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The effects of short-distance interactions between hadronic weak currents on the struc-
ture of weak transitions are investigated within VA'lson's scheme of operator-product ex-
pansions and broken scale invariance. It is pointed out that a consistent understanding of
these effects can be attained with the hypothesis that the dimensions of nonexotic fields are
near-canonical while those of exotic fields are anomalously high. The lack of structure-
dependent effects 1n the AI = 2 palt of ord1nary nonlepton1c decays the suppress1OIl of the
QI= 2 part in the same, and the slnallness of the E'&~-I(:20 mass difference are first ex-
plained following Wilson's arguments. The structure of higher-order semileptonic decays
disobeying the 88 =A@ role is then discussed. Finally, the important role played by short-
distance effects in radiative nonleptonic decays of hadrons is elucidated and a mechanism
for the large asymmetry parameter observed in the reaction Z+ p + y is obtained.

I. INTRODUCTION

At present the local current& current Hamilto-
riiRQ density of the Cabibbo theory is geD61 ally 16-
garded as providing R highly successful theoretical
framework for the description of the observed
weak interactions of hadrons. Combined with SU(3)
symmetry or current algebra, „ it can explain an
impressive number of different results. ' There
axe, however, some problems connected with the
shox't-distance behavior of products of hadronie
weak currents that cannot be properly treated with-
in the above scheme. These involve possible ef-
fects of the structux6 of %6Rk iQterRctions which

may appear %'hen the configui Rtlon-spRce distRDces
between the points of interaction of these currents
have to be integrated over. In the picture of weak
interactions being mediated by spin-one bosons,
these complications ax'ise whenever there is a loop
integration over the four-momentum of the 8" bo-
son. Ordinary nonleptonic decays, the Ko-Ko
transition contributing to the K1-K~~ mass differ-
ence, higher-order weak decays involving W' loops,
radiative DoDleptonic decRys —Rll Gf these beloQg
to this category of theoretically problematic weak
px'oc6 8868.

Ovex the last few years, attempts have been made
to handle the problem of the quadratic divergence 2

of single W loops in the weak intermediate-boson
theoxy. Thus, for example, Bouchiat, Diopoulos,
and Prentki' have shown 'that if the SU(3) x SU(3)
symmetry of the strong-intex'action Hamiltonian is
broken only by terms belonging to the (3,3*)+ (3*,3)
x'epresentation of that group, the 48 =1 and the
68=0, parity-violating, ordinary weak nonleptonic
transitions (these are the only ones observable)
are free from quadratic divex'gences in the lowest-
order diagrams. More recently, with the same

assumption, Geshkenbein Rnd Ioffe 4 have obtained
an identical result for nonleptonie weak processes
that emit one and two real photons. However,
these arguments cannot rule out the appearance of
structure-dependent effects through the presence
of enhancement ox' suppx'6ssion fRctox'8 dependiIlg
on the mass M of the weak boson which shouM be
taken to be large compared to the typical hadron
mass m~ -1 GeV. Such factox'8 may originate from
Cie loop iQtegx'RtioD even if the quRdi Rtie divex'-

gence is absent and these Rre not taken into account
by the simple local current~current Hamiltonian
density.

The purpose of the present paper is to study qual-
itatively but systematically the origin and the be-
havior of such structure-generated factors. Given
Wilson' s ' postulates of opex'ator-product expan-
sions and scale invariance' at short distances,
this study can be made in configuration space with-
out depending too much on the details of the mech-
anism that is taken to mediate the weak interac-
tion8 so loQg Rs it is Dot wildly uncoDveDtioQR1.
Thus we do not need to use any specific form fox

the 5'-boson propagatox' as in Refs. 3 and 4. All
that 18 Qecessaxy is that Rn effective propRgRtox
be written in configuration space as M'W„„(xM), '
where

d4xW„„(xM) = g„„/M4.

Here M is the mass typifying the structure of weak
interactions and will be assumed to be» m~. The
structure-dependent effects that we want to study
will appear in the amplitudes of interest through
powers of M/m„so long as we assume that no cut-
off A is needed for weak interactions once the ef-
fective propagator is introduced. Whenever this
last assumption is incorrect, some powers of M



will have to be replaced by the corresponding
powers of A in conformity with conventional usage.
With this propagator, the effective Lagrangian
density for ordinary nonleptonic weak transitions
can be written as

2~(0) = ljd~x W""{xM)22J
x[TZo~(x) J'o(0)+TJo(x)Zo~(0)]

(1)

where G is the Fermi constant and J~ the Cabibbo
current. Since W„,(xM) goes to zero exponentially'
when x is large, one can appreciate the impor-
tance of the small-x contribution to integrals such
as the one in Eq. (1). It is for estimating this kind

of contribution thRt the technique of scale-inval i-
ant operator-product expansions at short distances
is most useful. Employing this method, the power
of M originating from this type of integral can be
obtained in terms of the scale dimensions of the
hadronic currents and that of the leading field con-
tributing to the operator-product expansion. Some-
times we may encounter the situation (see Sec. VI
below) where the dominant scale-invariant terms
in an operator-product expansion happen to vanish
owing to external constraints in the problem {such
as electromagnetic gauge invariance in radiative
weak decays). In that case we shall be interested
in the leading contribution from the lowest-order
scale-breaking term. The effect of such a term
on the power of M that one is trying to seek can be
evaluated using the spurion technique'. outlined by
Wilson (see Secs. II and V below).

