5 WAY TO TEST CAUSALITY

Laboratory, 1969, edited by F. Loeffler and E. Malamud
(Argonne National Laboratory, Argonne, Ill., 1969).

6N. M. Kroll, T. D. Lee, and B. Zumino, Phys. Rev.
157, 1376 (1967).

"Z. T. Guiragossidn, in Proceedings of the Internation-
al Seminar on Vector Mesons and Electromagnetic Inter-
actions, Dubna, U.S.S.R., 1969 unpublished).

8G. Wolf, Phys. Rev. 182, 1538 (1969). Note that near

IN THE p-MESON SYSTEM 1143

t,=0 elementary pion exchange and Reggeized pion ex-
change are essentially the same.
M. B. Einhorn, Phys. Rev. 185, 1960 (1969).
1R, T. Deck, Phys. Rev. Letters 13, 169 (1964).
"The p width is related to g+ ,-% by

PHYSICAL REVIEW D

VOLUME 5,

gp,,+,,_2 _3 I‘pme ~ 2
4t 2 [(%mp)z"mnzl 372 .
NUMBER 5 1 MARCH 1972

Hadronic Corrections to Goldberger-Treiman Relations for Strangeness-Carrying Currents*

J. Chen
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 8 November 1971)

Hadronic corrections to Goldberger-Treiman relations for vector and axial-vector strange-
ness-carrying currents are calculated. In both cases, the corrections are found to be less

than 10%. A bound for G,,, is set.

In the dispersion-theoretic version, the PCAC
(partial conservation of axial-vector current) hy-
pothesis assumes that the matrix element of the
divergence of an axial-vector current satisfies an
unsubtracted dispersion relation dominated by the
lowest pseudoscalar meson. The Goldberger-
Treiman relation (GTR) derived from this hypoth-
esis provides a direct experimental test of this hy-
pothesis itself. For a strangeness-conserving
axial-vector current, it is believed that the pion
dominance of the divergence of this current is a
good approximation, for the pion pole is far be-
low thresholds of other hadronic states. In fact,
it is well known that many soft-pion results de-
rived from PCAC and current-algebra assumptions
are in very good agreement with experiment. How-
ever, the GTR is experimentally found to have a
10% discrepancy. Pagels! tried to understand this
discrepancy in terms of hadronic continuum cor-
rections but failed. Later, he? proposed a once-
subtracted dispersion-relation version of PCAC as
a remedy.

In this paper, we extend Pagels’s calculation to
the study of strangeness-carrying vector and axial-
vector currents. There are several reasons of in-
terest for such an investigation. First of all, we
want to see how good the GTR’s for strangeness-
carrying currents are and how large the hadronic
corrections are in cases where the lowest poles
are rather close to the thresholds of the next high-
er states. Second, such calculations can give us
some information about the values on bounds of the
form factors g4 and g% of weak hadronic currents.
Such information is useful in checking the Cabibbo

theory in strangeness-changing leptonic decays.

In the calculations, we have used experimental
information on the coupling constants as far as
possible. Where no information is presently avail-
able, we have used SU(3) estimates. Our results
show that in both cases of vector and axial-vector
currents, the corrections to GTR’s are less than
10%. A bound for G, ,, is also estimated.

I. STRANGENESS-CARRYING AXIAL-VECTOR
CURRENT

The matrix elements of the strangeness-carry-
ing axial-vector current A% and its divergence
between the proton and A states are specified by
Lorentz invariance as

PONATEONAP)) =T(p" Ny vsFy(8) + 4, 75F5(2)
+,0,,F5 () Jup (),
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0" 8,450 AD)) =i, (p")ysun(P)D(F),  (2)

where g, =(p-p'),, t=q% and F,(f), i=1,2,3 are
the usual form factors. From Eqs. (1) and (2), it
is obvious that

D(t) = (m p +m,)F,(2) - tF,(t) . (3)

PCAC assumes that D(t) satisfies an unsubtracted
dispersion relation dominated by the K pole, i.e.,
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where {, is the lowest threshold, f, is the usual
kaon decay constant, and G, ,x is the strong ApK
coupling constant. At ¢=0, F,(0)=~ g%, the GTR
follows from Eqgs. (3) and (5):

(mp+my)gh=fxGppi- (6)

