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Model-independent implications of the isostructure of currents for y-, e-, v-, and s -in-
duced production reactions are noted. Reactions on hydrogen and deuterium only are con-
sidered; separate neutron information. is not used, Numerous tests are given for the ab-
sence of I = 2 (or specific higher I values), for the electromagnetic current, and for the
weak 68 = 0 current (independent of class). Similar results are derived for the (n.f (=a
rule for (nS( = 1 currents, where v-d reactions are most favorable. A consequence for IC, 4

decays is mentioned. The expansion of cross sections in terms of the azimuthal angle be-
tween the lepton and a hadron plane yields equalities implied by the absence of second-class
currents (independent of isospin content) in T-conserving situations. Here the v and v disin-
tegrations of the deuteron are of special interest.

I. INTRODUCTION

The purpose of this paper is twofold. First,
relations will be given which bear on the isospin
content of electromagnetic and of weak currents.
Secondly, for the weak AS =0 currents, relations
mill be given which test the presence of second-
class currents.

Use will be made of inelastic high-energy reac-
tions: photoproduction and electroproduction in
the electromagnetic case, v- and v-induced reac-
tions in the weak ease. Exclusively, such rela-
tions will be considered which are model-indepen-
dent. In particular, no assumptions wiIl be made
on dominance of particular states (resonances) at
some specific energy. Neutron targets mill not be
considered in order to be free of any subtraction
problematic s.

Both problems have roots in nuclear physics.
Thus the rule I =0, 1 for electromagnetic currents
was shown to lead to model-independent mass re-
lations within isomultiplets of sufficiently large
isospin. Likewise, the distinction made by Nein-
berg' between first- and second-class currents
originated in p-decay studies. Here, too, model-
independent statements can be made. Most re-
cently, these have been x'eviemed and extended by
Bdg and Bernstein' who have introduced a further
ax'6 x'eflned clRsslflcRtloQ of second-clR88 cur-
rents. %6 also refer to this paper for further
references to recent contributions on. this subject.

All the results just mentioned have reference to
the leading electromagnetic (and weak} order of
the effects concerned. Similarly, in what follows,
only this leading order will be considered. Effects
mill therefore be novel only if with confidence they
can be said to exceed the order of electromagnetic
(and weak} corrections. Such higher-order con-
tributions mill be dropped from here on.

In recent years, the simple theoretical views-
no isotensor electromagnetic currents, no second-
class weak currents —have come under renewed
scrutiny. It was noted by Grishin, Lyuboshitz,
Ogievetskii, and Podgoretskii as well as by Dom-
bey and Kabir' that the evidence for the absence
of lsotensox' electromagnetic currents ls scRnty.
A number of tests have been proposed by these
and other authors, mhere the main reliance is on
resonance production or on effects at threshold. '
An exception to this is the suggestion' to study
asymmetries in e'e -m'm m' via one-quantum
annihilation. The interest in second-class cur-
rents has recently been rekindled by the experi-
mental investigations of Wilkinson and Alburger. '
The existence of such exotic currents of one kind
or anothex would complicate in many ways the
current theoretical picture. For this reason, some
amount of reservation partly motivated the pres-
ent work.

The plan of the paper is as follows: In See. II,
photoproduction and eleetroproduction off deuter-
ons and protons are discussed. (Throughout, only
spin-averaged cross sections are considered. ) In
the course of treating the first example, single-
pion production off deuterium, a distinction (hax P.

new) between "configuration" and "channel" is
made which is central to the present argument.
These two separate notions are essential in any
application of isospin to states which contain more
than one particle belonging to some given isomul-
tiplet. It is then shown, first for the example at
hand and then for many other cases, that there
exist linear relations between configurational
amplitudes which lead to "configurational inequali-
ties" between differential cross sections'. These
inequalities test in fact the absence of currents
with I&1 Con81dex'lng the assemblage of flIlal
states in photoproduction or in electroproduction
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off d or p, one quickly realizes that there are in-
finitely many such inequalities. In spite of the
inherent weakness of inequalities as compared to
equalities, their multitude and their validity for
all energies may hopefully make them useful.

While these tests are the strongest ones pre--.
sented here, they are also the most demanding
ones experimentally. However, it is found that
one can very often (not always) derive "channel in-
equalities" from conf igurational inequalities.
These channel relations are relatively easier to
handle experimentally. Further integration of
channel inequalities leads eventually to rate in-
equalities. This progression of inequalities be-
comes transparent only by an appropriate choice
of dynarnieal variables in reaeti. ons y +target-more than two particles. For example, in the
cRse of y + d-X+X+7 1t 18 RdvRntRgeous to choose
the final dinucleon invariant mass as a variable.
A number of examples involving strange-particle
production will also be given.

