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For our problem, we let n— 2#n in the expression, Eq. (12), and we find that
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We find that the total cross section for the process e*e~ —-nn*nr- is
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Our expression, Eq. (14), for the total cross section is only partially valid because it is based on the soft-
pion limit. Nevertheless, we may estimate magnitudes. If we chose the value s =(6m ,)? and n=2, then it
follows from Eq. (14) that o(e*e™ - 27*277)~ 10-* c¢m?, This is very small and thus we find that this two-
photon-exchange diagram, Fig, 1, contributes negligibly. This is in contradiction to Brodsky, Kinoshita,
and Terazawa® who, in their calculation, estimate the two-photon exchange to dominate over the one-pho-
ton exchange. Even if we consider the case that s~9 GeV? and n=4, it follows that the total cross section
is o(e*e- —4n*471~)~ 107" cm®. The one-photon exchange' is expected to dominate for e*e~ - hadrons with
no leptons in the final state where the total cross section varies as o2,
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We consider the possibility that the radius of interaction between a virtual photon and a
proton varies sensitively as the mass of the photon changes. This phenomenon is studied
in quantum electrodynamics and in multiperipheral and constituent models. Physical argu-
ments are also presented which claim that the radius of interaction should vary significantly
as @° changes from 0 to 1 GeV?. If experiments confirm these expectations, then new and
dramatic experimental tests of the presence of multiperipheral mechanisms in photon-
initiated processes can be made.

1. INTRODUCTION prediction, originated by Cheng and Wu' and later

rediscovered and discussed lucidly by Bjorken,2+?
It has been conjectured by several authors that will allow us to test many of our present ideas con-
the angular distribution of p mesons produced in cerning hadron reactions with improved sensitivity

electroproduction reactions, e+p—~e+p+p, will and new techniques. One investigation in this di-
spread as the magnitude of the invariant mass, rection has been reported recently by Harari.? It is

(@2)/2, of the photon increases. If true, this the purpose of this article to investigate the plau-
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sibility of this conjecture (the “small photon” hypo-
thesis) and to point out additional applications of
the hypothesis.

We first discuss the small-photon prediction
within the field-theoretic framework in which it
was originally discovered. We compute off-shell
Delbriick scattering using infinite-momentum
techniques which expose the simple physical basis
of the hypothesis. Furthermore, we numerically
evaluate the effective impact parameter between
the photon and the external field as a function of
(Q2)*/2 and establish that the impact parameter
changes significantly for experimentally accessible
(Q2)*/2 (~0.5-1 GeV). This calculation suggests
a more general physical argument which also
claims, in the context of hadron physics, that the
small-photon effect should be dramatic for small,
accessible (@2)'/2, We devote some time to these
points since the proposed single-p and -7 electro-
production experiments will be practical only for
Q@2 less than ~1-2 GeV?2.

Next we suggest that variable-@? electroproduc-
tion experiments will provide new and more sen-
sitive tests of present ideas concerning strong-
interaction dynamies. In particular, we deduce a
striking implication of the multiperipheral model
which should allow a definitive test of that model’s
relevance to these electroproduction processes.

We further test and elucidate our ideas by briefly
considering a simple ladder model and finally a
more elaborate model suggested by vector-meson
dominance (VMD) and the constituent picture of
deep-inelastic electron scattering. The simple
ladder model, which has been studied by many
authors in the past, predicts a considerably
weaker @2 dependence of the do/di(ep — epp) than
the physical arguments abstracted from the QED
(quantum electrodynamics) model. The second
model, which may be more closely related to the
real world, suggests the small-photon phenomena,
but is not sufficiently restricted by known phenom-
enology or basic principles to allow a compelling
calculation. However, the analysis of this model
relates the physical ideas in the small-photon ap-

(1-a)r

M(R, Qz):fd'fda(exp{—i[x(ﬁ + (2 - a)Q% + 2]/

where T is the relative distance (dimensionless)
between members of the pair; « is the longitudinal
fraction of one constituent relative to photon; u is
- the constituent mass; y is the eikonal phase; and
Kl(f) is a modified Bessel function of first order

proach to conventional Regge approaches and may
be of use phenomenologically when more data be-
come available. In particular, the small-photon
phenomena suggest that the Regge residue function
at the virtual-photon—Pomeranchukon-p vertex
should depend sensitively on the mass of the vir-
tual photon.