It should be abundantly clear from the above dis-
cussion that in order for our statement on the
power of M as an enhancement or suppression fac-
tor to be meaningful, we would need to have some
idea about the dimensions' of the relevant opera-
tors. We know that the hadronic currents J „' and
the stress-energy tensor 6„,must have dimensions
3 and 4, respectively, as predicted canonically by
a free-quark model, because of the nonlinear con-
straints of current algebra and of the commutation
relations of the Lorentz group. However, as em-
phasized by Wilson, the dimensions of operators,
not subject to such symmetry constraints, may be
cha~ged" from their canonical values by renor-
malization. These changes are expected to be dif-
ferent for different fields. There is no a peso~i
model-independent way of telling whether the di-
mension of a renormalized field is slightly or
markedly different from its canonical value. We
shall, therefore, make a simple hypothesis which
can, in principle, be rejected or substantiated by
future experiment. This assumption, "to be con-
sidered on its a postezsors merits, will enable us

to develop a coherent picture of structure-depen-
dent effects in weak transitions that is consistent
with present knowledge. The hypothesis can be
stated in two parts in the following way: First, if
an operator is nonexotic [i.e., it belongs to the
representations 1, 3, 3*, 8, 10, 10* of SU(3)],
then its dimension is not'2 significantly changed
from the canonical free-quark-model value by re-
normalization. Second, if an operator i.s exotic

[ i.e., it belongs to a higher representation of
SU{3)], then its dimension is markedly increased
froID the canonical value Rs R result of 1 enormall-
zation. This hypothesis will not be needed in our
discussions of higher-order weak leptonic decays
with bQ =0, ~68~=1. However, the first part of it
will be required in understanding the absence and
presence- respectively of structure-dependent ef-
fects in the 4I =-,' part of ordinary nonleptonic de-
cays and in radiative nonleptonic decays. In pa~-
ticul, m", me obtain the nese vesult that a large viola-
tion of 8U(3) symanetry should be expected tn iite

)alley. On the other hand, the second part of our
hypothesis will be needed to explain the suppression
of the ~I = —,part in ordinary nonleptonic decay and
the absence of any significant structure-dependent
effects in the K,'-K,' mass difference as well as to
predict the suppression of short-distance effects
in 4Q = -&8=+1 and &8=2 semileptonic decays.

The plan of the paper is as follows: A summary
of the set of assumptions underlying our considera-
tions is given in Sec. II. Section IG contains a dis-
cussion of the argument that structure effects
leave the ~I =-,' part of ordinary nonleptonic decay
unaffected but strongly suppress the 4I = —,

' part.
Section IV is on the K,'-K,' mass difference and ex-
plains why lt cannot impose a severe bound. on M.
In Sec. V we consider three kinds of higher-order
structure-dependent weak semileptonic decays:
(a) those of the type o. -PlT, where n, P are ha-
dronic states (including vacuum) differing by one
unit of strangeness and I is a lepton, (b) those
with b8=-bQ =+1, and (c) those with 48=2. Sec-
tion VI presents our considerations on radiative
nonleptonic weak decays of the type A- B+y where
A., B are hadrons and shows why short-distance ef-
fects enhance SU(3)-symmetry-breaking terms.
The final section, VII, summarizes our conclu-
sions.

II. ASSUMPTIONS OF THE MODEL OF SHORT-

DISTANCE SCALE INVARIANCE

It wiQ be convenient to summarize our basic as-
sumptions and rules here. These are based on the
set of hypotheses introduced by Wilson' and are
enumerated as follows:

(1) Products" of two or more local operators
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near the same space-time point can be expanded
as a sum of terms involving local operators at that
point. Thus for two local operators A and B, we
can write

A(x)B(y) ~ gf„(x-y)O„(y),

where O„are local operators and f„are c-number
functions involving powex's of x -y. Similarly,

A(x)B(y)C(z) ~ g f„(x-y, x -z)O„(y),

Rnd so oil. Tile sllllls ln Eqs. (2) Rlld (3) Rx'8 fllll'te.
(2) The nature of the short-distance singulari-

ties of the functions f„ is determined by the sym-
metry principle of broken scale invariance. Thus
in Eq. (2)

f„(x-y) ~ (x-y) '~ 'a'",

where d„, d~, d„are the dimensions' of A, B„and
0„, respectively. Similarly, the short-distance
singularities of f„(x-y, x -z) can be determined

up to an arbitrary dependence on the ratio (x —.z)'/
(x -y)' about which we have nothing to say.

(3) Among the local operators of the theory, the

unit opex'ator I has dimension zero, the octets of
hadronic vector and axial-vector currents V„' and

A„' have dimension 3 and the stress-enex'gy tensor
e„„has dimension 4.