Two-pion production off d enables one, at least
in principle, to distinguish between the presence
of anI =2 current, but the absence of anI =3 cur-
rent (Sec. IID). More generally, information is
obtainable on the possible presence of isomultipole
moments of any order in the electromagnetic cur-
rent (Sees. II 6 and II K).

Deuterium reactions are treated first in honor
of the fact that relations can be obtained which in-
volve only a. single m'. Even for the simplest ease
of production on a proton target (see Sec. IIH), one
already deals with channels with two m" s.

The discussion of weak processes is begun in
See. IG, in the first part of which the methods of-

Sec. II are applied to the weak AS =0 currents.
The absence of I&1 currents is known to imply an
inequality between single-pion production in v-
nucleon collisions. "" However, neutron targets
are involved in this case and, again, we shall only
use proton and deuterium information here. Like-
wise, tests for the absence of I&1 currents by
means of resonance production have been suggest-
ed." Also for the weak processes we shall con-
tinue to insist on model-independent statements.
These again take the form of inequalities. As for
the electromagnetic case, one can in principle
locate the presence of currents with any fixed
value of I.

Since at no point are comparisons made between
rates of neutrino and antineutrino processes, the
distinction between first- and second-class cur-
rents, either withI =1 or with/&1, remains dor-
mant. Thus all statements in Sec. GIA are inde-
pendent of class.

Since in this paper we only aim at the limited
objective of rate comparisons, the question wheth-

er I&1 currents, if they exist at all, are to be V
or A (or otherwise) does not enter. Nor is the
validity of T invarianee or any other discrete in-
varianee at stake.

In Sec. III 8 we turn to
~
AS~ =1 weak currents.

The question here is whether or not there exist
I&-,' currents. Of course, the existence of I&-,'
currents is implied if any of the AS =-AQ reac-
tions

q

v+ (p or d)-(h. or r, or IP or K ) +X + g

(1.1)
v+(p or d)- (K' or IP)+X + p. ',

were ever found, where X is a 8 =0 hadronic com-
plex with appropriate charge and baryon number.
About such reactions we shall say nothing more.

For aS =sf reactions, one test of
~
b, i

~
= —,

' is
well known" ":

a(v+n-Z +I')
o(v+p - Z'+ I')

Further n-p comparisons leading to equalities and
inequalities have also been noted. "

Fortunately, continued insistence to stay away
from neutron information does not deprive us of
numerous implications of the semileptonic ~b.I ~

=-,'

rule. There is no question that, among these, the
equalities obtained for P production in v-d reac-
tions are potentially the most useful ones. 1' pro-
duction in v-P reactions as well as K- and K-pro-
duction reactions yield information as well, but it
is not as strong. In See. IGC, a brief comment
is made on K,4 decay.

In Sec. IV the question is taken up of seeond-
elass-current effects in inelastic neutrino reac-
tions. Since one deals here exclusively with transi-
tions between distinct hadronic isomultiplets, the
space-time yropex ties of the weak-current matrix
elements are not sufficient to make class distinc-
tions. This was shown quite generally for P-decay
transitions" and the reasoning applies equally
well to v and v reactions. In this respect the reac-
tions at hand are distinct from analog transitions
in P decay; and from "elastic" neutrino reactions,
where a single process like v+p-n+ p,

+ does con-
tain information (hard to come by) on second-class
effects especlRlly 1f polarlzRtlon information were
available. "

Thus for inelastic processes, information on
the possible existence of second-class currents
can come only from comparisons between v and
v reactions. " In regard to such comparisons,
another essential distinction with P decays should
be recalled. Let us for the moment assume that
there is no T violation. Then for P transitions,
a difference in rate (or better, ft value) between
one decay and its mirror process is prima facie
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evidence for the existence of second-class cur-
rents" (we repeat, excluding electromagnetic
effects). The closest analog to such rates are
total cross sections, in the present case. How-
ever, even for conventional first-class currents,
cross sections are generally distinct for the mir-
ror processes

v+n l +X

v+p «l +X

(1.3a)

(1.3b)

where X ' are S =0 hadronic complexes belonging
to the same multiplet (or superposition of multi-
plets). As is well known, integrating over all
variables of X except its invariant mass, d'o/
dq'dv is parametrized by functions W,. for the reac-
tion (1.3a) and W,. for (1.3b}, i =1,2, 3. Absence
of second-class currents gives" the testable rela-
tions W, = 8', Assuming these relations to hold,
one has"

d2o 0 d2g +)

dq'dv dq'dv 4m'', [q'(e +e') -m'(e —e')]W, .

(1.4)

W3 ar ises from V -A inte rferenc e. The di stine tio n

just mentioned is that such interference effects
vanish for total decay rates, but not for total cross
sections.

