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A nucleon-nucleon interaction potential is derived which includes all exchanges between a
pair of nucleons involving a single 0. meson and any number of pion-pair inserts on the 0-
meson propagator and vertices. The reduction of the Bethe-Salpeter kernel to a potential
follows the method of Partovi and Lomon. The O.-pion and O.-nucleon couplings are restrict-
ed by the Adler chiral condition at zero four-momentum transfer, renormalized. The 0-
meson mass is taken from experimental evidence to be nearly M&. Various 0-meson widths
are considered. Widths greater than 300 MeV predict small O.-meson contributions to the
potential due to persistent cancellations between graphs. In particular near the width of
about 610 MeV predicted by Weinberg's asymptotic restrictions the 0-potential contribution
is a minimum and nearly cancels the familiar one-plus-two nucleon-pair contribution to the
potential. The corrections to the previously obtained single-pion, p-, p-, and co-meson and
two-pion potentials are such as to increase the resemblance to Hamada-Johnston and Reid
potentials or increase the resemblance to the Feshbach-Lomon potential for O.-meson widths
near 620 MeV and 660 Mev, respectively.

I. INTRODUCTION

The representation of a relativistic field-theo-
retical amplitude by a Schr Winger -equation poten-
tial has been discussed by Partovi and one of the
authors (E.L.L.).' An extension of the Blanken-
becler-Sugar reduction' of the Bethe-Salpeter am-
plitude to the nucleon-nucleon case and appropriate
calculational techniques were shown to lead to an
accurate description of the potential generated by
single- and multiple-meson exchanges for dis-
tances greater than half a pion Compton wave-
length. The calculation was made for the one- and

two-pion-, and single-g-, -p-, and -+-exchange
contributions, using masses and coupling constants
as best determined by other than nucleon-nucleon
experiments. It was shown that two-pion exchange
was very important at intermediate range (0.7-1.5
F). The resultant central and tensor total poten-
tials were quantitatively close to the phenomeno-
logical Hamada-Johnston' and Reid4 potentials for
all states. The predicted spin-orbit potential did
not closely resemble the Hamada-Johnston result,
but was qualitatively the same in the better deter-
mined isospin T = 1 case.

In Ref. 1 it was noted that two possibly important
corrections to the considered contributions re-
mained to be calculated. Two-pion-exchange
graphs with nucleon isobars in the intermediate
state had not been considered, nor had exchanges
of the T = 0, 8 = 0 o meson (sometimes called the
e meson) been included. The calculation of contri-
butions from all graphs which involve the exchange
of a single o meson and its strong coupling to two

pions is the subject of this paper.
We assume the o meson to be that T= 0, J= 0

pion-pion resonance identified to have a mass near
750 MeV. ' Its width is poorly determined experi-
mentally but is indicated to be in the range of sev-
eral hundred MeV. The Oem coupling g„can be
determined by the resonance width. There is no
experimental information about the crNN coupling
g,„. Current-algebra and chiral-symmetry postu-
lates do determine a value for the product of g„
and g „through the requirement that there is a
cancellation between nucleon-exchange and o-me-
son-exchange contributions to zero-four-momen-
tum -transfer pion-nucleon scattering. We impose
that relationship, as developed in Sec. III, on all
our numerical results.

Results are presented for a variety of values of
g„corresponding to o-meson widths of 100 MeV
to 2000 MeV. Particular attention is paid to the
600-700-MeV range of widths which correspond to
a soft-pion-dynamics condition proven by Wein-
berg' on the assumption of good asymptotic behav-
ior of tree graphs. This is the same condition that
leads to M, = M~ and M„,= v 2 M~, in good agree-
ment with the experimental masses.

The expected large value of g, „ implies that one
cannot neglect higher -order v-meson-exchange
graphs in which the o meson converts to two pions
any number of times. When the two pions are re-
absorbed on a nucleon line, vertex radiative cor-
rections are produced which alter both the range
and sign of the interaction. The contribution of
such graphs is discussed in Sec. II, and the rele-
vant calculations are described in Sec. IV. If the
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FIG. 3. Nucleon-nucleon scattering two-pion-exchange
diagrams with 0-meson corrections to a four-point pion-
nucleon scattering vertex. Particles are represented as
in Fig. 1. Momenta correspond to Eq. (40).
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potential. The opposite sign of the single-pion-
pair-vertex correction from the no-pion-pair- and
two-pion-pair-vertex terms leads to strong cancel-
lation.

In Sec. V the resultant potentials are presented
for various assumed o-meson widths. Their effect
on the total predicted potential is discussed and
compared with phenomenological potentials.

II. THE 0-MESON- EXCHANGE CONTRIBUTIONS

(e)

FIG. 1. Nucleon-nucleon -s@ittering diagrams of o-
exchange type. ' Ntie~leons are represented by —,pions
by, and-0"~csun'8:;:by----. Momenta in (a) and (b)
corresporid' t'o'- Zqsi-'(i5) and (29), respectivejy.

pions reconvert to a v meson, bubble diagrams are
formed which, summed to all orders, are respon-
sible for the physical mass and width of the o me-
son. Their effect is thus treated in Sec. II as a
distribution of exchanged-o-meson masses. All of
these effects increase the range of the o-exchange

FIG. 2. Nucleon-nucleon scattering one-pion-exchange
diagrams with 0-meson radiative corrections to a three-
point pion-nucleon vertex. Particles are represented as
in Fig. 1.

