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Wheeler has con)ectured that black holes shouM have no well-defined baryon number, and
that as a result the lave. of conservation of baryons should be transcended in black-hole phys=
ics. We shoe' here that a static black hole cannot have any exterior classical scalar or mas-
sive vector fieMS. We consider the modifications that %'ouM arise from a Quan~-theoret-
ical treatment, and @re conclude that such a black hole cannot interact itrith the exterior virid
via virtual mesons such as- the.x and p, Because of this @re find no way for external mea-
surements to assign unambiguously a baryon number to such a black hole in agreement vrith
~eeler' s prediction.

I, INTRODUCfION

General relativity has led to the inescapable con-
clusion that massive stars must collapse cata-
strophically at the end of their thermonuclear evo-
lution, possibly to form black holes. ' Briefly, a
black hole is a region of space separated fx'om its
exterior by an horizon or one-way membrane which
prevents any interior particles or light rays from
ever escaping to the exterior. It' does not follow
that an exterior observer can learn nothing about
a black-hole interior because any exteriox' field
associated. with the black hole can yield infox'ma-
tion about the interior. For example, the electx'o-
magnetie field associated with a charged black hole
vrould allow such Rn, observer to determine the
charge of the MRck hole.

For siIQplicity one ofteIl focuses atteIltion on ex-
teriors of'stationary, bare black holes, i.e., those
which are time-independent and devoid of foreign
material such as dust or radiation. With an ex-
ception, the most. general exact solution of Ein--
stein's equations known vrhich represents such
black-hole exteriors is the Kerr-Newman solution. ~

It desex ibes a family of black holes parametrized
only by massp chargeq and RngulRx' IQOIQentuIQ, It

is currently believed (Israel-Carter conjecture)
that Rll exteriors of stationary, bare, single black
holes are of the Kerr-Newman type; they have as-
sociated arith them no independent properties other
than mass, charge, and angular momentum. s Con-
siderable progress has already been made toward
the proof of the conjecture, primarily as a result
of the work of l'srael, ' Carter, ' Hawking, e and
WaM. ' Also important are the results of Price, e

Chase, ' Hartle, '0 and Teitelboim. "
In the present paper we shall be concerned mith

one prediction of the conjecture, QRIQely, thRt sta-
tionary bare black holes have no such properties
as baryon or strangeness nuinbers. That this
should be the ease has repeatedly been emphasized
by Wheeler. '~ It is known that scalar mesons such
as the g meson and vector mesons such as the p
meson are responsible for mediating the strong
interactions. One couM ax'gue that a black hole
formed out of strongly interacting material, i.e.,
nuclei of stellax material, should have associated
arith it exterior IQeson fields just as a charged
black hole has associated vrith it an exteriox elec-
tromagnetic field. Meson fieMs associated vnth a
black hole would pxovide, at least in principle, a
way to define the baryon Rnd stx'Rngeness Dumbex's
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of the black hole uniquely. This would clearly vio-
late the conjecture.

In the present paper we show that the above pro-
cedure for violating the conjecture will fail for the
case of static bare black holes. " In Secs. III-V
we give the proof of the following result: A static
bare black hole can be endo&red zenith no extexio~
ctassicaL massive or masstess scatar fietds,
nor with exterior cLassicaL massive vector fietds.
This result appbes to charged as well as to neutral
fields; it holds for single or for multiple black holes,
and it is valid in Brans-Dicke theory as well as in
Einstein's theory. In Sec. VI we give a short argu-
ment which suggests that the full quantum treat-
ment of the problem would show that static bare
black holes cannot-interact with the exterior world
via scalar or vector virtual mesons. This strongly
implies that such black holes have no well-defined
baryon or strangeness numbers. We also show in
Sec. VI that Israel's results may be generalized to
show that in the presence of the strong and electro-
magnetic interactions, all exteriors of static, bare
black holes are of the Beissner-Nordstrom type.

II. ASSUMPTIONS

In general a forming black hole will be changing
in time. However, we may expect that damping re-
sulting from gravitational and other radiations will
result in the black hole's exterior reaching a sta-
tionary state once all available matter and fields
have been either ejected or radiated to large dis-
tances, or have been absorbed by the black hole.
Only those fields intrinsically associated with the
black hole will remain in the exterior, but they
will become stationary. We may also expect that
no naked singularities will appear, i.e., that the
horizon and its exterior will be nonsingular. This
expectation is based on another current conjecture
which states that "all singularities are hidden in
Mack holes. " Since a black hole is a localized ob-
ject, it is reasonable to assume that the corre-
sponding space-time will be asymptotically flat.