The discussion of second-class-current effects
in Sec. IV is along a different route which is per-
haps better tuned to the study of individual pro-
cesses. It allows for integrations over variables
like q' and v, something which is not possible
when using d'v/dq'dv in the pursuit of second-
class currents. Instead of the quasi-two-body
description used in Eq. (1.3}we shall use a three-
body (or quasi-three-body) description. Let us
exemplify the reasoning by considering the reac-
tions

(1.5)

For given energy, there are four variables. " Qne
of these is the azimuth Q (with a, sign convention)
between the lepton plane and the hadron plane, in
the laboratory system. Assume that the lepton
current couples locally. Then

60'—= o, cos2$ + v, sin2$ + o, cosp + o, sing + c, ,0

(1.6)

with" v, = c,.(e). The terms o„cr„o,are known

to receive contributions of the types (VV, AA, VA}.
cr, is a pure VA-interference term, while oo is a
pure (VV, AA) term. It is then readily seen that
absence of second-class currents implies that

m mOo=ao~ a, =-a

Here, as in Sec. IV, the superscript m will always
denote the mirror transition. See further Sec. IV
where it is noted. that this class test is indepen-
dent of isospin content.

So far, T invariance has been assumed. If the
possibility of T violation is admitted, a more re-
fined simultaneous specification in terms of class
and of T properties. is necessary. " In this more
general situation the relation (1.7) does not fully
separate first from second class, since, in this
respect, second-class T-violating currents be-
have much as first-class T-conserving ones. (The
same is true in regard to the equality of the W,.
and the W, , mentioned above. ) This is spelled
out in Sec. IV.

What has been said for Eq. (1.5) holds true equal-
ly well for similar reactions- with the right-hand
side A+B +l(l ), where A and B are either had-
rons or (one or both) hadron complexes. Suffi-
cient integration always makes it possible to
arrive at Eq. (1.6). This means, furthermore,
that Eq. (1.7) can be extended to hold at an inclu-
sive level.

The specific reactions v(P)+d-N+N+l(l ) are
of special interest. Since higher isospin compo-
nents of the current are dormant in this case (if
they exist at all), one may hope to obtain direct
information, this way, on the class properties of
iso vector currents.

It is a serious practical limitation on all second-
class-current tests mentioned here that they de-
mand v and v comparisons at the same energy (or
for the same energy spectrum}.

To recapitulate the situation for the AS =0 weak
currents, there are three questions: (1) isospin
content, (2) T invariance, and (3) existence of
second-class currents. As said, (1) can be tested
independently of (2) and (3). Likewise (2) can be
analyzed independently of (1) and (3); (3) can be
treated independently of (1), but not of (2). More-
over, in the discussion of (3) presented here, the
local action of lepton currents has to be assumed.

As said, if current views on what constitutes
simplicity are any guide, one would anticipate that
all will be normal in regard to these three ques-
tions. The present considerations may perhaps
be of some use to settle the issues more firmly.

II. PHOTOPRODUCTION AND

ELECTROPRO DUCTION

What will be said for the photoproduction reac-
tions y+A-B holds equally well for e +A-B+e;
see the remark at the end of Sec. IIA. below. For
brevity, me refer below to both reactions as y+A
-B. Note that the (yP) system may be considered
as a coherent superposition of an I = 2 and a single



I =-,' state, in the absence of currents with I&I.
Since proton-neutron comparisons are not made
here, the distinction bebveen the I = z components
of (yP) arising from the isovector current on the
one hand, and from the isoscalar current on the
othex' remains dormant.

n(p, )n(p. )~'(p. ) .
For brevity, configurations will hereafter be
wx'lttell Rs follows.".

PPm: A, ,

Pnm': A, ,

npn'- A3.

nnm+: A4,

(2.1)

with the Understanding thRt pRx'tleles which appear
in a given column have a common momentum. The
A. symbols refer to the respective amplitudes.
Their dependence on an ordered set of momenta
is UQdel stood.

Isospln deeomposltlon of amplitudes may be ap-
plied at every point (p„p„p,) of momentum space.
For p, 4p, the second and third configuration are
of course physically distinguishable. If the elec-
tromagnetic current has the usual I =0, 1 compo-
nents only then tI16 foul configuratioQ amplitudes
can be expressed in terms of three reduced ampli-
tudes, so that there is one relation between the
A.'8:

A, +(A, +A, )V2 +A, =0. (2.2)

Thus there are four quadrangle "configurational
inequalities. " A repx'esentative is

[d'a'(ppw )]~'~v2/[d'cr(pnw )]~'+[d'a(npm )]~'].