The article closes with a short comment pointing
out that the small-photon predictions apply only in
that kinematic region where the scattering can pro-
ceed through a diffractive mechanism. The physi-
cal criterion leads to a familiar inequality involv-
ing the laboratory energy, v, of the photon and its
mass, (@2)/2 namely, v=3+5Q2. This simple
kinematic point has frequently been overlooked in
the literature.

II. QUANTUM-ELECTRODYNAMIC MODEL
A. Off-Shell Delbriick Scattering

To begin, consider off-shell Delbriick scattering
shown in Fig. 1. The incident electron beam pro-
duces an energetic photon of mass (Q2)'/2 which
dissociates into a pair of charged constituents.
Each member of the pair scatters via multiphoton
exchange before forming a final outgoing state. An
account of the calculation of the S matrix for this
process is contained in Appendix A. The physics
at work in this scattering process is most transpar-
ent when the scattering amplitude is written in
configuration space. Using the notation of Appendix
A, the S matrix becomes proportional to

M@ -3 @)= [aRe @D MR @3, @1)

where M(R, @2) is the configuration-space realiza-
tion of the profile function for virtual-photon-ex-
ternal-field scattering; ' -q is the momentum
imparted to the photon by the external field; R is
the position of the center of mass (infinite-momen-
tum interpretation) of the pair measured from the
origin of the external field. From Appendix A, the
profile function reads

2) —X<ﬁ " la- a;xgz + “2]1/2)]} - 1) 1 aP +li2@),

(2.2)

—

which is the configuration-space realization of the
energy denominators and vertices controlling the
size of the photon. The arguments of the eikonal
phases are simply the positions of the members
of the pair relative to the fixed external field.?
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FIG. 1. Virtual-photon scattering off an external field.
The shaded circles indicate multiple-photon exchange.

To understand Egs. (2.1) we refer to Fig. 2 which
projects the scattering event onto a transverse
plane. The external field has a certain effective
radius and the photon, by virtue of its constituents,
also has a certain radius. Clearly, from Eq. (2.1)
we see that the radius of the photon depends upon
(@32, 11, and a. There will be considerable
scattering if the disks of Fig. 2 overlap. The
maximum impact parameter is given by the trans-
verse extension of the external field, R,, plus the
radius of the photon. As the invariant mass of the
virtual photon increases, the transverse distance
between the members of the pair decreases as
implied by the uncertainty principle. So, the net
impact parameter between the photon and the tar-
get decreases to the limit R, as @2 increases, and
the diffraction peak spreads accordingly.

It is of some interest to take this model and sim-
ply evaluate the net impact parameter as a function
of @%. To do this we average R? over the profile
function,

2oy < J RZME, @*)dR
(R*(Q ))=m (2.3)

In the QED model we choose the external field to
be a screened Coulomb field. The eikonal appear-
ing in Eq. (2.3) becomes

- = exp|-puX?+2%)2]
xX)=e f p[(iggzz)x 72 dz

= 2¢K, (uf]). (2.4)

net impact

parameter

FIG. 2. A visualization in the transverse plane of off-
shell Delbriick scattering.