In order that the horizon isolate the interior of
the black hole from its exterior, it must be closed;
all curves connecting a point in the interior with
one in the exterior must intersect the horizon in at
least one point. The fact that the horizon is a null
hypersurface (by definition), and hence a one-way
membrane, then insures that the interior of the
black hole cannot communicate with the exterior.
We will leave the topology of the horizon unspeci-
fied. It may be topologically spherical or toroidal,
or the black hole may consist of several disconnect-
ed pieces. We shall not enter here into the ques-
tion of which of these topologies are actually real-
ized.

We thus arrive at the definition: The exterior
of a stationary, bare black hole is a stationary,
asymptotically Qat region of space-time which
is devoid of matter, foreign fields (radiation, or
fields with sources at spatial infinity), or singu-
larities, and which is bounded by a nonsingular
horizon.

We shall work in units for which G =c=@=1; the
only dimension left in these units is length (mea-
sured in units of the Planck length 1.6x 10 "cm).
Since we have excluded matter from the exterior,
all the fields in question will be sourceless. We
will also exclude any interactions among the vari-
ous fields except for the electromagnetic coupling
of charged fields with one another and with the
black hole's exterior electromagnetic field. To
take into account this coupling we will make use of
the appropriate covariant form of the minimal-
coupling rule.

We will be interested in pseudoscalar and pseu-
dovector fields. In flat space one describes these
by means of the Klein-Gordon and Maxwell-Proca
equations, respectively. In passing to curved
space we will use the comma-goes-to-semicolon
rule with no direct couplings to the curvature
(which violate the strong equivalence principle) to
obtain the generally covariant form of these equa-
tions.

III. FORMALISM

For our stationary and asymptotically flat geom-
etry we may choose a coordinate chart x~ to cover
the black-hole exterior, and a metric tensor g&,
which is independent of the time x', and which
asymptotically reduces to the metric tensor of
flat space-time in spherical polar coordinates. '~

The horizon, being stationary, is described by an
equation of the form F(x') =0, where F is some
function. We see that its normal n„given by n„
=F„aswell as its surface element dS„(which is
proportional to n„)both have vanishing time com-
ponents. The fact that the horizon is a null hyper-
surface may be expressed as dS„dS"=0."

We now consider a set of local fields C~ (labeled
by k) which are associated with the black-hole ex-
terior. We choose to describe them with a Lagran-
gian density P. The variational principle
nf g( g)'~md'x=-0 then yields as field equations

Multiplying each of these by 4„(-g)"'d~x, integrat-
ing over the black-hole exterior, converting one
term to a surface integral, and summing over the
fields of interest gives
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—)' b "dS„

+p f (c, „eric+,, +e, aziee, )(-g)"'u'x=o.

Here d$„signifies the element of hypersurface
bounding the domain in question (the horizon, spa-
tial infinity, and the future and past timelike infin-
ities), and

b&=pe, sC/se, „. (3)

In this paper we confine our attention to static,
that is, nonrotating black holes. (We have also
generalized all the following results to the case of
stationary black holes. "}Then we can always ar-
range for g«and g" to vanish. The fact that the
horizon is null is then expressed as"

g = -2((„g"+ m'Q) . (6)

We shall use this also in curved space since it is
already generally covariant. According to Eq. (1)
it leads to

(„.& —nP$=0,

which is the Klein-Gordon equation as generalized
to curved space by the comma-goes-to-semicolon
rule. The stress-energy tensor corresponding to
g is

~pU =0, ply —
~gatv(4, a4, ™P)~ (10)

In the static case T„,will also be static which
implies that $0=0. According to (3), b„=-gg„so
that b'=0. That b„b~is bounded on the horizon can
be seen by obtaining from (10) the relations

g P [4 (T ZrPP )
~ T2]1/2

g,&ds'dS'=0 on horizon,

and we can also write

(4) and

m'tp = ,'[,' (T„,-T-~—')- 3T']"' —2-T. (12)

S~dS„=g,,b'dS'. (5)

It will be shown in the Appendix that the spatial
metric g, &

is positive definite in the black-hole ex-
terior and positive semidefinite on the horizon.
From the resulting Schwarz inequality also proven
there it then follows that, provided the b' are real,

(g„dS'b')'~ (g;,dS'dS')(g„b"b"). (6)

In all the cases to be studied it will turn out that
0 I"5

„

is bounded on the horizon and that 5' =0.
Then g, ~b'b~ is bounded, and it follows from Eqs.
(4), (5), and (6) that b ~dS „=0on the horizon.

