Do Regge Pole-Cuts Account for $\Delta \sigma_T(\pi p)$?*

Ronald W. Hanson

Department of Physics, Arizona State University, Tempe, Arizona 85281 (Received 12 November 1971)

The difference between $\sigma_T(\pi^+p)$ and $\sigma_T(\pi^-p)$ tends to level off around 40 GeV/c. Recent articles have contended the Regge pole-cuts can account for this trend. We have extended the calculations from a previous paper on π^-p charge-exchange scattering to $\Delta\sigma_T(\pi p)$. We find that the Regge pole-cut model does not improve the single-Regge-pole predictions to the high-energy end of $\Delta\sigma_T(\pi p)$.

In a recent publication¹ a phenomenological study of $\pi^- p$ charge-exchange (CEX) differential cross section and polarizations was made using two different Regge-pole models: (1) the conspiracy model which consisted of the ρ plus a conspiring ρ' trajectory; (2) the Regge pole-cut model which consisted of the ρ plus an absorptive cut. In both cases the amplitudes were taken to have the Veneziano-type residue of $1/\Gamma(\alpha)$. In that calculation it was found that the conspiracy model was favored by the data over the Regge pole-cut model. Here we extend the same calculation to total cross sections directly by looking at the difference between $\pi^+ p$ and $\pi^- p$ total cross sections $[\Delta\sigma_r(\pi p)]$.

Recent articles have shown that a plain Reggepole model is inadequate to account for the highenergy end of the total cross sections.² It has been been suggested that a logarithmic term in the form of a Regge pole-cut be added to the plain Regge pole to explain this behavior. One might think that a similiar kind of pole-cut model should be applied to $\Delta \sigma_{\tau}(\pi p)$. This is directly related to the nonflip amplitude of $\pi^- p$ charge-exchange scattering which we have considered in the previous calculation. Thus the results from the previous calculation can be applied directly. In the previous paper we considered a conspiracy model; however, because of the conspiracy relation the nonflip part of the conspiring ρ' amplitude vanishes at t=0. So it has no effect on the total cross sections.

Using isospin analysis $\pi^- p$ charge-exchange amplitudes can be related to the elastic amplitudes of $\pi^+ p$ and $\pi^- p$ by

$$A(\pi^{-}p - \pi^{0}n) = \frac{1}{\sqrt{2}} \left[A(\pi^{+}p - \pi^{+}p) - A(\pi^{-}p - \pi^{-}p) \right].$$

Using the optical theorem, the total cross sections are thus related by

$$\sigma_T(\pi^+ p) - \sigma_T(\pi^- p) = \frac{\sqrt{2}}{2k\sqrt{s}} \operatorname{Im} M_{++}(\pi^- p - \pi^0 n; t = 0),$$

where M_{++} is the helicity-nonflip amplitude used in the previous paper.¹ This amplitude is further broken down into two parts as follows:

$$M_{++} = M_{++}^{\rho} + \lambda_{++} M_{++}^{\text{cut}}$$

The M_{++}^{ρ} is the plain ρ amplitude (the ρ' contribution vanishing in the forward direction). The M_{++}^{cut} is the cut amplitude which is generated by a convolution integral.³ The plain Regge-pole model (using M_{++}^{ρ} only) contains only one parameter. The Regge-cut model contains three parameters, including the λ_{++} factor. The data used ranged in momentum from 6 to 65 GeV/c.⁴

In the previous calculation the conspiracy model gave a χ^2 of 143 for 109 data points and the Regge pole-cut model gave a χ^2 of 257. The parameter values from the best CEX fits were used to make predictions for $\Delta\sigma_T(\pi p)$. Looking at Fig. 1, we find that both models give essentially the same results. Both solid curves give χ^2 of 15 for 18 data points; however, they consistently fall below the experimental data at 40 to 70 GeV/c. The Pome-

FIG. 1. Solid curves are predictions for $\Delta \sigma_T (\pi p)$ based on previous calculation. Upper solid curve is for ρ alone. Lower solid curve is for ρ plus cut. Dashed curve is for ρ plus cut best fit to $\Delta \sigma_T(\pi p)$.