Here we have chosen the inverse screening length
to be 1, which means that we are supposing the on-
shell photon to have approximately the same spatial
extent as the external field. The motivation for
this assumption comes from hadron physics in
which p mesons, protons, etc. all have about the
same size. Now Eq. (2.3) can be evaluated numer-
ically and the resulting curve is shown in Fig. 3.
To interpret the curve quantitatively we must
specify the mass .. The most reasonable range

of choices would seem to lie between one and two
pion masses. This choice then gives the external
field (proton) a spatial radius of between 1.4 and
0.7 F. From Fig. 3 we also see that R?(Q?) has
fallen to half its @%=0 value by @2 in the neighbor-
hood of 1 GeV2. So, and this is the point of doing
the numerical exercise, in this simple model the
photon’s radius changes significantly for experi-
mentally accessible Q2.

This model calculation is intended simply to il-
lustrate a kinematic mechanism which may be
present in the real world. Of course, the details of
the dynamics of the QED calculation are probably
irrelevant. Recognizing that fact we now attempt
to merge the reasonable aspects of the QED cal-
culation with some basic facts about real hadrons
into another argument for the small-photon hypo-
thesis.

B. A Geometric Argument

Discard the details of the QED model momen-
tarily and consider actual photon scattering off a
target proton. We must ask what dimensional
quantities in the scattering process control the
shape of the diffraction peak. Apparently, they
are the intrinsic sizes of the hadronic component
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FIG. 3. The mean squared interaction radius for
virtual-photon—external-field scattering plotted as a
function of the mass, (QZ)V 2 of the photon.
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of the on-shell photon and the target proton. But
these sizes are on the order of 1 F~ (200 MeV)™.
Now allow the photon to become virtual. Once
(@2)/2 becomes 0.5-1 GeV it dwarfs the other
dimensions in the problem and it alone should
characterize the size of the photon, i.e., once
(Q2)'/2~0.5-1 GeV, the spatial extent of the
photon, R,(Q?), should be just that given by dimen-
sional analysis, 1/(Q2%)'25 Of course, there are
other large masses in the problem, such as the
mass of the proton. However, the spatial extent
of the proton is characterized by several pion
masses and the geometric approach claims that
only this dimension controls the slope of the dif-
fraction peak. In particular, if the hadronic com-
ponent of the on-shell photon has a transverse
size comparable to that of the target, one would
predict that the ¢ distribution of diffractively pro-
duced p’s would spread by a factor of about 4 as
@2 increases to, say, 1-2 GeVZ?, This follows
since the diffractive picture advocated here sug-
gests that the ¢ dependence of the elastic virtual

Y +proton - p +proton cross section reads approxi-
mately

d

7 ~expl-4(R*(Q*)1], (2.5)
where (R2(Q32)) is the mean squared impact param-
eter which initiated the process.

III. HADRONIC MODELS
A. Multiperiphefal Dynamics

We wish to investigate whether the ideas dis-
cussed in Sec. II survive a more realistic treat-
ment of strong-interaction dynamics. In this pur-
suit we immediately face the impasse that there
are no known basic principles to guide us in this
direction. The electroproduction experiments of
interest represent new ground for theoretical
speculations. It therefore seems somewhat pre-
mature to delve too deeply into detailed strong-
interaction models. Rather, we are content to
expose a few general features of various models
which will prove easily observable in the first
round of experiments. Elaboration and sharpening

Q32 | |

FIG. 4. A multiperipheral chain in a photon-initiated
process.

(or rejection) of our observations should certainly
wait until experiments indicate whether the small-
photon conjecture is on the right track or not.

We consider multiperipheral models in general.
Interestingly, it will not be difficult to test the
proposition that multiperipheral dynamics are
playing a role in electroproduction. Consider Fig.
4 which depicts a very inelastic process occurring
through a multiperipheral mechanism. As usual,
one imagines that the fastest secondaries emerge
from the top of the chain, the fragmentation re-
gion of the photon. These secondaries feel the
effect of the @2 of the photon most strongly, and,
as in the QED model, their average transverse
momentum will grow with @2. Inspection of the
energy denominators implicit in Fig. 4 confirms
this point. However, multiperipheral chains are
characterized by short-range order, which in this
case implies that the secondaries emerging from
further down the chain do not feel the effect of the
mass of the photon so keenly. This implies that
the average transverse momentum of the slow
secondaries should be small and insensitive to Q2.
So, a plot of the secondaries in a particular event
should appear as shown in Fig. 5. The absence of
such a curious correlation of p, and p, and its
characteristic dependence on @2 would shed con-
siderable doubt on the relevance of multiperipheral
mechanisms to photoproduction and electroproduc-
tion. In fact, the more general concept of short-
range order in rapidity will receive a severe test
by this proposal.®