Experimentally, g4 and G, ,, have not been accu-
rately determined; a decisive check of Eq. (6) at
present is impossible. However, in order to give
some ideas about the validity of the relation, we
would like to quote some experimental data avail-
able. The value® of G, ,,*/4n=13.5+2.5 has re-
cently been obtained using the multichannel effec-
tive-range-approximation model, which is con-
sistent with the SU(3) result with the D-F mixing
parameter f approximately given by f=~0.35. We
then take G, ,x= ~13, where the sign is fixed by
SU(3) considerations. As for g7 there are several
possible values. The SU(3) relation g ==g,(1 +2f")
/V6, with the experimental value g,=1.18 and the
‘best-fit D-F mixing parameter '~ 0.33,* gives the
value gi~ ~0.8. From these estimates, one ob-
tains the deviation from GTR

A

m m
6cxp=1"( At p)gA
fKGAPK

However, the recent compilation® of experimental
data on e-v correlation measurements in A -~ pev
decay gave the value gi/gh=~0.77:%1. If we take
the SU(3) ratio for vector-current form factors,
gh/gh ==(3)*/2, then we get gr=~ ~0.94 and 0,
~-0,12, while the recent result® of the up-down
asymmetry experiment in A decay, gi/gh

=~ 0,40%%17, leads to Oy, = 0.42.

The main interest of this paper is to evaluate the
possible correction to the GTR due to hadronic
continuum contributions. As seen from Eq. (4),
this correction is equal to

ImD(¢)

6= f dt. (8)
af K(’A pK

Using-the PCAC relatmn as an operator equation

in the field-theoretic version, 9,44 %(x)

=fm 2o (%), we can relate D(¢) to the vertex

function K(¢) defined by

~0,044. (M

<P(p') |]K (0) l A(I’)) = iﬁstuAK(t) 9)
in the following way:
K(¢
D(Y) _f—"m"—_t(—) (10)
Then 6 can be rewritten as
Y pKLIZ(t)
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1 my f ImK(t) dt
T Gpppds HE—m )
=8, +0p, (11)
with &,, 6, defined by
1 My’ J‘("‘m"‘?)z ImK(¢)
== T U
'”GApK Kt —mg?)
w (12)
5,,=1—m" _ImE@)

T Gppx? (myrmpy2 HE=m ")
Now we discuss the low- and high-energy contri-
butions separately.
(1) High-enevgy contribution. From Eq. (9), the
imaginary part of K(¢) is found to be
2(2m)* 70 6%(p, — a)(01 1 £(0) | n)T(n| j,(0)| A(p))
ZNEDN '
The application of the Schwarz inequality to the
sum on states gives the inequality
|ImK()|* <5 AB, (13)
with
A =(27)* 3 6%p, = )01 £(0) ) |2,

B= (277)42 54(1’" - Q)I ﬁp(‘”jp(o)l n>/ﬁp7’5u1\lz .

ImK(t) =

Note that (0]](0)|2(q)) = (m 42 = £)(0] ¢(0)| ), and
the spectral function p appearing in the kaon prop-
agator defined by

A¥@)==i fd 4 e'(0] T }(x)p£(0)] 0)

J” plt’)
—
my® =1 (mgtamp)2 t=1

dt (14)

is equal to
p(t) =(21° 3 6%(p, = @) (O] 9 x(0)|n)]2.

We then get
A =27}t =m BYp (L) .
For ¢>(m, +m,)?, we can show that B=o.v, where

oy(t) is the total Ap annihilation cross section in
the IS, state with relative velocity v. Thus,

| ImK(2)|2 < 37(t = m 2% ()0 p(t)v . (15)
0y is bounded by the unitarity condition
op(t) s 4n/k?, (16)

R2=(t-m2)(t-m 2) /4, m,
where % is the momentum in the c.m. system of
Ap. Combining Eqs. (14), (15), and (16), we find
that

=My My,
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Again, by applying the Schwarz inequality to the
integral, one obtains the inequality

mlfz J'w px(t)
6(mA+mp)2 e dt. (18)

IGApKélilzS

As seen from Eq. (4), we know that

1
mg’

i t
f Pe® 1y < %0 -
m 2 t

Obviously, the value of A¥(0) obtained from K-pole
dominance will give a null result. Mathur and
Okubo® have estimated A%(0) by a method indepen-
dent of K-pole dominance, and found that A¥(0)
=14.65f 2m 2 /f®m,*. With the experimental value
Gppx= —13, the inequality (18) gives the bound of
511;

|6, <0.017. (19)

It is one order larger than the corresponding cor-
rection to the GTR for axial-vector strangeness-
conserving current. If we take a less stringent
boynd for the integral of the spectral function, e.g.,

° t
J P 4y < a¥0),
m 42

t
then we get a weaker bound for 5,, |5,|<0.049.