5

1227

ranchuk theorem states that the graph should approach zero.

Next the parameters were allowed to vary in fitting $\Delta\sigma_T(\pi p)$. There was no significant change in the plain Regge-pole model. However the Regge pole-cut model was then able to better approximate the high-energy end of $\Delta\sigma_T(\pi p)$ and gave a χ^2 of five. This corresponds to the dashed curve. But this required a rather large cut correction. That is $\lambda_{++} \approx 5$. This result is in agreement with other works.⁵ However when the parameter values corresponding to the best $\Delta\sigma_T(\pi p)$ fit were used in the CEX differential cross sections and polarization calculation, astronomical χ^2 values resulted. It was further found that there is no consistent solution for $\lambda_{++} \approx 5$ for $\Delta \sigma_T(\pi p)$ and CEX differential cross sections and polarization.

In summary, both the conspiracy model and the Regge pole-cut model are unable to account for the leveling off of $\Delta\sigma_T(\pi p)$ at higher energies.

ACKNOWLEDGMENT

The author would like to thank Professor A. Ahmadzadeh for discussions.

*Research supported in part by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under Grant No. AFAFOSR-1294-67.

¹Ronald W. Hanson, Phys. Rev. D <u>3</u>, 2225 (1971). ²V. Barger and R. J. N. Phillips, Nucl. Phys. <u>B32</u>,

93 (1971); also see references in this paper.

³F. Henyey, G. L. Kane, Jon Pumplin, and M. H. Ross, Phys. Rev. <u>182</u>, 1579 (1969).

⁴W. Galbraith *et al.*, Phys. Rev. <u>138</u>, B913 (1965); J. V. Allaby *et al.*, Phys. Letters <u>30B</u>, 500 (1969).

⁵C. J. Hamer and F. Ravndal, Phys. Rev. D <u>2</u>, 2687 (1970).

PHYSICAL REVIEW D

VOLUME 5, NUMBER 5

1 MARCH 1972

Limit on Nuclear Time-Reversal-Invariance Violation from the Neutron Electric Dipole Moment*

D. J. Broadhurst[†]

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 18 October 1971)

Time-reversal noninvariance in nuclei has recently been parametrized in terms of a fourpoint coupling, of undetermined strength, of an isovector photon, a charged pion, and the nucleon current. If parity violation is introduced via the weak interaction, this coupling is restricted by the failure to observe a neutron electric dipole moment to a size which is an order of magnitude smaller than the limit imposed by present nuclear γ -decay experiments.

In a recent letter¹ Clement and Heller discuss the expected size of *T*-violating effects in nuclear γ decay arising from a possible *C* and *T* noninvariance of the electromagnetic interaction.² We investigate here the limit imposed on these effects by the failure to observe a neutron electric dipole moment.³

Clement and Heller calculate the T-odd twonucleon matrix elements of the long-range E1 and M1 multipole operators from a supposed T violation in the four-point coupling of an isovector photon, a charged pion, and the nucleon current. They make a "rough guess" as to that size of coupling constant which would correspond to a large or "maximal" effect and conclude that the most sensitive present limit on the E2-M1 phase (in ³⁶Cl) still falls short of probing such an effect. The virtue of this approach is that it avoids the consideration of off-shell nucleons that necessarily attends any attempt to parametrize *T* violation without *P* violation at the $NN\gamma$ vertex.⁴

The question arises whether the coupling they take as "maximal" would lead to observable effects in other low-energy *T*-violation tests. More use-fully, we would like to know whether the present nuclear experiments, when interpreted in their model, are more or less sensitive to electromagnetic *T* violation than is the present experimental upper limit³ of 5×10^{-23} cm on the neutron electric dipole moment (EDM). Our calculation indicates

1228