Of course there will be some fairly high-multi-
plicity events arising from diffraction dissociation.
These will not necessarily exhibit the correlation
effect explained here. However, Wilson® has
argued that this mechanism should not populate
the central region in the rapidity between the pho-
ton and the target and this is known experimentally
to be the case in electroproduction for v= 10 GeV.
So, by selecting secondaries (pions, say) here and
plotting their (p,) parametrized by @2, one should
be able to effectively eliminate the diffraction-dis-
sociation events and search for the interesting
correlations suggested here.

Py

FIG. 5. The longitudinal-transverse momentum dis-
tribution of the secondaries in Fig. 4.
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B. Basic Ladder Model

Consider the diagrams shown in Fig. 6. The
particles composing the ladder are assumed for
simplicity to be scalars which interact through
the familiar A¢® coupling. We are interested in
such processes as the external photons become
virtual. To begin, ignore the spin of the photon.
The scattering amplitude with spin properly ac-
counted for will be considered briefly later. With
this simplification the problem reduces to one often
studied in the literature.” We remind the reader
that the scattering amplitude assumes the expected
Regge form

M (s, t)~p(t, Q% Q2)s*Op(l, Mz2, M), (3.1)

where 8 is the residue function and we have explic-
itly displayed its dependence on the squared mo-
mentum transfer ¢ and the invariant masses of the
external legs. Writing a Bethe-Salpeter equation to
sum the ladder diagrams results in an integral
equation which, in principle, determines the tra-
jectory function a(#) and the residue function up

to an over-all function of . Unfortunately, these
equations have been solved only in rather unrealis-
tic models. For example, if one approximates the
1 ¢* ladder model integral equation with a separable
kernel, one can solve for the residue function and
find that®

Bt %, Q%) ~ (m? + Q% + 31)7® -1, (3.2)

where m, is the mass of the horizontal rungs in
the ladder. Although this equation exhibits the
small-photon phenomenon, it only does so weakly
as compared to the simpler geometric models
[cf. Eq. (2.5)]. It will be interesting to see whether
Eq. (3.2) or Eq. (2.5) is favored experimentally.
The reason for the relatively weak @2 behavior
of Eq. (3.2) lies in the fact that the ladder model
does not treat the photon end of the ladder pref-
erentially. Our geometric arguments were based
on the notion that one could separately consider
first the development of the incident photon into a
set of constituents,. and second, the interaction
of these constituents with the target. Such a dis-
tinction is not possible even in principle within this

Q? Q°

FIG. 6. Simple scalar ladder model.

ladder model. It is also clear that if we included
the spin of the photon properly, Eq. (3.2) would not
have changed dramatically.® In Sec. ITI C we will
consider a model which merges the more reason-
able features of the geometric model with the lad-
der model.

C. Extended Ladder Model

In constructing a more sensible picture of photon
processes for small (@%)'/2 and large v we turn to
vector-meson dominance. In this approach one
supposes that the virtual photon transforms into
an off-shell vector meson which subsequently
scatters off the proton. As v grows the lifetime of
the virtual p state increases proportionally, while
the time duration of the interaction between the p
and the proton presumably remains finite. From
the point of view of constituent models, this fact
suggests Fig. 7 as a first attempt to merge these
two physical pictures. Clearly vector dominance
alone cannot make a prediction concerning the
spread of the p peak with Q2. One must have some
notion of the distribution of the hadronic matter in
the p in order to proceed. But this is just what
the constituent models purport to provide.