The various Feynman diagrams contributing to
the single-o-exchange potential are shown in Figs.
1, 2, and 3. The graphs of these figures differ in
having, respectively, one-o-meson and one- and
two-pion simple intermediate t-channel states.
The simplest single-o-meson exchange is that of
Fig. 1(a). When the o meson decays into two pions
which are absorbed on one nucleon line, the two
diagrams of Fig. 1(b) result. If each meson is ab-
sorbed on a different nucleon line diagrams like
Fig. 2(a) result. Figure 1(c) is the result of the &r

meson decaying into two pions at each end, each
pair of pions being absorbed on one nucleon line.
In Figs. 3(a) and 3(b) the o meson decays at both
ends but each pair of pions splits to be absorbed
on the pair of nucleon lines. Figure 2(b) re )re-
sents diagrams in which three of the four pions
from doubled-ended o decay go to one nucleon and
the fourth meson to the other nucleon. Figure 1(d)
represents pion-bubble inserts on the simple o ex-
change, while Fig. 1(e) represents bubble inserts
on the single- and double-ended o decay diagrams.

Figure 1 represents direct e exchange [(a)], mod-
ified by vertex corrections (b) and (c) and propa-
gator corrections (d) and (e). The contributions of
(a), (b), and (c) to the Bethe-Salpeter-equation
kernel and hence to the potential are calculated di-
rectly using the techniques of Ref. 1.
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The effect of the sum of all bubble inserts of the
type of Figs. 1(d) and 1(e}is to change the propa-
gator of the o meson from that of a stable particle
to that of a decaying particle of peak mass I, and
width I . Spectral representations of potentials
such as discussed in Ref. 7 allow us to represent
that change in the propagator by replacing a 5
function by the actual mass distribution of the o

resonance. That spectral function is approximated
here by an S-state Breit-Wigner resonance distri-
bution of appropriate mass and width.

The propagator modification to Fig. 1(a), i.e.,
Fig. 1(d}, is most important and hence is calcu-
lated in this paper. Figure 1(a}represents a po-
tential of range M, ' (we use 8 = c = 1 throughout
the paper) while the large width of the o meson
considerably increases the potential range. The
replacement of the 5 function by a Breit-Wigner
distribution in the spectral representation of Fig.
1(a) then produces the effect of the sum of Fig.
1(a) and all the diagrams in Fig. 1(d). The same
replacement in the spectral representation of the
contribution of Figs. 1(b) and 1(c) would have the
effect of summing all the bubble inserts repre-
sented by Fig. 1(e). However, the range of the po-
tential from Figs. 1(b}and 1(c}is already extended

by the vertex correction to —,'p, ', i.e., the spectral
distribution is nonzero for a spectral mass I,
~2p, , where p, is the pion mass. The Breit-Wig-
ner spreading would cause a folding of a narrow
distribution on a broad distribution, leaving the
spectral function little altered. We do not compute
that small correction here.

Figures 2(a) and 2(b) are actually vertex correc-
tions to one-pion exchange. They are small be-
cause of the single pseudoscalar vertex on one nu-
cleon line which introduces a factor of p, (2M) '
where M is the nucleon mass. In any case their
dominant effect is included in the pion-nucleon cou-
pling-constant renormalization. The calculation of
the small remainder is not included in this paper.

Figure 3 represents interesting graphs whose
Feynman amplitudes will be displayed in integral
form for preliminary discussion in this paper. One
cannot cut them in the t channel by crossing only
the o-meson line as in Fig. 1; hence they do not
represent a single-o-meson exchange with radia-
tive corrections. Also, as a t-channel cut through
a single-pion line cannot be made, they are not
pion-nucleon vertex corrections such as in Fig. 2.
A t-channel cut can, however, be made through
two pion lines so that these diagrams would be in-
cluded if the full T matrix for pion-nucleon scat-
tering were used in place of the four pion-nucleon
vertices and intermediate nucleon propagators.
This would also include the diagrams of Fig. 4
which have two 0 mesons each.

(b)

FIG. 4. Nucleon-nucleon scattering bvo-pion-exchange
diagrams with o-meson corrections to both four-point
pion-nucleon scattering vertices. Particles are repre-
sented as in Fig. 1.

(a) (b)

FIG. 5. Contributions to the o-meson-nucleon three-
point function. Figure 5(b) renormalizes Fig. 5(a) in the
series of diagrams consistently considered in this paper.
Particles are represented as in Fig. 1.