(4) The other local operators are all constructed
from the free-quark model with the rule that the
dime'nsion of a nonexotic operator is left at a
nearly canonical value whereas that of an exotic
one is increased to a markedly anomalous value

by renormalization. Thus the scalar and pseudo
scalar densities u', v' (= q-,'A. 'q, iq-,'A. 'y, q, respec-
tively, in the free-quark model) have the dimen-
sion 4= 3. Similarly, the antisymmetric tensor
current T~g, wIlich 11as the folnl Q'0'~~gA. g ln the
free-quark model, has the dimension d~= 3, and

so on.
(5) The Hamiltonian density can be written as

e„(x)=e,',"(x)+au) (x)+ X,u, (x)+ A.,u, (x),

where the A.'s are constants. The last two terms
in the above equation break SU(3) & SU(3) invariance
and A,„A., have the ordinary dimension 4 —4 in

mass units. If the SU(3) &&SU(3)-invariant scale-
breaking term Iv (x) is a c number (as the author
would guess), X. has the dimension 4 in mass units.
If K(x) ls Rll opex'R'tol" (e.g., lt II1Ry bl'eRk the RXIRI-

vector baryon number'4), its dimension A, is as-
sumed to be &4 so tI1at A, has the ox'dinaly dimen-
sion 4- &, in mass units. This assumption is nec-
essary to keep all symmetry-breaking interactions
superrenormalizaMe. ' However, the lowest di-

mensionaI operator in the free-quark model that
is SU(3)x.SU(3)-invariant has dimension 6. Hence
&f w(x) is a q number, it and the corresponding
pseudoscalar operator w, (x) will have to be treated
as exceptions" to rule (4).

(6) The limit X's-o takes one to the skeleton
theory which is scale- and U(3) & U(3)-invariant.
Operators in the skeleton theory will be assigned
the superscript (0). Symmetry-breaking effects
on these operators will be evaluated by interpret-
ing the A.

' s as spur ions belonging to the U(3) x U(3)
conjugate representation of u,. (x) and zv (x).

III. -ORDINARY NQNLEPTONIC VfEAK DECAY

d'xW'~'xm TZ+~& Z~ 0 +H.c. .
(5)

In Eq. (5) 8 is the Cabibbo angle, 8 = y'-g, and the
superscripts & and S stand for the SU(3) index com-
binations 1+i2 and 4+i5, respectively. To study
the small-x contribution to the integral in Eq. (5),
we wxite

TZ~I(x)Z', (0} g C„„(x)O„(O), (6)

where the subscript n incorporates both possible
Lorentz and gauge indices. Substituted in Eq. (5),
Eq. (6) yields

g~(0) =—cose sing g [C„(M)O„(0)+ C„*(M)0I (0)].
6

n

In Eq. (7)

C„(xx) xx'J a'xW"(xxx)c„„„(x)-M'=

Rlld sllllllRI'ly fol' C„(M), wllel'8 d„ ls tile dimension
of 0„. From the structure of the above integral we

see that C„(as well as 0„)has to be a Lorentz ten- '

sor of even rank, e.g., O„could be a scalar field.
Because of the p, , v symmetry in Eq. (5) and be-
cause Z~ has to alter strangeness, the only SU(3)
representations to which O„can belong are the
symmetric octet and the 2V-piet. First of all, we
note that the 0„'s cannot be the scalar and pseudo-
scalar densities u'(x), v'(x) which have the dimen-
sion 4 with I & 4&4. This is because these den-
sities are divexgences which vanish between states

%e shall now present a x'eview of Wilson's"
consideration of nonleptonic weak decays. The ef-
fective Lagrangian density for such decays was in-
troduced in Eq. (I). For the observed &Q =AS,
I&SI = I decays this can be further specified a,s

GM4
C~(0) = cos8 sin8

2
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of equal four-momentum. In the free-quark model,
the field of smallest dimension that can contribute
can be written as

0, =:q (1 —y, )-,
'

h. ~tqq (1 —y, )~zX~q: . (8)

O„as given in Eq. (8) in terms of the quark spinor
q, has the canonical dimension 6 and contains both
&I =-,' and 4I = —,

' parts. The former belongs to the
octet ls nonexotlc Rnd —ln RccordRnce with our
hypothesis -ought to have an actual dimension
nearly equal to 6. Qn the other hand, the latter
belongs to the 27-piet, is exotic, Rnd hence by fiat
should have a significantly higher dimension. This
means that C», (M) is suppressed through weak-
structure effects by a power of M '. However,
C», (M) is nearly independent of M so that neither
enhancement nor suppression occurs in this case;
hence the AI =-,' part of Z~(0) does not depend too
much on the structure of the weak interactions.
Wilson has, in fact, shown" that the above con-
siderations of 4I = —,

' nonleptonic decay are per-
fectly compatible with current-algebra treatments
of the same with a local cux'rent-cux'rent weak
Lagrangian density.

IV. SMALLNESS OF THE E, -E MASS

DIFFERENCE

Several authors" have argued in the past that
both in the four-fermion point coupling model and
in the intermediate vector-boson model of the weak
interactions, the observed smallness of the K, -K,'
mass difference 4m~0 imposed a severe upperEy
bound (-5 66V) on the weak-interaction cutoff A.
Since presumably the mass M —considered in this
pRpex' —ls &A, this would suggest thRt M is not,
that large compared with the typical hadronic
mass of 1 06V. Such R fRct would be inconsistent
with the basic approach of our work. Moreover,
it would raise the interesting puzzle why the par-
ticle mediating weak interactions has not been
seen so far. We shall show in this section that
within our theoretical framework one can under-
stand why the structure of weak interactions is un-
able to affect 4m', significantly, so that its ob-
served smallness cannot be used to generate a
strong upper bound on M. The gist of this argu-
ment was given by Wilson in the third paper of
Ref. 5.