Unfortunately, we cannot actually calculate a
scattering amplitude from Fig. 7 without knowing
the amplitude that a photon consists of, say, two
strongly interacting constituents. Model calcula-
tions can be attempted (s-channel ladder graphs,
perhaps), but we refrain from that here. Instead
we will just discuss the general form of the scat-
tering amplitude in order to relate the small-pho-
ton hypothesis to more conventional approaches to
this subject.

The details of the calculation of off-shell Del-
briick scattering according to Fig. 7 can be found
in Appendix B where additional motivation for this
approach is also discussed. Clearly the amplitude
consists of two parts: a wave function, V, which
describes the composition of the photon as a pair
of constituents, and the interaction of a constituent
with the target through a multiperipheral mecha-
nism. From Appendix B, Eq. (B6) we have the

Q2

FIG. 7. A ladder model suggested by vector-meson
dominance and the constituent picture of hadrons.
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scattering amplitude

5(Q’ - q) ~(residue function for target)s™® (effective residue function for photon),

1157

(3.3)

where #=-(qQ’ ~q)? and the residue function for the photon reads

V(@2 &b, x)

B)(t, Q%) =‘fd5dx mﬂ(t, -

1-x

where D is the relative momentum of a pair of
constituents before scattering; p’=p-— (1~ %)@’ =q)
is the relative momentum of the pair after scatter-
ing; and V(@2 q; P, ¥) is the wave function of the
photon. In order to calculate §,(/, @) one needs a
realistic model for V which is quite beyond our
reach. However, we can qualitatively understand
how the ¢ distribution is effected by changing @2

by inspecting Eq. (3.4). As @? increases, larger
values of P contribute significantly to the integral.
This follows from the character of the energy
denominators (Sec. II), the residue function 8 (Sec.
IIIB), and the wave function V itself.!° But this
means, as shown in the QED model, that the pho-
ton is becoming smaller in configuration space
which means the angular distribution of the second-
aries should expand. Of course, the rate of angu-
lar spread with increasing @2 depends upon the
actual dynamics controlling the wave function.

It is clear that in this approach the interesting
physics is contained in three transverse distances
as indicated in Fig. 8. First there is the photon
size R,(Q?), then the size of the interaction re-
gion, R, (@% s), and the size of the target, Rj.
Several limiting kinematic cases are interesting.
First, if the interaction is generated by multi-
peripheral mechanisms, R,,(Q2 s)~(Ins)'/2, For
Ins>>1, this dimension will dwarf all others in the
problem and the angular distribution of secondaries
becomes independent of @2. Clearly, in this limit
the intrinsic sizes of the photon and target become
negligible and the physical picture approaches that
of the simple ladder model discussed in Sec. III B.
However, for presently accessible s, Ins is not
large, and we expect RY(QZ) and R, to be compar-
able. Then the physical picture resembles the

MNE R),(Qz)
% le(oz,s)
—= I~

FIG. 8. The important transverse distances controlling
the physics of Fig. 7.

’ 1-x

PPul+x(l-%)Q?  PP+al+a(l- x)Q2> ot _ V(@2 355 x)
x(

1-2)Q%+p"+ 1’
(3.4)

r
QED model of Sec. II, and we would expect the
small-photon predictions to apply. Unfortunately
we cannot predict the function RY(QZ): We can only
suggest a physically appealing way of interpreting
the anticipated experimental results. However, on
the basis of the QED model, the geometric argu-
ment, and the ideas in Eq. (3.4), we expect the
small-photon predictions to apply to the upcoming
electroproduction experiments.