+ [d'&x(nnv')]~'. (2 3)

Remarks (I) Here and.in what follows we write

Let us denote by "channel" a specification of a
final state by means of the intrinsic quantum num-
bers only of the final individual particles. Thus
in the present case there are three channels: ppn',
pnn', nnm' (recall that only spin-averaged cross
sections are considered here) Let. us define "con-
figuration" as a fuller specification where in addi-
tion the lndlvldual momenta are exhlblted. Thus
there Rre four configurations:

p(p, )p(P. )~ (P.),
p(P, )n(P, )~'(0,),
n(p, )p(P. )v'(p. ),

out explicitly only one representative for each set
of polygon inequal. lities. . The others- are af course
obtained by bringing the single quantity on the left
to the right and any one of the quantities on the
right to the left.,

(2) If a, k, c, d, . . . are complex numbers and if
a+b+e+d+ ~ ~ =0, then there are also inequalities
like ( ~

a
~

—
~
k

~ (
-

~
c

~
+ ( d~ +. ~ ~ . These can be dis-

cussed by similar means as inequalities of the
type Eq. (2.3). We will not do this explicitly.

(3) Equation (2.2) is easily shown not to hold in
the presence of Rn I =2 component in the electric
current. Thus, as usual, if Eq. (2.3) is satisfied,
this does not necessarily prove anything, but viola-
tions of Eq. (2.3) would constitute evidence for the
presence of an I =2 part. Similar remarks apply
to all inequalities to be recorded below.

For given energy, the differential cross sections
in Eq. (2.3) are fourfold. Choose as the four vari-
ables: the invariant dinucleon mass; the angle of
the emerging pion relative to the beam (in a coor-
dinate system of one s choice); and 'two intrinsic
dinucleon variables, such as (i) in the dinucleon
rest frame, the angle between the "first" nucleon
and the line of flight of the dinucleon, and (ii) the
azimuth (with a sign convention) between the di-
nucleon plane and the (y, v) plane (in a coordinate
system of one's choice). Integrate over the last
two variables. Then Eq. (2.3) yields

[d'a((pp) m )]~'~[d'a((pn) m')]'~'+ [d'o((nn) n')]~'.

(2.4)

The notation ( ) means that the particle system in-
side these brackets is specified only by its invari-
ant mass, so that there is no Longe~ any distinction
between (Pn) and (nP). Thus we may properly
refer to (2.4) as a differential "channel inequality, "
holdlQg here fox' 6Reh pRlx' of vRlues of, tl16 invari-
ant dinucleon mass and the pion angle. Once this
far, one can of course integrate further over par-
tial or full domains of the remaining variables.
In particular,

[a((pp) m )]~' ~2[a((pn) m')]~'+[a((nn) w')]'~'.

(2.5)

Note that one gets three more quadrangle inequali-
ties by bringing either A., or A., or g, "to one side. "
However, in the first two of these three instances,
the corresponding channel inequalities are clearly
trivial. Thus the number of nontrivial channel in-
equalities (two in the present case) is in general
smaller than the number of configurational inequal-
ities.

Clearly, the above can likewise be applied to
electroproduction. The initial inequality (2.3)
now refers to R sevenfold differential cross sec-
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tion, but additional integrations can be made with
impunity to arrive again at Eqs. (2.4) and (2.5).

C. y+d~K+N+m+A

In the first column of Eq. (2.1) substitute again
P -K', n- K'. Add a fourth column A to each of
the four channels. Equation (2.3) is again valid
(with d'o- d "a). Integrations can be made up to
and including the representative

[a(K 'pv-A)]J' ~W2([&r(K'nm'A)]"'+ [o(K'pn'A)]' 'j
+ [a(K'nv'A)]". (2.'I)

D. y+d~m+n+N+N

This case is treated mainly to bring out a few
points that could not yet be in evidence in'the fore-
going.

There are four channels and 10 configurations.
The latter are denoted as follows:

~'~ann: A.„
~0m'nn: A„
n' n' Pn: A. ,

r w+pn: A. ,

m'm'Pn: A.„

mo~onP: A.„
m+m gP: A. ,

m v+np: A

m m'pp: A.9,
m'm pp: A.„.

(2.8)

If the current has onlyI =0, 1, four relations are
found, namely,

A, +A2-A —A, a=0,

&2(A, +A, )+A, +A4+2A, =0,
v 2 (A, +A~)+2A6+A~+Aa =0,

(2.9)

(2.10)

(2.11)

A, -A, +A —A,o+v3 (A, -A~+A, -A.,) =0.
(2.12)

However, if the current has I = 0,, 1, 2 but not an
(accessible) I = 3 component, a single relation still

B. y+d~K+N+Z

In the first column of Eq. (2.1) substitute P —K',
n-K'. In the third column put w-Z, for each
charge. Retain the symbols A„.. . , A4. Then Eq.
(2.2) is again valid, and so is Eq. (2.3) with the
same particle substitutions. This latter modified
equation is now a channel inequality, of course.
It can be integrated as much as desired, up to
total cross-section relations. A representative
is

[a(K'pZ )] '-v2$[a(K'nZ')]' '+[a(K'pZ')]' ']

+ [a(K'nZ')]'I'. (2.6)

Needless to say, the collapsed equations (2.4) and
(2.5) have no analog here.

remains:

(A, +A, +A +A»)v2 + (A3+A~+A7+A, )+2(A, +A6) =0,

(2.13)

which is of course subsumed in the relations (2.9}-
(2.12). Thus the reactions at hand yield one rela-
tion, Eq. (2.13), which tests the absence of I =3
currents, and three relations which test the ab-
sence of I =3 andI=2 currents. For these last
three we may choose Eqs. (2.10), (2.11), and (2.12).