These corrections are discussed in Sec. VII of
Ref. 1 where it is suggested that the sum of all
such corrections may best be approximated by in-
cluding in intermediate states the baryon reso-
nances to which they give rise in the pion-nucleon
system. In particular it has been suggested that
the 0-nucleon channel gives rise to the "Roper-
resonance" P» isobar. ' This will give rise to P»
resonance amplitude differing from a simple
Breit-Wigner, and should be included in the NN
process as a correction to the treatment of the
isobar as a stable particle in intermediate states.

Numerical results of the contribution of Fig. 3
are left for discussion in a future paper in the
more relevant context of the consequences of Sec.
VII of Ref. 1. However, in Sec, IV, we display the
Feynman integrals for Fig. 3, because of their re-
lation to two-pion-exchange and 0-meson-exchange
integrals already computed. It can be seen that
they will be smaller than the related amplitude of
Fig. 1(c). The latter is computed in this paper and
is already the smallest of the computed contribu-
tions.
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As no radiative corrections are in the included
class of diagrams, we use

R R

(b) (c)

FIG. 6. Pion-nucleon scattering diagrams with 0-
exchange corrections. Particles are represented as in
Fig. 1.

III. THE o-MESON COUPLING CONSTANTS AND

mN SCATTERING

The numerical values of contributions of Figs. 1,
2, and 3 to the nucleon-nucleon potential are de-
termined by the well-known pion-nucleon coupling
constant g„„(g,„2/4v= 15}and by the lesser-known
g,„and g„. We reserve this notation for the cou-
pling strength appropriate to our restricted set of
diagrams. Hence g„„and g, include all vertex
renormalizations, but g „ofFig. 5(a) is to be
modified by Fig. 5(b}. The width of the c meson
(to two-pion decay) is known to be large so that'

g, „&0.3g„„. Our predictions are qualitatively the
same for all such g, „providing that g „is chosen
for each g, „' to correspond to a general current-
algebra rule. ' A somewhat more special current-
algebra result' is used to determine a particuQr
g, and hence a unique prediction.

In Ref. 9 Weinberg demonstrates, using only the
current commutation relations and partial conser-
vation of axial-vector current (PCAC), that the
even-isospin-exchange term vanishes for pion-
nucleon scattering in the zero-four-momentum-
transfer limit. This requires that the large zero-
isospin-exchange term due to the nucleon-pale
graph [Fig. 6(a)] be canceled by other terms at
zero four-momentum transfer. In any specific
chiral-invariant model in which only the nucleon-
pole and e-exchange graphs contribute to wN scat-
tering this means that Fig. 6(b) must cancel Fig.
6(a) in that limit, which imposes a condition on the
(properly renormalized) product of g „.and g,„.
The calculation of Figs. 6(a) and 6(b) in the zero-
four-momentum limit is simple and leads to the
simple cancellation condition

gR gR 1M -1(M 2 ~2}(gR )2

The couplings g„and g„„are renormalized in
that they are given by the a-meson decay width and
the known physical nNN coupling, respectively.

Zo1 (meson-nucleon} = g„"„N(o+i7 wy2)N .
Hence

go~= g~~

(5)

(6a)

and their Lagrangian contains a vn ~
m term such

that

ga2=2M 1(Ma 11 )g2g ~ (6b}

Equation (1) is satisfied by Eqs. (6a) and (6b), a
necessary consequence of chiral algebra, PCAC,
and the absence of other particles from the o mod-
el.

We note here for later numerical comparisons
that axial-vector-current renormalization in cur-
rent algebra requires (see footnote 8 of Ref. 11)
the Value of g, „given by Eq. (6b) be multiplied by
g„/g„(the ratio of the vector to the axial-vector
weak coupling constants). Hence g,„must be mul-
tiplied by g„/g„ to maintain the cancellation leading
to the Adler self-consistency PCAC condition~ as
needed in a strict Lagrangian o model. Both of

where g,„is obtained from the a-meson decay rate
(width) and g,„from the physical wN Vertex
strength (i.e., g2/4w= 15). The &rNN coupling is
explicitly labeled by a superscript R for renormal-
ization to be consistent with the fact that in our
Lagrangian-type theory we have included Figs.
1(a)-1(c)as separate contributions. Hence gR„
is determined by the sum of Figs. 6(b) and 6(c) at
zero four-momentum transfer, where each of
those figures have os@vertices with the g,„cou-
pling only. A simple calculation shows that Fig.
6(b) with gR„would give the result of Figs. 6(b)
and 6(c) with g,„if

gR„=g,„-6g,„'g„(42)~S(M),

where

1 1
S(M) = ydy x'dxM(M'x'y' —g2xy+ p2) '

0 0

=-M '+M '(M' —p2)in(M/p, )

+pM '(4M' —p, ') '"(SM' —p, ) cos '(2p, /M}.

(4)

Equation (8) is used to obtain g,„for use in
nucleon-nucleon graphs, given g „obeying Eqs.
(1) and (2).