2

3g G t=m,2=-m
ImK,(f) = oNNE pK K APK%[ K o

87 m,

+[2(mf +m 2 =m %) +(m, —m,)(

polt-m2) 1 >] by

2 +(my - mp)< Ztl/zlplzmp - -m_p

(2) Low-energy conivibution 6,. For i
<(m,+m,)?, there are two-particle states pK, wK,
7K*, nK* oK, and Ku, and three-particle states,
such as KKK and 77K, which may contribute to the
correction §,. Of the two-particle states, we con-
sider only pK, wK, mK* and nK* contributions.
We believe that these will give the main contribu-
tion, or at least the order of possible low-energy
corrections. The contributions of oK, Km, and
three-particle states are not discussed because of
the lack of experimental data on coupling constants
needed, and are neglected. In the case of the
strangeness-conserving current, Pagels® has
made rough estimates and found that the o7 con-
tribution is at most 2%, and the 37 contribution is
less than 1% because of the smaller available
phase space. Similar arguments can apply to our
case too.

The pK contribution in the Born approximation
comes from the following diagrams as shown by
Fig. 1. Assuming the p coupling to mesons and
baryons is SU(3)-invariant and universal, then
only the charge coupling contributes since the
D-type coupling is excluded. The contributions
from these diagrams” are directly calculated to be

t1/2

(t =m2)(pim,2+2p,gmy2)  my? >]
2072 plPm, T m,

(295 b1+ myDAIP1D, |

1 -1
x 4|p¥ t1/2 tan

38, w8 pxxGArK

1m0 = = TG0, 2406 — )

(a)

(2P Dro+ my2 )% —41p1%p %)’

(20)

[m,* =2t +mPym 2 +(t - m P [2=2(mp? +m @)t + (m 2 = m 2F]72,

K™ K~
V29K 9pkk
P K F K~
K v/29,kk 9pKK
Gpk Giaok
P A P A

FIG. 1. (a) and (b) The pK contribution to the divergence of the axial-vector and strangeness-carrying current.
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with
Pro=(t+my? =m 2) /22,
Do=(2 J-mAZ —-m,?) /262,

o =—=(t+m,% —m,2) /2642,

b= (sz - mp2)1/z ,

|pl=(mp? = p®)2,

Assuming that g,yy, & and G,,, are momen-
tum-independent in (m, +m )2 <t < (m, +m,)?, the
numerical integration of Eq. (20) leads to

_8pnn8pkk

0o =—EH T (1.92X107%). (21)

If we assume SU(3) couplings, and neglect the
mass difference between w and p, and w-¢ mixing,
it is simple to see that 6,,=0 .

Similar calculations for K*7 and K*n intermedi-
ate states give the results

V3G

Grpk

GAZQ’II'O

_EonnBpxx +0.56

-2.6>><10-2,

(22)

gPNNgPKK( Gpon Gann >
O px=——-—4,8——+0.56 —— = 2.6 | X10~2,
nk 47 Gapx Gpx

GAPK

where we have assumed SU(3) couplings for the
strong interaction and the universality of vector-
meson coupling, i.e., gpNN=ngK=%gp”. For
numerical estimation, we take the average value®
G ppg™ —13 and the D-F mixing parameter in.the
baryon-baryon-meson interaction f =F/(D +F)

=~ 0.35; while g,,,°/47=2.43 is obtained from
p—2mdecay, taking I'j =125 MeV and m, =765
MeV. Then we get

8, 0,5 ~0.012,

Onpx=0.033, (23)
8 x> —0.006,
so that

0,20, g+ 0 g+ 0npx+0 gk
~0.051. (24)

The results of Egs. (19) and (24) show that had-
ronic corrections are a few percent in magnitude,
one order larger than those of the strangeness-
conserving current as discussed by Pagels. We
find that disregarding some variation in 6 caused
by the experimental uncertainty on strong coupling
constants, the correction is of the same order as
Bexp given by Eq. (7), and so at the present level of
experimental information, the kaon PCAC hypoth-
esis can indeed be understood through an unsub-
tracted dispersion relation.

II. STRANGENESS-CARRYING
VECTOR CURRENT

By Lorentz invariance, the matrix elements of
vector strangeness-carrying current and its di-

CHEN

e

vergence between the A and proton states can be
written as :

PO ViEO) [Ap)
= if’—l'?(p')(f17u +f2qp +f30p qu)u/\(p) s
(25)
p@)|e, Vi(0) [ A(D)) =D(2)a,(p"Yu,(p), (26)
where ¢, =(p-p'), and t= —q* The form factors
f1,2,3 and D are dependent on £ only. It follows
from Eqgs. (25) and (26) that
D(f) = (mA - mp)f;(t) + tfz(t) ’
so that
D(0) =(m = m,)g}h, (27)
where g% =7,(0) is the A-decay constant of the vec-
tor current.