It may easily be verified from the field equations
to be given later (with the use of the asymptotic
form of the metric) that for all physically relevant
fields the b" vanish asymptotically as 1/r' for
massless fields, and exponentially for massive
fields. Thus there are no contributions from spa-
tial infinity to the boundary integral in (2). At
timelike infinity the boundary has n, =d5, =0 so that
b "dS„=O(since we shall show that b'=0 always) on
it. All these results indicate that

5 "dS„=0

IV. SCALAR FIELDS

We first consider here a massive, neutral, and
real scalar field g of reciprocal Compton wave-
length m & 0. The customary Lagrangian density
used to describe it is"

and thus that the second integral in Eq. (2) vanishes
by itself. This is the central result of this paper.

As will be pointed out in Sec. VI, physical scalars
in general, and T and T„,T~' in particular, are
bounded on a nonsingular horizon. It then follows
from (11) and (12) that b„b"= Pg „g"is bounded on
the horizon. Therefore, the formalism of Sec. III
informs us that the second integral in Eq. (2) van-
ishes, or

f(g;; 0, '0, '+ mV)( g)'"d'~= -o. (13)

We will show in the Appendix that g, , is positive
definite in the black-hole exterior. Therefore, the
only way for the above integral to vanish is for g
to vanish identically throughout the black-hole ex-
terior.

The case of a massless scalar field is more
subtle. We note that Eq. (12) no longer insures
that g' is bounded on the horizon. A related diffi-
culty is that Eq. (9) with m=0 determines g only
up to an additive constant. If we impose the boun-
dary condition that g vanish asymptotically, we
may interpret g as the invariant probability den-
sity for scalar mesons. The full argument for this
interpretation will be given in Sec. VI. It then fol-
lows that since rP is a physical scalar, it will be
bounded on the horizon. Alternatively, we may
demand that g' be bounded as a reasonable condi-
tion. Then the same procedure used in the massive
case will establish that g vanishes identically in
the black-hole exterior. The additive constant
mentioned need not vanish, but it appears in no
physical quantity and thus is totally unobservable.
The fact that the asymptotically vanishing part of
the massless scalar field vanishes in the exterior
of a static black hole has also been established by
Chase, ' who used a different method.
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We now consider a charged (complex) scalar
field t'ai coupled minimally to an electromagnetic
field described by a vector potential A „anda field
tensor E~". We take as the complete Lagrangian
density

2 = -(d d„*+m'gP*) —F»F„„/16m, (14)

where d„=P —ieA g, and e is the charge of the
field." Associated with P itself we have the
stress-energy tensor

T»=d„d„*+d„*d„-g&,(d~d*+ m'g$*) .
The entire theory is invariant under the gauge
transformation

g - g exp(i eA), A„-A&+A &, (16)

and
T = -2d ~d*„-4m'gg*

T»T"' =2~d "d~ ~'+-4Td "d~p+ —,~
T'+ 2(d "d*)'.

(18)

(19)

Both T and T„,T"', being physical scalars, must
be bounded on the horizon. We see that both of the
terms in (19}which are explicitly of fourth order
in d& are positive. It is therefore necessary that
both d„d~ and d"d*„bebounded on the horizon for
if either or both became unbounded, then T„„T&'
would also become unbounded. It then follows from
(18) that gg* is likewise bounded on the horizon.
We recall that in our gauge g is real so that b "b„
=gg*(d~d„+d~*d*„+2d~d*„).It is now clear that
b~b