The explicit "0-model" chiral-invariant Lagran-
gian due to Gell-Mann and Levy' combines the o
with the pseudoscalar -meson-nucleon interaction
in the form
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g'o » - ~2(g~/gv) g»

g», =(2) '"(gv/g„)M '(M, ' —p')g„"», (11b)

FIG. 7. Diagram for 0-meson decay. Particles are
represented as in Fig. 1.

ga~ = aM '(Mo —4 )(gv/gg)g Fr»' (Vb)

still satisfying Eq. (1).
However, a chiral-invariant system that con-

tains the p and A, mesons and the P»(b, ) and P»
nucleon isobars as well as the p and v mesons also
satisfies Eg. (1) while differing from Eqs. (Va) and

(Vb}. This system was proposed by Weinberg and
is a minimal system satisfying physical asymptotic
conditions of the sum of tree graphs. Equation (5)
is replaced by

g»(meson-nucleon) = g, »N(v, +i 7 vy, )N,

where

v, =o and v =sin)7r+cosPA,

with P = 45 by Weinberg's asymptotic condition.
It follows that

g.»=(2} '"g.» ~

Equation (10a) is to be used to determine g,"„in
terms of the well-known g„"„. The A. , meson does
not affect the»N scattering [Figs. 6(a)-6(c)] be-
cause its negative G parity prevents it from cou-
pling to the two external pion lines. It will be of
small importance to nucleon forces because of its
high mass and small width.

Reference 6 shows that

g'am= 2~M (Ma —I1 )gw»sing~

sing = (2} '" .
Taking into account axial-vector-current renor-
malization we get

these renormalizations are given by the rule: Mul-
tiply by g„lg„ for each soft-pion line and by g„lg„
for each cr-meson line at a vertex. The result is

g~o» = (gz/gv)gw»

g~/gv - 2 M g„»F = 1.3V, (13)

with I'„=190MeV corresponding to a p-meson de-
cay width I'~= 118MeV. If the value l ~

= 133 MeV
is used, then F„=180 MeV and g„/g„= 1.30, pre-
dicting I,

" = 680 MeV. We note that the latest ex-
perimental analysis of the o meson is in good
agreement with %einberg's theory. ' The original
o model predicts twice the %"einberg width, while
some experimental analyses have indicated widths
as low as 200-300 MeV.

Using an experimental value for g„/gv = 1.18,
Egs. (11b) and (12) yield F,= 850 MeV.

IV. CALCULATION OF o-MESON-EXCHANGE

POTENTIAL

In this section we present the integrals for the
potentials defined by Fig. 1(a) and the corrections
indicated by Fig. 1(d), by Fig. 1(b), and by Fig.
1(c). Although the method is described in Ref. 1,
we shall for clarity review the essential steps for
Fig. 1(a).

Direct 0-meson exchange: For the usual scalar-
meson-nucleon Hamiltonian

H~ = g~„NoN, (14}

which again satisfies Eg. (1), but leads to a o-
meson decay width one half as large as Eq. (Vb).

P» and P» pole diagrams in mN scattering can-
cel in the soft-pion limit, as given by the trans-
formation matrix elements of Ref. 6. The indepen-
dent cancellation of the o-meson exchange with the
nucleon-pole diagram remains in this soft-pion
theory.

We shall assume Eq. (1}to hold in all our nu-
merical calculations. However, it is possible that
some acceptable representation of chiral algebra
and PCAC depends on a mN scattering-amplitude
cancellation in which the nucleon-pole and @-
meson-exchange diagrams do not cancel between
themselves. In such a case very different results
would be possible.

We conclude this section with the relationship
between g", and the 0 decay width. A straightfor-
ward calculation of the rate from Fig. 7 gives

r.=3(8»M. ) '[1-(2q/M. }']'"(g."„)'.
We note that the use of %'einberg's result, Eq.
(11b), gives a numerical value of 1,= 610 MeV if
kg =tNp a11d gg/gv ls determined by tile Goldbel'gel'-
Treiman relation
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the relativistic second-order amplitude produces
the kernel for the Bethe-Salpeter amplitude

(2)/)
-3 (15)

where 1(') is the identity operator on the ith nucleon
and

x'= 6'+M, ', L=p'-p,
where p (p ) is the initial (final) relative momen-
tum of the two nucleons.

To obtain the appropriate momentum-space po-
tential, the matrix element of the kernel is taken
between the initial- and final-state (positive-ener-
gy) spinors and a kinematic factor is re(luired to
compensate for the change from relativistic to non-
relativistic unitarity. '

)t.,

u~'~(p, s, ) =(2M) '"(K+M)'"

E+M

(18)
and u (p, s,.) is its Pauli adjoint, where y„ is the
Pauli spinor for the ith nucleon.