The effective Lagrangian density for the K'-Ko
transition causing the K~0-%20 mass difference can
be written in our notation as"
Z„r—{0)=-,'O'Ms cos'8 sin'8

x d4x d4y d z W~'M x-y TV Mz

~ T~„"(~)~„'(~)~ ( )~:(0).
(9)

As discussed in the third paper of Ref. 5, the dom-
inant part of the integration comes from the region
where x, y, z are all of the order of M ' in other
words, when all four currents are at short dis-
tances. In the W-boson picture this region is con-
tained in the diagrams with overlappin'g 8' loops"
[e.g., Fig. 1(a)]. Thus the operator-product ex-
pansion of present interest is of the type

T~ „"(~)~ „'(~)&,"(.)&'.(o)

In Eq. (10) 0, has to be an exotic field carrying
two units of strangeness. Substituting Eq. (10) in

Eq. (9), we have

Zrr(0) = —,'6' cos'8 sin'8+ f, (M)0, (0)

+ non-short-distance part,

j, ( ) MfMd yf=d yfd ety"'(M(x-y)(

&& W" {M~)f,„„,.(x, y, ~)

d( being tile dlmenslon of OI. alice agalll, f( (as
well as 0, ) has to be an even-ranked Lorentz ten-
sox', e.g., a scalar. In the free-quark model, the
fields of lowest dimension that can contribute to
0, in Eq. (10) are: q-,'X~tqq-,'X~tq:, :qy„-,'Xvtqq
~yl"-,'A. ~q:, etc., all of which have the canonical
dimension 6. Thus in the free-quark model [or,
equivalently, in the approximation of retaining only
the vacuum intermediate state in Eq. (9), as made
in Ref. 15] the K, -K, mass difference is propor-
tional to G'cos'8 sin'OM'; for large M this is too
big to fit the known mass difference. However,
within our theoretical framework, the leading ex-
otic field 0, is expected to have a dimension sig-
nificantly higher than 6, thereby weakening the
bound on M. We do not know precisely what the
16Rding VRlue of dg ls. However~ we note thRt if lt
is 7, one can only say M & 25 GeV and if it is &8,
the K,'-K', mass difference becomes free from any
effects due to the structure of the weak interac-

Il N

r ~

K

FIG, 1. Taro types of contributions to the E'0 Eo
transition: (a) overlapping g loops; (b) separated g
loops.
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tions. Thus, within our theoretical framework,
the observed K,'-K,' mass difference cannot impose
a severe upper bound on M.

V. HIGHER-ORDER SEMILEPTONIC DECAYS

VIOLATING THE DS=AQ RULE

There are three types of structure-dependent
higher-order weak decays of hadrons that are of
experimental interest in the immediate future:
(a) semileptonic decays with nQ =0, ~4S~ =1,
(b) those with &S=-hQ =+I, and (c) those with

~S= 2. The first kind of reactions are of the form
e- Pl l and have amplitudes of order G' sin0 cos8.
Here o., P are hadronic states (including the vac-
uum) that differ by one unit of strangeness and l
is a lepton; typical examples are K~ —p. p. ,
K-wvv, K-we'e, Z-Ne"e, etc. (Electromag-
netic effects are ignored here and will be consid-

ered in Sec. VI. ) The second type of decays have
amplitudes of order G'cos 8 sin0 and are exem-
plified by Ko- m'e~„K'- m-e'v„Z'-ne'v„
:-'-Z e'v„etc. The third type of decays, with

amplitudes of order G'cos8 sin'0, include
"O-Pe-v, and:- -ne-P, .

(a) o.-Pl I." These decays have been consid-
ered in Refs. 15 and 19 in specific models of weak
interactions. In any model that reduces to the Ca-
bibbo Hamiltonian in the appropriate limit (i.e.,
does not have neutral weak currents), every dia-
gram contributing to such reactions has to contain
a virtual fermion line connecting the two external
leptons. This is transparent in the intermediate-
vector-boson theory for which the relevant dia-
grams are shown in Fig. 2. In general, the dom-
inant short-distance contribution can be written in
the form of an effective interaction in configuration
space as

d, ~ (0)=-,'G'siszzssSM' d x d yfd z W "(M(y — ))xW«( zM)[ yd (x)d„(D)+W —y]
4

&«(&)7),(l —y, )S~(z -y)y, (1 —y, )v(&) (12)

where S~ is the lepton propagator in configuration
space which is singular when z -y as (g -g)/
(z -y)~. This makes z -y in the dominant contribu-
tion to the integrals whereas the weak propagators

make y -x, x-O(1/M) and small. In Eq. (12) we
have thrown away certain exponentials whose argu-
ments are in effect very small. The relevant op-
erator-product expansion now is

k-q I

w (q) ~ P w(q- I -k)

{a)

TJwt(x)Zz(0)~ QD„„,(x)O (0).
x~o m

Substituting Eq. (13) in Eq. (12), we obtain

g„z (0) =g —,'G' sin8 cos8 M (k)y~ (1 —y, )

xD & (M)y~(1 —y )v(k)O +H.c. , (14)

where

D, (M) Mfd Jd=yfd" *W,gM(y z))W,„(M*)-
x S~(z -y)D""(x),

0 {k

a-q
e(q) ~ ~ w(q-z-a)

d being the dimension of 0 . Writing

S~(z -y) ~ (g-g)(z-y) ',
Z~g

we then have

D „(M)

4 4 4 Wy Y g )W Mzdxy

(z -y)'

x (z -y),D)"(x) . (15)

FIG, 2. Diagrams for the reaction e P +E +.g in the
intermediate-vector-boson model.