‘D. A’ Comment on Kinematics

Our final remark concerns the region in the @
and v plane where we expect the small-photon
prediction to apply. As argued at length, our phys-
ical picture applies only if the virtual photon of
mass (@2)'/2 and laboratory energy v develops
hadronic constituents before interacting with the
target proton. Furthermore, this virtual state
must be so long-lived that we can neglect its time
development while it is within the range of inter-
action of the target. These criteria are presum-
ably the ones which define the kinematic region in
which electroproduction proceeds diffractively. To .
estimate the lifetime of the virtual hadron state
one simply computes the reciprocal of the energy
difference, AE, of that state and the incident pho-
ton. Of course, for a given v the lifetime shortens
as the photon becomes more virtual. Next one re-
quires that the lifetime be greater than the diame-
ter of the proton. This argument, which is famil-
iar from discussions of VMD and has been made
in the context of electroproduction before, leads
straightforwardly to the inequality*

v=3+5Q7% (3.5)

where all quantities are measured in GeV units.
Unfortunately, the argument is not precise enough
to indicate whether the inequality sign can be in-
terpreted strictly, or if it should be replaced by
“>».”- However, it is certain that the small-photon
idea cannot be expected to apply if Eq. (3.6) is
strongly violated.

Preliminary results from both SLAC and Cornell
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have recently been reported. Neither experiment
is conclusive. However, the indications, especial-
ly from the higher-energy SLAC experiment, are
encouraging. Unfortunately some of the data re-
cently reported do not satisfy inequality (3.6) above
and, hence, do not represent a clear test of the
small-photon hypothesis.

Note added in proof. Professor D. Yennie has
pointed out to us that for many scattering process-
es it is the squares of the radii of the projectile
and target which add. For such models the (R%*(Q3))
appearing in Eq. (2.5) becomes Ryz(Qz) +R 7%, which
suggests that the ¢ distribution of diffractively pro-
duced p’s should spread by a factor of 2 instead of
the factor 4 appearing in the text. Unfortunately,

GUT 5
the model of Sec. ITA is not a reliable guide to this

problem because of the singular character of the
screened Coulomb potential.
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APPENDIX A

In this Appendix we will discuss the QED model calculation in some detail. We consider Fig. 1 and write
the scattering amplitude according to the rules of infinite-momentum perturbation theory,

am
St

ViVeVs

4(277277 126 =n' =n )fdpl

(27r) aB; 5 2n, H; ~H,

x[F(B, = B))F.(B, = B3) = (2m)* 6(B, - B])6(D, - B;)),

JH; - H,)H, - H,)

(A1)

where V; and H; denote the vertices and energy denominators, respectively, as indicated in the figure. As
usual it is'best to introduce kinematic variables which are suggested by the structure of the Poincaré
group at infinite momentum. We define the relative momentum (two-dimensional) of the pair before the

interaction as

K B _m 1. 1 1
M, M M’ N M Ty
and the relative momentum after the interaction,
K _By_Be
Ny M1 Ny
Then the energy denominators can be written compactly,
pP+i2  G% P+ Q*
H,=H =" = = S ==,
27 2n, 2n’ 21,
PO A0 il ' Sk AT il il 3
2n 2n’ 2n, 2n, ’
@ )
H,-H,== — — k®+
i 2 znq 2,'71772 ( “‘ )
Q> 2
H,-H;=- *~— - +
f 2nq 2,'71772 (k “’2)

Next, the vertices are simple and have been tabulated elsewhere.?

(A2)

(A3)

(A4)

Choosing the photons to have positive

helicity and summing over the possibilities of e*-e™ helicities, one obtains

Nq
05"

N2

Q

n
AASS
1723 =4 <m

JaialGe) e

where we have neglected the electron mass, and &,=
sionless variable

et ,e= spins

mn

, asl
Mo

a=

(A5)

(1/V2)(k,+ik,). Furthermore, if we define the dimen-

(A6)
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and eliminate the arguments of the eikonal factors in Eq. (A1) in favor of relative momenta and a,
B, -b{=k'-k+a@ -9, B,~-D;=k-K'+(1-0a)@ -9, (A7)
we have a more convenient expression for the scattering amplitude,

4e® 1 q.