Expanding to first order in Q, but making no ap-
proximation in A, Eqs. (17) and (18) lead to

V (Z, Q) = V,(n) + -, i Z (Z xQ) V„(a),

with

K = 2(O, + O, )

and

X.; X,;V'(&, Q) y, , g,,
/

=(M/E')'"u, (p', s,')u, (-p', s,')

V', (6) =-(2)/) 'g, ~2M 'Da) ',
V'(~) =4(22)-'g. „'M-'(D —M)~-2,

with

(20)

(21)

with

xlf~" u, (p, s,) u, (-p, s2)(M/E)'",

(17)

(pt2 + M2}l/24=5'+p, E =(P'+M')'",

We have

~2 g2 ~ M 2 and + M2+ &g2

(22)

with

The configuration-space potential is then obtained

by a Fourier transform of V'(Z, Q)

V'(r) =V,(3)+1. KV (2.), -

V'(2 }= J) d'b, e V,(&)

'(t — ') '"(4 )
' " ' -'e ' 'e ' f tdt(t' —()'"(t' e') 'e '""

g&N 1
(23)

and

)dr

lM 2 g 2[1 (1
'

ot)1/2](2e-3+ M 3„-2)e Mar + l/ 2g 2M 33 -2 df 2 +
'

(i2 1)l/2(f2 ct2)-le-2urt
1 Met

with

o. = M, /(2M) .

The integrals in Eqs. (23) and (24} [which come
from the contour integration over the cuts of
V'(Z, Q)] are strongly damped by the e '""' fac-
tors. For 3 & —,'p, ' they are less than 0.1% of the
first terms which arise from the pole of V'(Z, Q}.
We shall neglect the cut contribution in consider-
ing the effect of Fig. 1(d) contributions.

Bubble-diagram inserts: The bubble diagrams to
all orders such as those in Fig. 1(d) have the ef-
fect of shifting the o-meson mass to its physical
value and also of producing a decay width. Analyt-
ically it moves the pole off the real energy axis
onto the second sheet, and in the pole approxima-

tion one obtains the Breit-Wigner formula for the
spectral distribution on the real axis. Taking into
account the elastic threshold behavior for an S-
wave m-7t system in addition to the resonance pole,
but no other singularities, one obtains the spectral
distribution

p(m') =Nm -2(m2-4q2)[(m'- M '}'+M.'r '] -'

(25)

with normalization

m '(m' —4p, 2}dm2

4)(2 (m —M~ ) +Md) 1"~

and m being the mass variable of the "spread" o

meson.
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and

V'(m, r)= g, „'( -2vMr) '(mr) '(1+mr)

x[2M (4M2 m2)1/2] e-mr

(27)

The upper limit on the integral of Eq. (26} is put
at 4M' because p(m) is small in this region and be-
yond. At m'=4M' the (4M' —m')'" factors cause
both the pole and cut contributions to Eqs. (23) and
(24) to have canceling imaginary parts The. real
part of the pole term like the cut term is small for
m'=4M'. Hence it is consistent with the reality
of the sum and the neglect of the cut term to stop
the integration at that point.

0-meson and two-pion exchange: The two graphs
of Fig. 1(b) represent the case of a direct o-nu-
cleon vertex on one nucleon, with the decay of the
o meson and absorption of both decay pions on the

In the approximation that the mass spread is the
only important consequence of the sum of bubble
diagrams the appropriate potential due to Figs.
1(a) and 1(d) is obtained from

4N~

V'„(r) = il dm'p(m') V'(m, r),J 4]jf

where V', (m, r) and V'(m, r) are obtained from Eqs.
(23) and (24) by substituting m for M, . Dropping
the inconsequential integral contributions we have

V', (m, r) = -g,„'(SvMr) '(4M' —m')'"e
and

I2 =Ii(p- -p, p'- -p', 'Y —'Y ),

(29)

where the notation is that the four-momenta of the
two nucleons are W+P and W-P, so that P'=P"=0.
The energy is expressed by 2W.

We expand to linear terms in Q and use the Pauli
representation of the spinors to that order as fol-
lows:

$2(/)2) 4n-2$(/2)[y(n2) 1]—' jE . (g &(Q)

(30}

y
i 1 2) +y(2)l )'- 2$(g2) + 4I) -2[4)(g2) 1]akim .(n )&Q)

with

P(z) = [1+(2M) 'z]'" .

We get

other nucleon. The relativistic perturbation theory
for these graphs produces the amplitude

&(') =-6i(») 'g. 'g..g. [(p' p-)'-M'] '(I +I.}

(28)

with

(,) y( ) (W+ p' —k) + M
1 Y5

(Q pi }V)2 M2

( ) (k' —p, ') '
' (& p'+p—)' —p'

1 1
M(EE') '"(I,+I,), =-2Mi(4w) '

dy xdxD '(xy(t)(I).') +(xy —1)[1—P(LP)]],
0 0

1 1
M(EE') / (Ii+Im)~=4Mi(4v) dy xdxD [2xy[P(h ) —1]+(xy-1)Q '(LP)[1 —Q(b )]~},

0 0

with

D = M'x'y'+ p, '(1 -xy) + 6'[x(1 —x)(1 —y) + —,'xy(1 —xy}] .

(31)

It is found that putting the external legs on the mass shell, i.e., p' =p" = W' —M', results in a negligible
alteration of the above results. This is equivalent to dropping the second term in each integrand (i.e.,
those proportional to xy —1) and the term —,'xy(1 —xy) in D."