Equations (2.10) and (2.11) each yield five penta, -
gon inequalities for configurational cross sections.
However, it is easily seen that Eq. (2.10) leads to
only a single nontrivial channel inequality:

[2d'o'((pn), (2v ))]' ~2[d 'o'((nn), (v+vo})]'

+[d'o((pn), (m'v })]' 'I,

(2.14)

while Eq. (2.11) only yields the same Eq. (2.14)
once again. Equation (2.12) does not give any non-
trivial cha, nnel inequality at all.

Direct tests of Eq. (2.13) are very hard since
none of the 10 configurational inequalities following
from it yield a nontrivial channel inequality.

E. y+d~Z+m+N+K,

Substitute in Eq. (2.8) as follows: s —Z in the
first column, n-K', P-K' in the fourth one.
Equations (2.9)-(2.13) again obtain. All relations
are now integrable to channel relations. All in-
equalities trivial in the case of 7t'mNN now become
nontrivial, such as

[a(Z'v'nK')]~' ~ [a(Z'v+nK )]~'+ [a(Z'm pK )]' '

+ [a(Z m'PK')]'I' (2.15)

which is the representative of four inequalities for
total cross sections following from Eq. (2.9) and
which tests the absence of I & 1. For @ANN we saw
that the consequences of Eq. (2.10) coincided with
Eq. (2.11}on the channel level of integration. This
is not the case here.

The applications of Eq. (2.13) remain difficult,
but at least they are now integrable to cross-sec-
tion relations in a nontrivial way.

F. y+d~vr+m+N+K+A

Substitute in Eq. (2.8) n-K A, p-K'A in the
fourth column. Once again Eqs. (2.9)-(2.13) hold
true. The integration problem is intermediate be-
tween what happened in Secs. IID and IIE. Thus
Eqs. (2.9) and (2.12) are trivial on the. channel
level for mmNN and are equally so in the present
case though this was not so for ZONK. On the
other hand, Eqs. (2.10}and (2.11) collapsed for
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mmNN at the channel level, but did not do so for
ZmNK and neither for the present case, where
they yield

[2o((2m') pA @')]~'-[2o((rr'n') n AZ')]"2

+[o((m rr. )pt Z'))",

I. y+p~m+vr+K+A

Put n-K'A, p-K'A in the third column of Eq.
(2.18}. Equation (2.19) again holds true, as does
Eq. (2.20) with the same substitutions. (Of course
there are more variables to integrate over ).

[2o((2„0)npIf +))r/a [2o((rr+~o) nhlf )]&

+[o((rr'rr-) AZ')]~'.

Also for the discussion of Eq. (2.13), the present
ease is intermediate to the previous two. For
wnNN no nontriviaI integration is possible, for
Zan one gets tot@ cross-section. inequalities by
bringing any one of the A. 's "to one side. " In the
present ease there are two toM. cross-section
inequalities, namely, by bringing either 3,, or A,,
tG One side.

Put m- Z in the first column of Eq. (2.18) and
n-E', p -K' in the third one. Equation (2.19)
results once more, leading at once to five channel
inequalities, with representative

2[d'G{z'rr'K ')]' '

~[ 2d' o(Z' rr'K')]~' +[2d'o(Z'rr+K') j'r'

+[d'o(Z'~-Z')P2+[d4o(Z m'Z')] t'.
(2.21)

These inequalities may be integrated ad libitum.

H. y+p~m+m+W

The five configurations are

~'~on

mmp: A3,

mmp A

mmn' A

m n'+p: A,

If there are no I&1 currents,

2A, +W2(A, +A, )+(A, +A, ) =0.

(2.18)

(2.19)

G. y-+d~+N+N+mm

The tot& number of configurations equals the
total number of reduced isospin amplitudes of the
(2Ã, mm} system. There is one amplitude for
I =m+1. Therefore there is one configurational
test for the absence of I =m+1 in the electromag-
netic current. Fox'I & m the relations fall into
groups which follow from the absence of succes-
sively lower isospins. Example: For m = 3 the
number nl of relations which follow from the ab-
sence of isospin valuesI is n4=1, n, =5, n, =13.
The relation for I & 4 is subsumed in the relations
for I & 3. Likewise for the relations for I & 3 in
xegard to I & 2, etc. Note that for sufficiently large
m, equalities begin to develop. This starts with
Rl =4~ where one finds 11 equalities and 21 in-
equalities.