From the structure of the right-hand side in the
above equation it, is clear that 0 —as introduced
in Eq. (14) -has to be a Lorentz tensor of odd rank
starting with the vector field 0 . When m stands
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for the LorentK index 0', the integral 1n Eq. (15)
can be made uy of the tensors g~,g„, g~ g„,
g)„g ~, and e}„„.Thus the leading contribution
to Eq. (14) comes when 0, is the strangeness-
changing neutral current of dimension 3, i.e.,
O, = 4',"'. The maintenance of the form V-dt [be-
cause 0, is formed out of the product (8, 1}$(8,1}
of SU(3) &SU(3) representations) is noteworthy.
We can now rewrite Eqs. {14)and (15) as

g
& (0)= ~ G s in0 cos8 u (I'. )y), (1 —y, )

&&D"~(M)y, (1 —~,)v(T)Z'."'+H.c.,

D ~('(M) =M'(ag~]'y'+ bg"'y('+ cg]"y" +de~']" y,),
where a, 5, c, and d are dirnensionless constants.

According to Eqs. (16), the amplitudes for de-
cays of the type o. -PI l are proportional to
O'M'sin6cos8 as a consequence of the weak ha, -
dronie current having dimension 3. This means
that for these decays the formulas obtained in Refs,

15 and 19 relating the corresponding rates to the
fourth power of the weak-interaction cutoff A in
specific models are compatible with our considera-
tions. Using. the 8"-boson model formula, of Ioffe
and Shabalin [Eq. (16) of the second paper of Ref.
16], we note that the present experimental upper
limit" of 1.9&&10 ' for the branching ratio of the
decay K~- p. 'p, leads to the bound M ~A ~20 GeV.

{b) &S=-AQ semileptonic decays." In the in-
termediate-boson picture a diagram for this kind
of transitions involves two virtual 8"s -one of
them in a loop —as shown in Fig. 3. An additional
diagram involving a triple-8' vertex may be pres-
ent. However, this type of vertex does not seem
to be necessary on any fundamental grounds and
it ~eedlessly complicates our considerations.
Hence such a diagram will be ignored in the sub-
sequent discussion. Now the effective Lagrangian
density for the 48=-49 =+1 leptonic decays can
be written a,s

dsz= zs(a)= ', dzz'sinscns zz n -s('d)fdx„f"dzyy'z(M(z x))[ydzt(x)—dz(z)d„t(o)spsxznntnticns+H. c.].
(1'I)

In Eq. (1V),

n. ,„(z) fd'y s"'M='ty. s(My),

q is the four-momentum carried by the final lep-
ton pair, and I.„=uy, (l —y, )v is the current as-
sociated with the pair. The dominant short-dis-
tance contribution to the integral in Eq. (1V) comes
from the region where x, z -O{1/M), i.e., when
all three currents aet at nearly the same point. 'o

Hence the relevant operator-product expansion is

TZ~»(~)Z,'(~) Z~'(0) ~ g G»,„(x,z)O, (0)
x,a~0 k

Equation (18), used in Eq. (17), leads to the result

~o(0) =-,G' sin8 cos'0 L,4' (q)G)„(M)

+non-short-distance term. (19)

1

In Eq. (19)

G„(M) Zd Lfd=x (id z)yzz(td(z. —x))
k

x G„~p„{x,z )O, (0) +perm. +H.c.

From the structure of the integral

it is clear that 0 has to stand for an odd number of
Lorentz indices so that Ok has to be a Loreritz ten-
sor of odd rank such as a vector field 0,. Since it
has to carry quantum numbers with b 8 = -AQ, it
cannot be the weak hadronie current J as in case
(a) but has to be some higher-dimensional field of
dimension d„say. Thus Eq. (20) may be rewritten

FIG. 3. 8'-boson-roodel
diagrams for 48 = -EQ
= +1 leptonic decays.

e&q3 ~ e(q}

x = Sfrongeness —Chonging Cgrrenf
= Strongeness —Gonser ving Current
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Ga~PP(x g )O~s= -~q(0) + H.c.]
fx. M7-do O68 = -4Q + II c

Substituting Eq. (21) in Eq. (17) and writing 6""(q)
=g"P/M' for M'»q', we have

(0)= -"O'M' 0 sin8 cos'0 (I."0 + H.c.)
+ non-short-distanc e term. (22)

In the free-quark model, the lowest-dimensional
field contributing to O~~ ~@ is

q 8 (1 —y )-'A.'"'qq (1 - y )-' z ~ tq

which has dimension 7. Thus, with naive canonical
dimensions, we would have Z ~~ ~@

~ G2 cos'0
x sin8 I ' which is suppressed by the factor M '
since 0~~= ~~ is an exotic fieM, in accordance
with our basic hypothesis, we would expect do» 7,
i.e., an even stronger suppression of 2~~
Thus our prediction is that because of the strong
suppression factor M' ~0 in the short-distance con-
tribution, the 4S= -4Q semileptonic decays will
not be observed in the immediate future unless
there is radically new physics at the level of sec-
ond-order weak interactions.

(c) b,8=2 leptonic decays. " The W-boson dia-
graxns for these decays are identical to those for
case (b) (Fig. 2) except that two of the three ha-
dronic currents now change strangeness. The the-
oretical considerations for these decays proceed
exactly as in case (b) and, in analogy with Eq. (22),
we have

Z„,(0) =-,'G2Ms-"o sin'e cosa fpo„"=2

+ non-short-distance term.