„

is indeed bounded on the horizon.
Having met all the prerequisites for the applica-

bility of Eq. (7), we can now write Eq. (2) in the
form

where A is an arbitrary real scalar function. A
consequence of the gauge invariance is the exis-
tence of the conserved electric current

j „=ie(&*„-g*d„).
Since we are concerned only with a static situa-

tion, we may always make a choice of gauge for
which A. , =0 and A, ,=0. In a static situation it is
always true that j' =0 and j,=0. It then follows
from (17) that gg* must be independent of x', and
that the phase of ( must be of the form &ox'+ qr,

where & and yare real constants. By making a
gauge transformation with A = -(a&x'+ y)/e we can
make g real and time-independent without altering
our conditions on A&. Having done so, we proceed
to calculate bt' by carrying out the sum implied in

(3) over ( and (*. We obtain b„=-(gd*„+tJr*d„)It.
is now easy to see that b'=0 while the b' are real.

In order to show that b~b„is bounded on the hor-
izon, we obtain from the stress-energy tensor the
expressions

ir [g„ttI'g' +[m'+ g 00(eA')'] Pj(-g)'"d'x=0.

(20)

In the Appendix it will be shown that goo
~ 0 and g,.&

is positive definite in the black-hole exterior. The
integrand of Eq. (20) is not positive definite if A'
w 0, but we shall now show that A' must vanish in
our gauge if the scalar field is present.

From (17) we see that in our gauge f = -2e'A'g'.
In accordance with the argument to be given in
Sec. VI, we will interpret Pf*= g' as the invariant
probability density for charged scalar mesons.
That gg* is bounded on the horizon supports this
physical interpretation. Since (-j"j„}~ is the in-
variant charge density, we see that ( j "j &)"-'/p,
the specific charge (per meson} of the field, is a
physical scalar and must be bounded on the hori-
zon. Since j ' = 0, this implies that g„(A')'is
bounded. The quantity I' „„I't'" is itself a physical
scalar, and therefore in the static case
goo g;,.I "F"will also be bounded.

We now compute b~ for the electromagnetic field
by summing (3) over the A„.We obtain b"
= -F»A„/4w so that in our gauge b' = 0. From the
information obtained in the preceding paragraph it
follows immediately that b5

„

is bounded on the
horizon. The formalism of Sec. III then gives for
the electromagnetic field

Jr g [g~&F"F '/4m+2(eA ) tPj( g)'"d~x=-0.

(21)

From the properties of the metric it follows that
the above integrand is negative definite in the
black-hole exterior, so that the only way for the
integral to vanish is for A.o to vanish throughout the
exterior. If we now return to Eq. (20) we see that
its integrand is now positive definite, so that g
must vanish identically over the entire black-hole
exterior. It then follows from (16) that this con-
clusion is true in all gauges.

The case of an electrically neutral but complex
scalar field may be treated also in the above man-
ner by coupling g minimally to a fictitious A

„

which is itself a gradient. This ghost field will
make no contributions to any physical quantity,
i.e., stress-energy tensor, by virtue of the gauge
invariance of the theory, but does allow us to take
over our results for the charged scalar field. In
conclusion we state that a static, bare black hole
can be endowed with no exterior scalar field of
any type.

V. VECTOR FIELDS

We will first consider a massive, neutral, real
vector field B„ofreciprocal Compton wavelength
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H u H~„/16+—ePB~Bu/'8w (23)

which is already in general covariant form. From
it follow according to (1}the Proca ~nations in
general covariant form with no couplings to the
curvature:

m& 0. Associated with it is the field tensor

(22}

We shall employ the usual Lagrangian density"

of charge e coupled minimally to the electromag-
netic field, we replace (22) by

H„p=B,,„-B„„—ie(A„B„-A„B„)
and take as the full Lagrangian density

(26)

H-*„„H~"/8v m-'B*„B~/4v—F„.F~'/16v.

(27)

The field equations obtained by varying B„*accord-
ing to (1) are

(24) HI'"..—zeH ~"A., +m'B~ =0. (28)

[g HOIHOj ~ ~(BO)2]( g)1/2d4~ 0
~

~ (25)

From the properties of gpp and g„wesee that the
integrand above is negative definite so that the in-
tegral will vanish as required only if H" and B'
vanish everywhere. Therefore, for a massive,
neutral, real vector field, B„=Othroughout the
black-hole exterior.