The total number of configurations equals the
total number of reduced isospin amplitudes of the
(V, mrr) system. There is one amplitude for
I =m+-,'. Therefore there is one configux'ational
relation implied by the absence of I =en in the elec-
tromagnetic current. Example: For m =4, the
number of nr of relations following from the ab-
sence of isospin values greater thanI is n4 =1,
n, =5, n, =14. Subsumptions take place just as
explained at the end of Sec. IIG. Equalities devel-
op fox' pB ~~6

III. ISOSPIN CONTENT OF WEAK

CURRENTS

2. Reactions off Deuterium

Consider the reactions

v+4-N+N+m+ p, (3.1)
There are three configurations. Absence of I &1
components in the weak current implies three in-
equalities with representative

[2d'o(pprr')]'r' ~[d'o (pnrr'))'t'+ [d'o(nprr')]'t'.

A. AS=0. ImphcationsIndependcntof Class

As stated in Sec. I, one can ask questions about
the isospin content of weak currents which do not
touch on whether second-class currents are pres-
ent or not. We give a few examples. The line of
argument is as in See. II.

Only one channel inequality results,

[2dao'((rr rr')p)]~' ~[2dao((rr+m )n)]'t'

+[d'o((rr'rr )p)]~'. (2.20)

Upon integration,

d'o((pp) rr') ~ d'o((pn) rr') .

(3.2)

(3.3)
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Here one has integrated over all variables but the
invariant dinueleon mass and the angle of pion
emission. Furthex' integx'ation is possible as usual.

As in Sees. II8 and II C one ean directly infer
corresponding results for some hyperon produc-
tion x eactions. Thus for

(3.4)

absence of I &1 currents yields three triangle rela-
tions, with representative

[2o(K'P Zo)]"- [&z(K'nZ')]»2+ [o(K'P Z )]»2.

(3.5)
Application to

v + d- K+N+m+A + p.

also gives three triangle relations, with repre-
sentative

[2(r(K'prr'A)]»'- [r»r(K'nrr'A)]' '+[rr(K'prr'A)]»'.

(3.V)

All these results have analogs, of course, for the
antineutrino reactions

there are five configurations. There is one penta-
gon inequality which yields

[2o(rr(2rr'))]»'» [2o(p(rr rr'))]»'+[o(n(rr'rr ))]»'.
(3.14)

The same inequality holds for AKIM@ by substituting
n-AK, p -AK" in Eq. (3.14}. For ZKrr one ob-
tains a set of pentagon inequalities.

For multipion production, there are again theo-
rems similar to what was found in Sec. IlK.

B. Relations for jhS(=1

De0te~ilm

a. IIypexon production. As said in See. I, we

deal here exclusively with v reactions. First,
note the following two equalities for which con-
figuration considerations are unnecessary. {In
this section, all relations are expressed as much
as possible in terms of total cross sections. From
the foregoing„ it will be obvious where and to what
extent they will also be valid differentially. )

For v+4- Z+N+p', )n.l
~
=-,' yields

v+0-Ã+N+n + p, ',
v +d- E'+X+ 5+ p. ',
v + d —K+M+ m +A + p, '.

o(Z p) 2
o(Z'rr)

(3.15)

Consider first the three configurations eox're-
spond1ng to

(3.8)

As in Eq. (3.3) one finds a single d'o relation; or,
in fully integrated form,

rr(p(rr'rr')) ~ a(n(rr'rr')) . (3.10)

By going to AKIM@ one likewise finds a single inte-
grated inequality

o{AK'(v'vo)) -~{AK'(v"v') }. {3.11)

ZKm yields a triple of triangle inequalities with
representative

[rr(Z'K 'rr')]'~' + [rr(ZOK 'rr ')]»' - [2(r(Z'rr 'K )]»2

(3.12)

Here one obtains the inequalities corresponding to
Eqs. (3.3), (3.5), and (3.7) by replacing in these
equations each particle symbol by its charge-sym-

metricc

counterpax't.
For multipion production, one can prove general

theorems analogous to those given in Sec. GG.

o(Aprr )
rr(Anrr')

(3.18)

(All reactions are fully labeled by the hadronic
content of the final state. ) Equation (3.15) is of
some advantage in practice over Eq. (1.2) since
it involves a single d experiment.