The lowest-dimensional field contributing to Eq.
(23) in the free-quark model is

0„=:qe„(1 —y, ) x""qq (1 —y, )-,'z4"'q:

with canonical dimension 7. However, once again,
the renormalized dimension of this exotic field is
expected to be» 7. Thus the short-distance con-
tributions here should be strongly suppressed and

FIG. 4. H, adiative nonleptonic decay in the weak-boson
picture: (a) photon coupling to a hadron; (b) photon coup-
ling to the 8?

these decays are not expected to be observed in
the near future.

VI. RADIATIVE NONLEPTONIC O'EAK DECAY

We shall consider decays of the type e-P+y,
where 6 and P are hadronic states and y is a real
photon. ' Qur discussion will be extended to include
the case where the photon is virtual and decays
electromagnetically into a lepton pair. In princi-
ple, the same approach can also be applied to re-
actions with two or more photons (e.g., K 0~- 2y)
or to those with an internal photon loop (e.g., the
electromagnetic contribution to K'- n'm'); the ques-
tion whether weak structure effects become en-
hanced in those reactions" is an intriguing one.
However, the treatment of such problems is be-
yond the scope of the present work and we shall
confine ourselves to processes where only one
photon —real or virtual —emerges from the weak
nonleptonic decay of a hadron.

First consider the decay n-P+y. There are two
diagrams for this reaction in the W-bo»son picture
as illustrated in Fig. 4. Both have to be considered
to preserve gauge invariance. The part corre-
sponding to Fig. 4(b) may appear to depend strongly
on the specific mechanism chosen to mediate weak
interactions. However, Geshkenbein and Ioffe'
have shown that the dominant contribution in this
case can be calculated by ignoring the difference
in the four-momenta carried by the 8' before and
after the electromagnetic interaction and by using
the Ward identity. Then [converting Eqs. (1) and

(18) of Ref. 4 into integrals in configuration space]
one is able to write" a less model-dependent ef-
fective interaction for this decay in the form

2„8 (0) = ~ M d x, d y WP'(M(y -x))TZ~t(x) J s(y)V~™(0)+x&W""(Mx)TJ~t(x) J s-(0)+H.c. .

(24)

In Eq. (24) 8~ stands for the electromagnetic field and V~™is the hadronic electromagnetic current. The
appropriate operator-product expansions needed to evaluate the short-distance contributions to the right-
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hand side of Eq. (23) are the following:

TJ „t(x)J ~(y)V' (0) ~ gG„„)„(xyy)O, (0)y
x, y 0 a

TJ ~t(x) J~(0) ~+C„„(x)O,(0) .
x~0 b

Equations (24) and (25) lead to the following expression for the effective Lagrangian density:

sr(0)= ~ Jd x Qfd y Wx'(M(y —x))0, ,(x y)0 (0)
vY a

sT xxWx"(-Mx)0 „(x)0,(0)) H.c.~ non short-diste-nce term
b

From the integrals

d4x d~y 8'"" M y -x „„~,x, y

and

(25)

(26)

d x d yx), W"" -Mx C„,b x

of Eq. (26), we can say that a and 5 must stand for odd numbers of Lorentz indices, i.e., O„O, must be
Lorentz tensors of odd rank. The first candidate for the leading member is (in analogy with the cases con-
sidered in Sec. V) the weak hadronic current, i.e., O~ = V)H"d7 or A'„"' (or any combination" of these) How. -
ever, this leading contribution has to be gauge-invariant by itself since the nonleading contributions cannot
compete with it. But the relevant currents required here (i.e., strangeness-changing neutral vector and
axial-vector currents) are not conserved; this means that the corresponding contribution to the amplitude
for the decay are not gauge-invariant since B~V8~"' e0 and ~~A6~"'g0. Thus the contributions from
0„=V',"' or A'„"' to the two terms in the right-hand side of Eq. (23) must cancel out because of gauge in-
variance. Since such contributions, if present, would have made the amplitude for the decay e-P+y pro-
portional to GeM (V~, A), having dimension 3) we can see in a simple way why the quadratic divergence in
the amplitude cancels out (see Ref. 4). Gauge-invariant operators can, of course, be made out of VH~"',
A~"' by applying derivatives on them, i.e., one could choose 08~"'=GV6~"7-8~&vV'„"' or A~" -8„8"A',"'
or any combination of these. In this case, 8"0'„"'vanishes and we have gauge invariance. However, the
contributions of such terms to the transition amplitude are proportional to

~'&Pl(q' V&"'-q.q'V!'*')
I ~& or ~'&P l(q'&"" -q W'&!"'}I~&,

where e is the photon polarization; these vanish since q' =0 =e q.
Following the prescription given in rule number (4) of Sec. II, we see that the leading operator in the

right-hand side of Eqs. (25) that can make a nontrivial gauge-invariant contribution to the decay is the di-
vergence of the antisymmetric octet tensor current T' 8. %e can have both tensor and pseudotensor con-
tributions in general, i.e., 0„'=~ST'„8 or 6 By&~ST'&~ or any combination. However, these operators be-
long'd to the representation (3, 3*)+ (30', 3) of SU(3) x SU(3). On the other hand, those appearing in the left-
hand side of Eqs. (25) belong to (8, 1) or (8, 1}+(1, 8) and it is not possible to construct operators of the
representation (3, 3*)+(3*,3) out of these products. This means that the contributions of interest to the
operator-product expansions in Eqs. (25) come not from the dominant scale- [and SU(3) x SU(3)-] invariant
piece but from the lowest-order scale- [and SU(3) && SU(3}-]breaking terms. " For the purpose of investi-
gating the symmetry properties of these operator-product expansions, we can resort to the spurion
analysis. In accordance with rule number (0'; of Sec. II, we can assert that the presence of 88T'

8 or
Syrus'.