For a massless field (m=0} our proof breaks
down because B„is then subject-to gauge transfor-
mations and thus lacks any direct physical mean-
ing. Thus 6"b„is not a physical scalar and need
not be bounded on the horizon. In fact, it is well
known that the Reissner-Nordstrom solution of
Einstein's equations represents a static, spheri-
cally symmetric black hole with an exterior elec-
tromagnetic field. Clearly, exterior massless
vector fields may exist. However, since the only
such field known is the electromagnetic field, it
alone is an exception to our rule.

In the case of a charged (complex) vector field

The H ~" is entirely analogous to the electromag-
netic I'"". But the Proca field B& is not subject to
gauge transformations as is the electromagnetic
A.„.In fact, B„canbe obtained uniquely from H ~"

through Eq. (24). Therefore, B~, unlike A„,is a
physical field.

We may learn something about the Proca field
by studying its behavior under time reversal. The
Proca equation (24) should be invariant under time
reversal even if it had a source current on the
right-hand side. If we recall that under time re-
versal g;~-g, gpp gpp and g«- -g«, we see
that Eq. (24) with a source current will be invari-
ant only lf Bp Bp B) B] and consequently H"
-H" and H" --H'~. However, time reversal
should change no physical quantities in the static
case; therefore, B, andH'~ must vanish.

By summing (3) over the B, we obtain b"
H""B„/4-vand we see that bo= 0 in the static

case. Furthermore, b~b„is clearly a physical
scalar and therefore it will be bounded on the hori-
zon. We may thus apply the analysis of Sec. III to
conclude that

Bp B~exp(ieA)& A~-Ap+A
„

(30)

and this gauge invariance is reflected in the exis-
tence of a conserved gauge-invariant electric cur-
rent

jp=ie(H~~~B -Hp" B*„). (31)

Because of the gauge freedom the absolute pha-
ses of the various fields lack any physical signifi-
cance. It is only the absolute values and relative
phases of the fields»' and B

„

that are physical
quantities. Only these gauge-invariant quantities
appear in jI' and 7"„„the common phase of the
fields cancels out.

One may always choose A
„

in such a way that
under time reversal A. ,- -A, and Ap-Ap The
time-reversal invariance of Eq. (28) requires that
the fields transform as

B,-B~, H„-H,*;, B,.--B,*, and H;, --H,*;

(32)

up to a common phase factor corresponding to the
gauge freedom. In the static case one can take
A, =0 and A« =0. In order for the physical rela-
tive phases of the fields to be unchanged under
time reversal, it is necessary according to (32}
that up to a common phase the H" and Bp be real
and the H" and B; be pure imaginary. In the static
case the absolute values of the fields cannot depend
on time. The most immediate consequence of the
above results is that j'=0 and j', =0 in the static
case as expected.

If one now looks at Eq. (28), one sees that the
common phases of the fields must be of the form

Associated with the vector field is the stress-ener-
gy tensor

T~„=Re[H+~~H„+m B~pB~

,' g„„(H„*—8H"+2m' BB")]/2 v (29)

which is easiest obtained by the method of Landau
and Lifshitz. " The above theory is invariant under
the gauge transformation
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~x'+q with co and y real constants. Any other de-
pendence on x" would result in the breakdown of
the results obtained above in the static case. By a
simple gauge transformation we may set the com-
mon phase to zero without disturbing the conditions
we imposed on A„.In this new gauge the H ' and
B, are pure real and the II'~ and B, pure imaginary.

We may learn more about the fields by consider-
ing a test particle which can interact directly with

the vector field, It can be represented as a source
current J" on the right-hand side of Eq. (28). One
can show that the expression for the stress-energy
tensor (29) is still valid in the presence of the
source. The divergence of this T„,represents the
force density exerted by the vector field on the
particle. If we use (28}with the source J~ and the
fact thatII«&.

&&
=0 we have

T„'., =Re(-H *„(J"+ ieH""A, )+[J „+i e. (kH"wF 8 + rn'B "A„-J"AJ]B*„')/2w . (33)

We notice immediately that some of the terms in
(33}are independent of J; they are the same for
all test particles. . These unphysical terms are ex-
pected to cancel out in a physical situation. In par-
ticular, in our gauge we see that in the static case
these terms will disappear from the force for ar-
bitrary symmetries only if the B, and consequent-
ly the H'~ vanish. Therefore, in the static case the
charged vector field is no different in principle
from the real, neutral one. We may thus apply our
previous results to conclude the B„vanishes every-
where in the black-hole exterior. From (30) we
see that this conclusion is gauge-independent. The
case of an electrically neutral but complex vector
field may be treated as above with the same re-
sults by using the fictitious A „mentioned in Sec.
IV.