Defining the configuration-space potential as in Eqs. (23) and (24), we have

J, 1-y, 1-x „(n'+M.')(a'+r„„) (32)

with

)) aw =3(») ga~ g//// gw// M

and

, 1-y, 1-x „(n'+M, ')(~'+v„) (33)

v.„„=x '(1-x) '(1-y) '[M'x'y'+ p'(1-xy)].
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(35)

In performing the integral over 4 by contour integration in the upper half plane, one obtains contribu-
tions from the poles atiM and iVr and from the cut with branch point at 2iM .We have verified that the
cut contribution is less than 1$~. As in the case of direct o-meson exchange, the cut term can be ignored
together with contributions to the integral from the term proportional to e "~ for which v &4M'. Hence

' ydy ' xdx Q(-M, ')e "'"-P( ~)-e "~
() )( + 21 —y 0 1-x M~ -v',

in which

x[~(L+~W~)[L y( -r)] e-'~ —M.-'(1+M.r)[1 y(-M.-')] e "0"] (36)

y(~) = y(~)9(4M' -7) .
The coefficients of e "o' in E[Ls. (35) and (36) can be reduced to single integrals using R(M,') where

j. I
R(P) -=ydy x'dx[M'x'y'-p, '(1-xy) -x(l-x)(1-y)P] '

0 0

fl
c-Ry(fy[ fIln[(1 y)F2+M&y2]+(f)& 2c)f(y)j2J, (3V)

y[ '--(1 y)P, c-=M'y'+(1 y}P-

q&0.

q
'" ln(2p, *+b+q"')(2p' 5+—q'") ' q&0

f(z) =
2(-q) '"tan '(-q) '"(2p, '+L)) '

c-meson and double two-pion exchange: The graph of Fig. 1(c) represents the case in which the ex-
changed v meson decays at both ends and each pair of decay pions is absorbed on a single nucleon line.
The corresponding Feynman integral requires integration over two loops. However, the momentum inte-
grals factorize into I, and I, of E(L. (29) because of the separation of the loops by the o-meson propagator
whose 4-momentum is the fixed momentum transfer. Making the same expansions and numerical approxi-
mations as in E(ls. (30) to (36) we obtain

)"'"(rl=-~ r-'{((-I')[)((I')1'e ""+2 f .),""
~M, ))(~,„)I1-y 1-x M~

V;:"b)=-4a.„.r '{[)-4(-M.')]M *()+I r)[R(M„')]'e ""

o-meson corrections to pion-nucleon scattering vertices: As discussed in 3ec. II the diagrams of Fig. 3
are not o-meson-exchange contributions, but rather 0-meson vertex corrections to pion-nucleon scatter-
ing. As such they should be included with the nucleon-isobar intermediate-state corrections to the nu-
cleon-nucleon potential. Their algebraic structure is similar to that of the previous section and we pre-
sent the form here for future use. The amplitudes are labeled by the figure number.
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FIG. 10. The 0-exchange centra1 nucleon-nucleon po-
tentia1. s for I'~ near the value predicted by Ref. 6.
M~ =765 MeV.

due to the two-pion-exchange component of the
first pair. However, V'", which replaces V' when
bubble diagrams are added, has an r dependence
much more like V'" than like V', although it still
decreases faster than V'". The similar r depen-
dence together with opposing signs of V'" with re-
spee op t t V'" and V "' cause extensive cancellation
in the sum V'~= V'~+V'"+V "'. The degree of
cancellation depends on the coupling constants.
The constraint of Eq. (1) (which implies cancella-
tion among the diagrams of Fig. 6 for zero-four-
momentum pion-nucleon scattering) tends to main-
tain approximate cancellation of V'~.

For the numerical results discussed here we
have chosen (4m) 'g„„'= 14.4 (as in Ref. 1) and
maintain the condition of Eq. (1). A choice of the
mhss and width of the o meson then determines all
the constants through the use of Eqs. (12) and (3).
We have chosen M, = M, = 765 MeV which is sug-
gested by several Veneziano" and soft-pion mod-
els (including Ref. 6) and is in agreement with ex-
periment. ' We have calculated the potentials using
M, =730 MeV also. Although parts of the potential
differ by up to 30% from that calculated with 765
MeV, a small change in o-meson width will re-
store the character of the predicted V'~, so that

—,8

I

I

I

I

l

I

I

I I I

~ 5 .6,7

-I,O—

-l,2

-1.3

I I I

I.2 1.3 l.4 l.5
I I I I—l,44 .8 .9 I.O I.I

r (0/pc)
FIG. 11. The 0-exchange spin-orbit nucleon-nucleon

potentials for I'~ near the value predicted by Ref. 6.
M~ =765 MeV.

all of the present conclusions would not change.
= 620Tables I and II correspond to the choice I', =

MeV, which is consistent with the prediction of
Ref. 6. It is also the choice for which the cancel-
lation is optimized in the range y & 2p, '. The im-
portant effect of coupling-constant renormalization
according to Eq. (3) should be noted. The coupling
constants are given in Tables I and II.