In the ca,se of the five reactions

(3.1V)

one f1nds two equalltles aQd one inequality:

o(Z'Prr )=o(Z Pv'),

o(Z rrrr')+cr(Z'nrr ) =2o(Z'rrv')+g(Z prr'),

(3.18)

(3.19)

[tr(Z err+)rr(Z+nrr )]»'~ rr(Zorrrr0), (3.20)

(3.21)

Note in addition that if the current were to contain
I = —,

' and ~ but not I = a, a single inequality still
survives. This shows that, hard as it is, informa-
tion on separate isospin values greater than ~ is
in principle available. This holds also for many
of the reactions to follow.

FOX"

Fox'

(3.13)
the analog to Eq. (3.18) becomes trivial (in inte-
grated form). Here one has
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2o(A'n())+v ))=4&r(An(2vc} ) + o'(AP()) ))0}), (3.22)

o(An(~'v ))~ 2o(An(2))')). (3.23)

v+d-M+X+K+ p,

one has
(3.24)

Increasing the pion multiplicities yields increas-
ing numbers of relations. Example: v+ d-ZN3w p.

'
gives nine relations of which six are equalities.

b. K Pxoducti on. For

There are three configurations. ~n. I
~

=-,' implies

[O'R(m'm )]' '+[d'R()) v')]' '~[2d'R())'))')]' '

(3.36)

Take as one of the five variables" the angle 6,
between the three-momentum of one of the pions
(say "the first one" in each configuration) and the
line of flight of the dipion in the K rest frame.
Integration over that angle yields

2o(&p~) K') -o(&pp) K') . (3.26) d'R(m'~-) - 2d'R(~'m'). (s.s6 )

If in addition a pion is produced, one finds four
relations of which two are equalities. The corre-
sponding v+d results follow by obvious substitu-
tion.

HJ df'og en

a. Hyjexon Production.

(3.26)

yields three inequalities with representative

2[ (z ')]' '- [ (z+ )]~'+[0'(z r+)]' 2 (3.27)

For

v +p ~A + 271' + p,

one finds one channel inequality:

2o(A. (2mo}) ~ o(A())')) }).

(3.28)

(3.29)

3. K&4 Decay

For K' (K gives similar results) the decays are

K+-m++m +l+vr

Additional pion production eventually produces
equalities.

b. K pxoducti on.

(3.30)

yields three inequalities with representative

[o(P))'K ')]'/' ~ [o(nm'K ')]'/'+ [2o(P))'K')]'/'.

(3.31)

Production of an additional pion yields four rela-
tions among which there is one equality.

(3.32)

yields four inequalities with representative

2a(~moKo)]i/2 ( [o'(nv+K )]9 + [o(pv K)]/-
+ [2o(pw'K )] /'. (3.33)

An equality emerges only when two more pions
are produced.

1V. SECOND-CLASS CURRENTS

A. General Considerations

Consider the n, S = 0 transitions (T =target)

v+T-A. +B+p.

v+T ~A. +B +p,

(4.1)

(4.2}

A and B are hadrons, or complexes thereof; m

is the mirror. Thus A is obtained from A. by a
180' isospin rotation around the 2 axis. (A+B)
may be in a variety of configurations, labeled by
(c). Call SR„') the hadronic current matrix element
for Eq. (4.1) in a given configuration. Likewise

refers to Eq. (4.2).
The respective spin-averaged cross sections

are proportional to"
{c) + {c)mS'„„7„„, W„

iver(c)

(cg(c)ms'�(c))

gr(c)m (Sg(c)mksg(c)m)
p& p v av&

where ( ),„denotes spin average and where

(4.3)

7'„'c=n„n„-q„q,+5»(q'+m') re»„zn„qa, (4.4)

with" n =q, +q„q =q, —q, . The + sign in Eq. (4.4)
leads to the cross-section differences independent
of class, discussed after Eq. (1.3).

We have

(4.6)

This very detailed implication of
~
n I

~

=-, is writ-
ten in its full fourfold differential form. The four
variables are: the invariant dipion and dilepton
masses; the angle between / and the dilepton line
of flight, in the K rest frame; and the azimuth
between the dilepton and dipion planes, in the same
frame. Integration over one or more of these
variables maintains Eq. (3.36}, of course. (Cf. ,
e.g. , K'- 3m where one gets three configuration
relations, leading to an upper and a lower bound
for the branching ratio. }

-~'+& +&+ v, ~ (3.34) where J„is the charge-raising weak b, S =0 current
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(4.11}

j again refex's to the isospin content of the current.
Then the relation between the reduced matrix ele-
ments 5m~'~(i, n, j) and 5g~'l (i, n, j) is completely de-
termined once we specify the class properties Rnd

the T properties of the currents in terms of Eqs.
(4.8) and (4.9). With reference to Eq. (4.3) one
now readily sees that

g (c} gr(c)m
pp pp (4.12)

fol Rny supex'posltlon of first-clRss currents with

q =1 and second-class currents with g =-1. For
brevity I shall refer to this situation as mirror

Rnd, with suitable conventions, J„is its Hermitian
conjugate. The lattex' is a charge-lowering cur-
rent. The question of class arises when one asks
for the relation between g~ Rnd g„which is also a
charge-lowering curx'ent.

