
useful conservation law.

VI. CONCLUSION

The conservation laws derived above appear to
be the natural extensions of the work of Einstein,
Mpller, Bergmann, and Koma, r to the ST theory.
Although they have been applied in only one simple
case, it seems reasonable to assume that their
range of validity and applicability is as wide as that
of the corresponding GR conservation laws in Ein-
stein's theory and that ST investigations analogous
to those done in GR can profitably be carried out
with their assistance. It also seems likely that
problems unique to the ST theory (e.g. , scalar ra, -
diation) can be successfully treated.

The concept of restricted Killing vectors Ii.e.,
Killing vectors restricted by the symmetry condi-
tion on the scalar field given in Eq. (29)j and its
relationship to ST conservation laws requires fur-
ther investigation. In particular, the question of
whether or not the scalar symmetry condition ac-
tually restricts the Killing vectors of a gravitation-
al field in all cases needs to be answered. The ef-
fect of the scalar restriction on conservation laws
in physically closed systems should also be ex-
amined since the possibility of long-range scalar
fields and time-dependent spherically symmetric
fields exists.

If we accept conservation of energy and momen-
tum as fundamental physical principles, the fact
that total ST conserved quantities have units of en-
ergy and momentum only in certain versions of the
theory has important consequences. ST theories
which treat f„as a constant and/or dimensionless
function must then be considered more acceptable
than other versions. This observation lends fur-
ther support to the widely accepted notion that the
BD version is the most physically reasonable for-
mulation of the ST theory.
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A recently developed approach to scattering by regular structures is applied to an inves-
tigation of diffracted evanescent waves. The scattered field is expressed exactly, in the near
or far field, by a sum of "plane lattice wave" modes. Attention is directed at the diffraction
conditions obeyed by these modes when the scatterer is a finitely thick three-dimensional
nonorthogonal (triclinic) lattice of individual scattering centers.

I. INTRODUCTION

Recent work has shown clearly that the angular
spectrum of plane waves and especially the evanes-
cent modes of the angular spectrum can play a
helpful role in the study of a wide range of electro-
dynamic phenomena. ' Within the past several
years, the angular spectrum has been brought to
play in new approaches to Cerenkovian effects'
and inverse scatteririg, ' for example. In addition,
it has figured in a study of source-free fields, ' a
formulation of a diffraction theory of holography, '
and the quantization of an electromagnetic wave
field in an infinite space half filled with dielectric. '

It is important to realize that there are really
two aspects to the use of the evanescent modes of
a radiation field. In the first place, there may be
no unique set of evanescent modes associated with
a given field. This is due simply to the fact that
evanescent modes are characterized by exponen-
tial decay in one direction and plane-wave propa-
gation in the transverse directions, and the direc-

tion in which the exponential decay occurs may be
undetermined. Thus one must approach with great
caution the task of assigning physical significance
to an evanescent wave. This lack of unique or
clear physical meaning need not detract, of
course, from the power of mathematical mode ex-
pansions which include evanescent modes.

On the other hand, there are physical problems
for which a given direction is already singled out.
It may happen that this quasi-one-dimensionality
suggests the introduction of a mode expansion in-
volving evanescent modes in a particular way. In-
dividual evanescent modes, in such situations,
may have a very direct physical interpretation.
For example, the wave field outside of a totally
internally reflecting dielectric decays away from
the dielectric surface. Lalor and Wolf' have treat-
ed the problem of reflection and refraction at such
an interface by the use of the physically suggested
mode decomposition of the transmitted field, and
Carniglia and Mandel' have found triads of evanes-
cent and nonevanescent modes at a dielectric in-