We have thus shown that a static bare black
hole cannot be endowed with exterior classical
fields that would correspond to the following me-
sons: w' (real pseudoscalar), w' (complex charged
pseudoscalar), K'I7' (complex neutral pseudosca-
lar), p' (complex neutral pseudovector), p (com-
plex charged pseudovector), and others connected
with the strong interactions. "

VI. CONCLUSIONS

If we assume that the electromagnetic field is the
only massless vector field in nature, we may con-
clude that static bare black holes cannot have ex-
terior scalar or vector fields other than the elec-
tromagnetic field. The key physical assumption
made is that physical scalars are bounded on a
nonsingular horizon. To justify this assumption we
consider a freely falling observer who carries an
orthonormal frame with him. Qn crossing the hor-
izon the observer should find in his frame that
physical quantities such as T&", j~, and F""and
others remain bounded unless there is something
singular in the physics at the horizon. W'e exclude
this possibility with the statement that the horizon
is nonsingular, by which we mean that local phys-
ics is nonsingular. Any scalar constructed out of

physical quantities will clearly be bounded also.
As a result of the above broad definition of a

nonsingular horizon, we were able to dispense with
the use of the gravitational field equations. There-
fore, the proof given is valid in both Einstein's
theory and in the Brans-Dicke theory. A moment' s
thought will convince one that the proof is also
valid if fields other than the ones considered are
present provided that no interactions other than
the electromagnetic one are in operation. Thus
the scalar and massive vector fields must vanish
even in the presence of a neutrino field.

The proof given applies only to the classical
fields. What changes can one expect from a full
quantum treatment? Such a treatment should be
possible along the lines of Hartle's study of the
question of whether a black hole has weak-inter-
action properties. " However, we shall be content
here with giving a simple argument which suggests
the results to be expected from a full quantum
treatment.

Consider first the real scalar field. In the quan-
tum theory it would be represented by an Hermiti-
an operator g, (x"). We assume that there exists
a complete set of one-meson eigenfunctions U (x");
we may expand

g,w(x") =(2) '~'Q(a U +a~U„*), (34)

Q'=Q i„U*U„ (36)

and similarly

b„=-—(p2) „=-2+i„(UU ) q.

where a~ and a are the creation and annihilation
operators for a meson in the state labeled by m.
With respect to a many-meson state [i ) labeled
by the occupation numbers i, the classical quanti-
ty corresponding to g,

' is

(3&)

where the normal ordering (:}ensures that g' van-
ishes in the vacuum state for which all i =0. We
thus have
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If the U are properly normalized, the space in-
tegral of g' in (36) will be the number of mesons in
all states. Thus it is consistent to interpret P as
the invariant (nonconserved) probability density
for scalar mesons. (In the massless case the U„
and consequently the g will have to be chosen as-
ymptotically vanishing in order for normalization
of the U to be feasible. ) In the complex-scalar-
field case the g, would be non-Hermitian; this
mould require the introduction of creation opera-
tors for the particles and antiparticles, but the
interpretation of Pg* would be similar.

Going back to the real scalar field, we suppose
that for a state m the P vanishes asymptotically
at least as rapidly as I/r, (U*U„),=0, and (U*U )

„

contracted with itself is bounded on the horizon.
Since U satisfies the equation for a complex field
with no charge, we may immediately apply the re-
sults of Sec. IV to show that it vanishes identically
in the black-hole exterior. Such a state is missing
from the expansion for g,~ in the exterior. If any
of the above conditions is not satisfied the proof
will fail. But we now shorn that in this case i =0.

We note first that since me are dealing with bo-
sons the occupation numbers are unrestricted. If
U does not vanish asymptotically for some m,
then (36) shows that in general the classical field
will not be localized near the black hole. Also if
the contraction of (U*U ) „with itself is unbounded
on the horizon, (37) shows that b "b„is unbounded
in general. The only way to exclude the above im-
proper behavior of the classical quantities is to
set i =0 for the appropriate m's. We are left with
states m for which U*U depends on time. Clearly,
any classical quantity will now depend on time in
general, and since me cannot allow this we set
i =0 for these states also. We are left with the
conclusion that in the exterior of the black hole on-
ly the meson vacuum state is possible. Similar
arguments could no doubt be given for the other
types of mesons considered here.