'The I, =610 MeV results are shown in Figs. 8
and 9. On the same graphs we show the nonrela-
tivistic approximation V to the potential arising
from the time-ordered tw'o-meson-exchange
graphs in which there are nucleon-antinucleon
pairs in intermediate states. The central potential

the sum of one and two "pair" terms as given by
Klein" and incorporated in the perturbation poten-
tial of Lomon and Feshbach. " The spin-orbit po-
tential shown is that arising from the two "pair"
term and given in an appendix of Ref. 15. It is re-
markable that for the chosen value of I' the a-
meson-exchange potential does significantly cancel
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TABLE I. 0-meson-exchange contributions to the central potential. (g"z)2/4x = 14.4,
(go~) /4m =157,5, (g~„) /4s =55.4 [Eq. (3)j, and (g«)2/4m=17. 43@2 corresponding to I' =620
MeV. Equation (1) is satisfied.

QP~(cut) ~

{I)
+01)5

C
yOE

C

{p)

0.40
0.50
0.60
0.70
0.80
0.90

1.00
1.10
1.20
1.30
1.40
1.50

-40.27
-18.59
-8.95
-4.43
—2.24
-1.15

-0.60
-0.32
-0.17
-0.09
-0.05
-0.03

-0.1112
-0.0172
-0.0029
-0.0005
-0.0001
-0,0000

-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000

-31.57
-15.34
-7.94
-4.31
-2.44
-1.42

-0.85
-0.53
-0.33
-0.21
-0.14
-0.09

34.79
18.77
10.52
6.05
3.56
2.14

1~31

0.82
0.52
0.33
0.22
0.15

-7.75
-4.56
-2.75
-1.69
-1.06
-0.68

-0.44
-0.29
-0.19
-0.13
-0.09
-0.06

-4.538
1~ 123

-0.169
0.044
0.064
0.042

0.020
0.006

-0.002
-0.005
-0.006
-0.006

'The contribution to V~ from the cut with branch point at 2M. See Eq. (23).

20

l2

-l2

-l6

-40—

48—

.4 .5 .6 I I I I I I I.7 .B .9 I,O I.I I.R I.5 IA lg
r (4 /pc)

FIG. 12. The 0-exchange central nucleon-nucleon po-
tentials for a broad range of F~, and M~ = 765 NeV.
I'~ =1193 MeV corresponds to the Lagrangian of Ref. 6
with g~/gv =1, or that of Hef. 10 with g~/gv =1.37. The
Lagrangian of Bef. 10 with g&//gv =1 predicts F~ =2386
MeV.

-io
I

I -I I I 1 I I I I I

,5 .6 .7 .B .9 I,O I,I I.2 IP I.4 I.5
r(4/pc)

FIG. 13. The a-exchange spin-orbit potentials for the
saIDe cases as Fig. 12.
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TABLE II. a-meson-exchange contribution to the spin-orbit potential. (g~N) /4s =14.4,
(god) /4x =157.5, (gc„) /4m=55. 4 [Eq. (3)), and (g«)t/4m =17.43Pt corresPonding to I' =520
MeV. Equation (1) is satisfied.

V so AV ~„(cut) '
.(u)

V 07'
SO V am7I

SO V OE
SO

0.40
0.50
0.60
0.70
0,80
0.90

1.00
1.10
1.20
1.30
1.40
1.50

-10.1
-3.51
-1.35
-0.55
-0.24
-0.11

-0.049
-0.023
-0.011
-0.005
-0.003
-0.001

0.0783
0.0097
0.0014
0.0002
0.0000
0.0000

0.0000
0,0000
0.0000
0.0000
0.0000
0,0000

-7.80
-2.69
-1.05
-0.45
-0;21
-0.10

-0.051
-0.027
-0.015
-0.005
-0.002
-0.001

6.24
2.59
1.16
0.55
0.27
0.14

0.07
0.04
0.02
0.01
0.01
0.00

1.30
-0.00
-0.19
-0.17
-0.12
-0.07

-0.05
-0.03
-0.02
-0.01
-0.01
-0.00

-0.261
-0.104
-0.084
-0.068
-0.049
-0.034

-0.023
-0.015
-0.010
-0.003
-0.002
-0.001

'The contribution to V~ from the cut with branch point at 2M. See Eq. (24).

the "pair" potentials, A small change in F, would
improve the cancellation over certain ranges of r.
The c exchange in pion-nucleon scattering [Figs.
6(b) and 6(c)j is indeed adjusted to cancel at zero
four-momentum the contribution of Fig. 6(a), which
is entirely from the nucleon-antinucleon pair,
time-ordered graph in that limit. However, the
cancellation between V'~ and V is affected by Fig.
l(c) and also by being far from zero momentum
transfer. For F, much smaller or larger than
600 MeV the cancellation no longer occurs (al-
though it is still exact for zero-four-momentu~
pion-nucleon scattering); but for the Weinberg-
model width the "pair suppression" effect of o ex-
change persists in the nucleon-nucleon interac-
tion. " Hence the Weinberg model seems to build
in the smooth and slow extrapolation from zero
four-momentum needed for direct application of
soft-pion results. Perhaps this is related to the
asymptotic conditions imposed on tree graphs in