S@G -q)=- Gy —77?(271271’)”26(77 -7’ =1,)
- [(1-a)+a?lk. k.
Xf dkdk’da [@l - @)Q® +k®+ 2 ]la(l - &) Q% +K ' + 7]

X[F&' -K+a@ -qVF.E -k +(1-a)d - - @n)* & -K+a@ -§0E -k’ + (1 - )G -]
(A8)

As discussed in the text, it is better to write S in configuration space. Introduce the infinite-momen-
tum “center-of-mass” coordinates for the pair,

F=% -%, R=oX +(~-a), (A9)
and recall that
F(ﬁ):fdie-iﬁ-?e-f@. (A10)

The S-matrix element may now be written,

SE —F)= = 25 9= (500 m/2 e ) MG =) A11)
@' =8 == Gy 77 gF @2’y *ol =0 =0 JM@’ - ), (

where

MG -§)= f AR ¢-1@ -0 R f dFdatexp{=i x(K + (1 = @)F) = x(§ = af)]}=1)

x{[(1 = @)+ &?l[a(l - @)@? + 2]K2(a(l - @) Q2+ 122} . (A12)
Finally, we write M(q’ —{§) in terms of the dimensionless variable
£=[a(l - @)@+ 12177, (A13)
Then,

MG -§)= f AR e-i@-D R j dEdal(1 - aP + a?]K,2(¢)

X(exp{"i[" (F+ aa Lo ml/z)"‘(ﬁ‘ [all- a?ézwzl")]} "1> '

(A14)

This form for the scattering amplitude is very transparent since one can read the profile function off with-
our further manipulation. One can also examine Eq. (A14) for the dimensional argument presented in Sec.
IIB.

APPENDIX B

We will calculate here the scattering amplitude for Fig. 7. First there is the photon wave function which
expresses the amplitude that the photon dissociate into a pair of fast partons: V(@2 §; D, x). As usual we
find it convenient to parametrize the kinematics of the pair by their relative momentum { and the longi-
tudinal fraction x as in the QED model. The parton with longitudinal fraction x interacts with the target
through Pomeranchukon exchange which is generated by the wee partons in the wave function of the photon.'?
We presume that we can characterize the Pomeranchukon exchange by multiperipheral mechanisms and
write

B(t, M2, M,%)(xs) (B1)
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for this subscattering. Here M, (M,) is the invariant mass of the parton of fraction x before (after) the
Pomeranchukon exchange. The invariant masses can be evaluated,

- Bi+y? ) .

M2=2x ( - -0,
N A (82)
1
2_ _ =2 - 2 2
M= = G F+ 1= 0@+ ],
and, similarly,
1
2_ _ =2 - 2 2
M2 = ) B2+ x(1 = x)Q2 + x2], (B3)
where P’ is the relative momentum of the pair after the scattering,
P =p-Q1-xG -a). (B4)

Finally, the energy denominators and further kinematics can be borrowed from Appendix A. The result
becomes

V(Q% 4GP, x
x(1 =x)Q%+p" +

=y - V(QZ) -q’ﬁ’ x) 2 2 oft) 2 2
M(g Q)—fdpdx (1= 0)Q% +D°+ P B(t, M2, M, ) 2 (xs)*®p(t, My*, My ) (B5)
where M, and M, are given above, t=-(q’' —q)? and B(f, M, M,?) is the residue function for the target. In

the text we wrote Eq. (B5) in the more suggestive form,

- e V@, T V@ L300 o)
[ = 2 2} o 0ft) 2 My My 2 2 P B8 ) aft)
M@’ =q) =B, My*, My%)s (fdpdx x(1 - 2)Q2+p° +12 B(t, My®, M, )x(l - x)Q2+§'2+u2x (B6)

in order to express the fact that the dynamics of interest lie in the residue function for the photon.
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