The strong interactions are known to be mediated
by pseudoscalar mesons such as the m and the K,
and by pseudovector mesons such as the p. Our
argument strongly suggests that a static bare black
hole does not interact strongly with the exterior
world because it cannot exchange virtual mesons
with an exterior object. Since both baryon and
strangeness numbers go hand in hand with the
strong interactions, me cannot see any way to de-
termine these numbers for a static, bare black
hole by external measurements alone.

It could be argued that such black holes have zero
baryon number, but this choice would be inconsis-
tent if the black hole in question was formed out of
baryonic matter. Again one could say that the bar-
yon number of such a black hole is just the num-

ber of baryons that ment into its making. But this
argument is circular; it uses the law of conserva-
tion of baryons which has coritent only after the
baryon number of each object present has been de-
termined by some independent method, not by the
use of the law itself. Therefore, it appears that
static bare black holes have no mell-defined bar-
yon number. As a consequence, the law of conser-
vation of baryon number ceases to be meaningful in
black-hale physics in a semiglobal scale, though
for all we know it may still hold locally. Similar
conclusions apply to strangeness number and its
conservation. Wheeler, who has often remarked
that black holes should have no baryon number,
expresses the above by saying that the 1am of con-
servation of baryon number is transcended in
bla.ck-hole physics. '

Another important consequence of our result fol-
loms immediately. Israel has proven that in Ein-
stein's theory the most genera1 exterior of a single
static black ho1e with only an electromagnetic field
present is of the Reissner-Nordstrom type. ' &
priori, the "only electromagnetic fields" restric-
-tion excludes the possibility of the black hole con-
taining strongly interacting material. But our re-
sults show that even if this is the case the stress-
energy tensor in the exterior wi11 contain no con-
tributions from the strong interactions (mesons).
Therefore, Israel's theorem is valid even in this
more general case.

We hasten to point out that we have shown only
that exterior scalar and massive vector fields are
incompatible with a nonsingular horizon. We can-
not exclude the possibility that the gravitational
collapse of a star could lead to the formation of a
naked singularity with exterior fields (not a black
hole in the usual usage of the word). However, the
mork of Price, ' treating the almost spherical col-
lapse of a star coupled to various massless fields,
has shown that a black hole actually forms while
the fields are radiated away or absorbed by the
black hole.
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APPENDIX

In the coordinates chosen, g« = -1 asymptotical-
ly. The g« is the square of that Killing vector
which generates time translations in our static
geometry. If no singularities are present me ex-
pect the invariant g~ to be continuous in the black-
hole exterior. Can g«ever be positive in the ex-
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terior 9 No. For suppose there existed a surface
on which g«changed from negative to positive in
the exterior. We could trace out this g«=0 sur-
face. It cannot extend to infinity (where g~ = -I)
so it will either close on itself surrounding a re-
gion exterior to the horizon, or it will intersect
the horizon and close on itself outside of it, or it
will close about the horizon. It cannot remain open
because g«has opposite signs on either side.

Vishveshwara has shown that a g« =0 surface of
a static metric is always null. " Therefore our
surface is null. In addition, it is nonsingular by
hypothesis so it is the horizon or at least part of
it. It is thus clear that gpp &0 in the exterior ex-
cept for a possible isolated surface which has g«
negative on either side and zero on it (so that it
could be open}. In any case goo ~ 0 on and outside

the horizon.
When g« ~ 0 a static coordinate system such as

ours is realizable with test particles or photons, "
and so the spatial, distance dl between two points
separated by the coordinate interval dg' is well de-
fined:

d L =g])dx dx

Clearly the g, ~ is a positive definite matrix except
on the horizon where in view of Eg. (4) it is posi-
tive semidefinite only. So for an arbitrary real
number A, and real triplets b' and d 8',

g„(ds'+nb')(dS'+&b') ~ 0.
If we choose X = -g, , d S'b~/g, ,b'b~ (providing the
denominator does not vanish), we immediately ob-
tain the Schwarz inetluality (6).
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