Let

Jp= Vp+A. p (4.6)
be the decomposition in vector and axial-vector
parts. Decompose each current further into its
isospin components labeled by j:

V„=g&l {j )Vp(i )
(4.7)

A„=pc„(j )A„(j },
with the convention that the c(j ) be real numbers

(j =1 only corresponds to the conventional picture).
Treat the adjoint and the mirror likewise.

Definitions. ms If

V„(j)'=(-I)'-'n, (j )V"„(j),
A„(j )'=(-I)'-'n, ( j)A„(j),

then the respective currents are pure first-class.
If

V„(j)'=(-I)'n, (j )V„(j),
A„(j )'=(-I)'n, (j )A„(j),

then they are pure second-class. If q~ =1, then
they are T-conserving; for g~=-j. they are T-
violating. Of course, T consex'vation or violation
is a question of relative phases. We choose qr(1)
=4 to refer to T-conserving iso@ecto~ currents
by convention. Then T consex'vatlon corresponds
to q, (j)=1, ail j.

The system (AB) can be expanded in isospin
eigenstates with total isospin labeled by i. If there
is more than One state for given i, additional
labels may be necessary, collectively denoted by
n. The expansion of (A B")~'~ is then fixed without
further ado. Expand Eq. (4.5) as follows:

(4.10)

symmetry. Thus mirror symmetry -=charge sym-
metry if T ls coDselved

It x emains to find experimental consequences
which can uniquely be attributed to mirror sym-
metry, To this end consider first the case that A
and B are single hadrons. Choose as variables"
z, q', v; /defined in Sec. I; ands', the invari-
ant momentum transfer between T and g. Then

z = z/v, y =q'/4v', z =[z(z- I -y/z}]~'.
(4.15)

The terms A =1,.~ ., 5 are pure (VV, AA) terms,
while A. =6, ..., 9 arise from VA interference.
The corresponding expRnslon fox' spy 7'py ls ob
tained by substituting

(c) (p)m

(4.16)

The valMity of (4.12) implies that

y (c) y (c)m
A A (4.I.V)

Smce the depelldellce oil Calid oil 'Q ls explicitly
known, one can in principle translate Eq. (4.12)
into nine equalities. Howevex', it is vastly more
economical to integrate over all variables except

This then leads to Eq. (1.6) and Eq. (I.V) is
once again a consequence of Eq. (4.12).

For the case where B is a complex, integrate
first over its intexnal variables, after which one
has six residual variables: the five mentioned
above and (the invariant mass) sz. From there
on all that was said from Eq. (4.12) continues to
hOM, eXCept that FA(c) nOW depende aleO On S~.

B. Applications

Let us first dispose of pxoton targets. Consider
the six reactions

v+p-p+m'+ p,
-

~ gg('}

P +s~p'+'f +p, ; ggp

v+e-n+m'+p, -: gg(„'),

where the E depend on 618 detailed dynamics
but whex'e the X„are explicitly known as a con-
sequence of local actioa:

X, =l, X, =z', X,=(2z-l)zcosg, X, =z'cos2$,

X, =z sing, X~=(2z-i), X, =zcosp, (4.14)

, X, = (2x -1)z sing, X, =z' sin2p,



Here Eq. (4.12) leads to three pairs of equalities
Eq. (1.7). But now, of course, one gets involved
with n-p comparisons which we want to avoid.
However, there is a result for which neutrons
are not necessary; namely, if there is no iso-
tensor current, then there exists an inequality be-
tween the (pv'), (nv'), and (pw ) channels implied
by mirror symmetry. All three channels are pro-
duced on proton targets. However, since equali-
ties do exist as tests, it is most inefficient to
study mirror symmetry on proton targets.

Once again we turn to deuterium. The equations
(1.7) for

(4.19)

as compared with

(4.20)

are perhaps the simplest case one can have for
the study of mirror symmetry, purely for I =I
currents.

If one wishes to compare

(4.21)
v+0-N +N +n + p, ',

one has options. One can either integrate over
internal dinucleon variables and use the (dinucleon,
w) plane to define Q. Or else one can integrate
such that P has reference to the (N, (Nw}) plane.
In either case Eq. (1.7) is a consequence of mirror
symmetry. Clearly one can also sum over chan-
nels. Thus, generally Eq. (1.7) may be applied
as well to

v+d~ ++X + p,

where X'0 are AS =0 complexes related by charge
symmetry. Likewise instead of singling out (P N)

one may take any pair of charge-symmetric par-
ticles and sum over all else, as long as an azimuth
remains properly definable.
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