T'~' in the two operator-product expansions of Eq. (25) arises from the products TJ~~t"'J „"'V~
and TJ ~~' 'J „"$1, respectively. Here Zl, carrying dimension 4 and associated with the scale-break&ng
hadron mass m~ is X,u, +A.,M, + Azo, but the SU(3) x SU(3)-invariant zo cannot contribute in generating op-
erators of the representation (3, 3*)+(3*,3). Since the u' and u' fields carry the dimension 4, we can re-
write Eq. (25) as

Tj„i(x)J,'(y)Vm(0) ~ [m„(x-y)]'-'[G„„,„(x,y)g„+G„,(x, y)e, y.,]B~T""'y
x,@~0

TJ~t(x)J, (0) ~ [m„(x-y)] [C„„(x)g8 +C„,~(x)e~&"s]s T'„'8",
x~0

(2V)
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and similarly for the products of the Hermitian conjugate currents. Substituting Eq. (27) and the corre-
sponding Hermitian conjugate relations in Eq. (26), we obtain

8&(0) = S & (M)&P '„'8"+H.c.+ non-short-distance term.G cos8 sing ea~
2

In Eq. (28), the structure factor S~ „8(M) is given by

S~ 8(M) =M'm„' d'
x~

d'y W('"(M(y-x)) f[(x-y)']'")' ~[G „~ (x, y)ga +G„„(x,y)e~„n8]

+ (~x' )'-'x, W&'(-Mx)[C„,„(x)g„+C&"'(x)~„„,] ~,

(28)

(29)

or

Spina(M) = S~ (M)g~ ngay+ S2(M)C gyn(), (30)

where S, ,(M) ~M~ "r, dr being the dimension of the octet of antisymmetric tensor fields T'
8

There are two important points concerning Eq. (28) that we shall comment on:
(1) According to Eqs. (28) and (30), 2„„8 (0) is proportional to M~ ~&. The canonical free-quark-model

value forboth ~ and d~ is 3. The associated fie1ds u' and T', 8 are nonexotic"; by fiat their dimensions are
near-canonical. Hence we see that structure-dependent short-distance effects in nonleptonic radiative
weak decays of the kind n-P+y are neither enhanced nor suppressed by a power of M. In fact they have a
logarithmic dependence on M which arises from the region with x-y-0(1/M), 0(1/M) «x, y «0(1/ms) in
the integrals of Eq. (29). In general, these effects would make finite contributions to the transition ampli-
tude resulting in the failure of model calculations (e.g., the pole-model or the inner-bremsstrahlung hy-
pothesis as discussed in Ref. 1, p. 660 et seq. ) that ignore short-distance effects.

(2) Both the tensor and the pseudotensor terms will in general contribute to S~ . For example, in the
free massless quark model, it can be demonstrated via Wick's theorem and Taylor expansions that for
the second of Eqs. (27) one has

Tj t )(») JJ( )( )» (p)
f" » ( -»)»»(»-»)»-» ()» »v-» (»-y). » (»-y)»-» (»-»)g,

„)v y 2( )4 n
x, y O x' y P & ~ jf jf Ij

x (dna&S Trns+ fmat& ay(n' ST)t )+. . .
8 8 y~

Thus withi =1 -i2, j =4+i5, and k=8, the com-
bination

ie Bv&g T6+&7 —() T6 '7 ~

8 y~ 8

contributes to the above right-hand side. Hence,
in general, it is quite reasonable to expect com-
parable contributions from both tensor and ps4udo-
tensor terms.

%'e shall now discuss the application of the above
considerations to observed nonleptonic radiative
decays.

(A) Two-body radiative hyperon decays ':
B-8'y. The effective Lagrangian density here has
the form"

Ge cos8 sin8g~
2s s, (0) = ~ --s g~, o) 8(X+qy, )(j)s.

(31)

Strict SU(3) implies" q = 0 for transition within a
U-spin doublet, and the pole model, used in con-
junction with SU(3), can predict rates for various
possible decays. In this model the electromag-
netic current acts outside of and at distances of
order 1/m„ from the W loop so that 2 ~M' ~v-M'

I

(see Sec. III). The only reaction of this type which
has been studied experimentally so far is Z'-py.
Although the observed rate is not too different from
that predicted by the pole model, a determmination"
of the correlation parameter between the direction
of the final baryon and the polarization of the ini-
tial hyperon requires" q~ to be = X~ ~. Hol-
stein" has made an exhaustive investigation of
possible SV(3)-symmetry-breaking effects in the
pole model within the chiral-Lagrangian frame-
work and has concluded that such effects are un-
likely to make q~'~ large enough and usually change
it in the wrong direction. There is, of course, the
possibility that non-short-distance structure ef-
fects contribute significantly. In fact, by relating
the amplitudes for Z'- pm'y and Z' py by means
of the soft-pion technique and current algebra,
Ahmed' made the claim that this was actually the
case. However, recently some authors" have
demonstrated that this claim is incorrect having
been based on an inappropriate extrapolation pro-
cedure; the correct application of this technique
again gives too small a value for q~ ~. These the-
ories thus cannot account for the large observed
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value of this parameter. On the other hand, we
have demonstrated that weak structure effects in
the region where both weak currents and the elec-
tromagnetic current act near the same point are
likely to cause a considerable enhancement of a
symmetry-breaking term in the transition ampli-
tude competitive with the contributions of the pole
terms. We are unable to provide a quantitative
evaluation of this effect. However, in view of our
remark (2) above, a significant pseudotensor term
is expected to be present to which the observed
large magnitude of q~ ~ can be attributed. Regard-
ing this as a success of our considerations, we
make the general prediction that in all other two-
body radiative hyperon decays, to be observed in
future, the predictions of exact SU(8) symmetry
as well as those of the pole model will fail and in
general large values will be obtained for the pa-
rameter g even for transitions within a U-spin
doublet.