e model e

In Figs. 10 to 13 we show the effect of changing
I', on V',~ and V„~. For x& 0.4p, ' cancellation is
better than 50% of the direct V'" term for I', be-
tween 300 MeV and the second largest value tried
of 1193 MeV (which corresponds to the g s„of
Gell-Mann and Levy" using the reduction factor of
g»'/g„'). For I', between 540 MeV and 700 MeV
the cancellation is better than 90'%%u~ leading to V's,
which do not alter the previously obtained theoreti-
cal potential in a major way. The V'~ results of
Tables I and II, corresponding to the choice I'
=620 MeV giving optimum cancellation, are dis-
played in Figs. 10 to 13.

The effect of the addition of the V E for I = 620
MeV to the theoretical potential of Ref. 1 is shown

in Figs. 14 and 15. In Ref. 1 the potential is quan-
titatively similar to the Hamada-Johnston poten-
tial. ' The correction decreases the difference to
the Hamada-Johnston potential. I', = 680 MeV
makes the potential more like the Lomon-Fesh-
bach perturbation-theoretic potential of Ref. 16.
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HJ

~ ~ ~ ~ ~ ~ 0 ~ ~ tyM+y &E (620)C

yM+ya E (680~C

I I I I

0.7 0.8 0.9 I.0
r (W/jtfc)

I I I I

I.I I.2 I.3 l.4 l.5

FIG. 14. The effect of adding the a-exchange central
potential (for 1"

~ =620 or 680 MeV) to the two-pion-ex-
change potential (T PEP) +one-boson-exchange potential
{OBEP) of Ref. 1 is compared with the potentials of Refs.
3 and 16 in the ~SO state.
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FIG. 15. The comparisons of Fig. 14 are made for
the 3S& state.

The rapidly increasing difference near r =0.5p, '
could be absorbed by altering the boundary condi-
tion.

The Lomon-Feshbach potential included the nu-
cleon-antinucleon pair terms which apparently
compensate for lack of relativistic corrections
present in the potential of Ref. 1. With respect to
implications for the short-range interaction the
Hamada-Johnston potential requires a hard (or
nearly hard) core, while the Lomon-Feshbach po-
tential was required in combination with a boundary
condition at r = 0.5p, '. Clearly the new potential
obtained here for r & 0.5p, ' is likely to be consis-
tent with nucleon scattering data, if I', = 600-700
MeV.

In terms of the program discussed in Ref. 1 the

FIG. 16. The effect of adding the 0-exchange spin-
orbit potential (for I'~ = 620 or 680 MeV) to the TPEP
+OBEP spin-orbit potentials of Ref. 1 is compared to
the spin-orbit potentials of Ref. 3. The spin-orbit po-
tential of Ref. 16 vanishes for r&~p ~.

effect of intermediate-state baryon resonances re-
mains to be calculated. This can be done in terms
of the same reduction methods from the relativistic
kernel and also using current-algebra restrictions.
In the Weinberg model' the effects of 6 and Pyy
baryon intermediate states cancel out for zero-
four -momentum pion scattering. If the cancella-
tion persists again for the nucleon-nucleon inter-
action there will be only minor modifications in
the low-energy predictions. Energy dependence
near resonance-production threshold will, how-
ever, be important. We hope to compute this con-
tribution soon.
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Threshold relations, following from scaling and duality, are obtained f'or inelastic neu-
trino-nucleon interactions. Reasonable agreement with existing experimental data is found.
It is noticeable that some of the relations are in disagreement with predictions from the
parton model.

I. INTRODUCTION

It has become clear recently that there exists
evidence for duality and scaling in inelastic elec-
tron-proton scattering. " In particular, the
threshold relations, discovered by Bloom and
Qilman, ' are very close to the experimental data.
At present it is not clear whether the data on the
neutron-to-proton ratio converge to the Bloom-
Gilman prediction or if they go to zero. ' If the
second case turns out to be correct, almost aQ
presently existing models are in trouble. Be-
cause of the present uncertainty in the data we
will not consider seriously this eventuality.

As was pointed out by Llewellyn Smith the pre-
dictions following from duality and scaling are
not always consistent with those following from
the parton model with spin--,' constituents. ' It
is therefore of great interest to find further tests
of duality in inelastic form factors. To this end

we have turned our attention to deep-inelastic
neutrino-nucleon scattering where new experi-
mental data are expected to come out in the near
future.

The plan of this paper is as follows: In Sec. II
we fix our notations, in Sec. III we review ihe
fundamental work of Bloom and Gxlman, zn Sec.
IV we extend the results of their work to inelastic
neutrino-nucleon interactions. In Sec, V we pre-
sent a discussion of the results.

II. NOTATION

The metric we choose is (+---). All our
states will be normalized as

(pi p'& = (2s)'2ZV'(p —p').

The kinematics for inelastic electron-proton scat-
tering are depicted in Fig. l.

four-momentum of incoming electron,