(B) Three-body radiative hyperon decays':
B-B'my. The equivalent of the pole model in this
case is the inner-bremsstrahlung hypothesis that
only considers diagrams where the electromag-
netic current acts outside the W loop and which
are proportional to M' "~. Only the decays Z'-n
+sr'+ y have been experimentally studied until now.
The inner-bremsstrahlung predictions are difficult
to test accurately because they involve the mag-
netic moment of the decaying hyperon and at pres-
ent there is only qualitative agreement with ex-
periment. Our prediction is that, , with detailed
experimental investigations, significant deviations
from those predictions will. show up because of
short-distance structure effects of the sort we
have considered.

(C) Nonleptonic radiative K decays. ' There are
several decays of this type which have been or are

on the verge of being experimentally studied. Ru-
dimentary data existing on' K'- (2m:")w-y and on'
K~ -m'm-y agree qualitatively with crude estimates
based on the inner -bremsstrahlung hypothesis;
however, we predict that more detailed investiga-
tions will uncover deviations due to short-distance
structure effects. For the decay K~-n'm y, the
inner-bremsstrahlung contribution is related to
the CP-violating decay K~0- m'm - and is small.
The non-short-distance structure-dependent con-
tribution has been estimated' and found to be 1 or-
der of magnitude smaller than the present experi-
mental upper limit. However, short-distance ef-
fects should alter the magnitude of this prediction.
Finally, we note that the success of the inner-
bremsstrahlung hypothesis in explaining' the ob-
served smallness of the K'-w'm'y decay rate (by
relating it to the n. l=-,' violating decay K -m'w') is
due mostly to the kinematic enhancement of the
bremsstrahlung term over most of the phase space.
Qaillard" has analyzed the data on the K -m'7t'y

decay and has found that only very weak upper lim-
its can be established on the non-bremsstrahlung
terms.

Before concluding this section, we wish to re-
mark on weak decays of the type o.-Pt'l where
o., P are hadronic states and the charged lepton
pair l ' emerge from a single virtual photon. "
This process is similar to the decay e- Py except
that the photon is now virtual. Because of this dif-
ference, . the choice O~ = 0V~ —8~8 "V', or GA ~
—e,a'A', or any combination' of these is now per-
mitted in the operator-product expansions of Eqs,
(25). Since these operators carry the dimension
5, their contribution to the effective Lagrangian
density is independent of M. Hence for these de-
cays, we can rewrite Eq. (28) as

g 8+, +„,- = ~ [Sg" ( sM)&„T ~8 + C„(QVy~7 —8 ys~V,+'7)+ C„(CIAO'~7 —s g&'A8+'~)+H. c.]

+ non-short-distance term,

where I,~ is the lepton current and C~ „are un- .

known constants. Since S~&„8(M) is expected to be
only logarithmically dependent on M, the vector
and tensor current contributions are competitive
and both should produce observable structure-de-
pendent effects. Qf course, the above electromag-
netic mechanism cannot cause any lepton nonlocal-
ity the study" of which can cull information on the
(presumably smaller) purely weak contribution of
the type discussed in article (a) of Sec. P.

VII. CONCLUSIONS

With the hypothesis that nonexotic and exotic
fields have near-canonical and anomalously high
dimensions, respectively, we have obtained the
following results and predictions within Wilson's '
scheme of operator-product expansions and bro-
ken-scale invariance:

(l) The 4I =-,' part of the effective interaction
for ordinary nonleptonic weak decays is not af-
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fected by the short-distance structure of weak in-
teractions whereas the 4I = —,

' part is strongly sup-
pressed.

(2) The observed smallness of the K,'-K20 mass
difference cannot impose a severe bound on the
mass M typifying the short-distance structure of
weak interactions.

(3} The amplitudes for reactions of the type

K~ - ]L(,'+ p. , K- 7t + v+ P are proportional to
G'cos8 sin8M' and are enhanced; those for the
bS= —~Q =~1 and the ~S=2 leptonic decays are
proportional to G'cos'8 sin8 and G'cos8 sin'8, re-
spectively, and are not enhanced.

(4) Pole-model or inner-bremsstrahlung-hy-
pothesis calculations as well as exact SU(3) con-
siderations for nonleptonic radiative decays should
fail in general. In particular, in radiative hyperon
decays the SU(3}-violating asymmetry parameter

ought to be large as observed in Z'-p+ y.
It is hoped that these considerations will stimu-

late a more vigorous experimental pursuit of
structure-dependent effects in weak interactions
with the more intense kaon and hyperon beams
that will become available shortly.

Note added. After completing this work we have
come across a paper by de Alwis' where the hy-
pothesis of near-canonical and anomalously high
dimensions for nonexotic and exotic fields, re-
spectively, has been independently proposed.
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