Assume D(¢) satisfies an unsubtracted dispersion
relation, i.e.,

~1[’”ImD(z,") ,
D(f) == ey ar,

then we may write

D(0) = (m , — m,)g}

L [TImb)y, (28)
Tty ¢
=D; +Dy, (29)
with
1 f('"m‘mp)z ImD(¢)
Dy == i —=dt,
1~ ImdQ) (30)
o= dt .
T (mA-i-mp)z t

From Eq. (28), it is obvious that in the SU(3) limit,
D(0) =0. The Goldberger-Treiman relation follows
from the PCVC (partial conservation of vector cur-
rent) assumption that the « pole dominates the dis-~
persion integral,

(mA—mP)gKngGApky (31)

where f, is the k-decay constant and G, ,, is the
strong coupling constant.

(1) High-enevgy contribution. Similar to Sec. I,
the Schwarz inequality implies that

| ImD(#)|2 < 3mp¥ (2)o(#)v, (32)

where p¥(¢) is the spectral function appearing in
the following vector-current propagator:

AV () ==i I d*x e'(0] 7(8, V3 *%(x)0, V3=5(0))| 0)

=p¥ ()
=f° —dt, (33)
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(b)

FIG. 2. (a) and (b) The K contribution to the divergence of the vector and strangeness-carrying current.

where

p¥ (1) =27 T3 6%(p, - 9)|(0] 2, V1+¥5(0) [ m)| 2.
" - (34)
o%(#) is now the total Ap annihilation cross section
in the 7=1, J=0 state, and so is bounded by the
unitarity condition

ol(t) <12m/k%. (35)

From Egs. (32), (33), and (35), applying the Schwarz
inequality to the dispersion integral D, one ob-
tains

[ Dyl < (2)2(mp +m,) AV (0) = f,2m 2] M2 (36a)
< (D)2(my +m,) "M [AY(0)] V2. (36b)

(2) Low-energy contvibution. For t<(m,+m,)?,
there are many intermediate states, such as «,
Kn, KA, K, states, etc., which may contribute
to the dispersion integral D,. However, we he-
lieve that the lowest states K7 or k dominate the

J

low-energy contribution, or at least this contri-
bution will give the order of D;. Furthermore,
since experiments indicate that m, is higher than
the K7 threshold, in order to avoid double count-
ing, we can only take into account either the «-
pole or Km contribution.

If we dominate D, by the k-pole contribution we
simply have the relation

D(0)=(m/\_mp)g‘/§=fKGApK +DH7 (37)
so that the correction 6 to GTR is given by
fKGAPK
60=1= ————
(m p —m,)g}
D
s (38)

(my=m,)gL’

If we dominate D, by the K7 contribution and use
the Born approximation as indicated by the dia-
grams shown in Fig. 2, direct calculation” gives

~(2+V2)Gp 4G pynd(t)
ImD,(¢) = 1/;;:{ e (;_12 (75t 22 = (m = m,y)D5)
1 _ 4Dl py(=2byo by +m g2 +m 2 = my2)
+ n -
4[p|t1r2 (=2p1obo +m g% +m \* ~ m,2)2 - 4| p|2p;?
X{(my =m ) +(m y = m,)(pyo/t*?)
- %[mlslf YVBm(mpy = My)Po)(=2D1 Do + 1P +m \2 = m,2)p%t -1/2}> ,
=(2+V2)G  50,0G 5, A(2) . (39)
ImD,(f) = ’1‘6” 2K (;%2- [yt 2 = (m = m,)pp]
s b @oupormetemg? —mi)dplpy
4| plt2 (2pyo by +m g +my® =m 27 = 4| p[%p,?
X{(mz -my,) = (mp = m,)pt 2
= 2lmyt 2 = (my =~ m,)P4(2p,0 Py + 1 2 +mm)2 = m 2)p~2t "“2}> ,
with

bro=({t+mE =m 2)/ 2172,

p=(p2—m 22,

by =010 =m )2,

p(’) = _(t +mp2 - mAz)/Zt"z .

o = (t +m % = m,2) /2812
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The form factor d(¢) is defined by

(0] 3,V i5(0)| K ~7°) = (1/V2)d(¢t)
which is bound by an inequality given by Li and
Pagels®
87 (¥ ()]
3 [(t+m? = m,2)? = dm 2tV
From Egs. (30), (39), and (40), applying the
Schwarz inequality again, we obtain

ld(6)] < (40)

647°
lDL[ B AX(O)—Q—

(m/\*mp)z
J
(

mKHn,r)z

|ImD, +ImD, | *
[ +m 2 —m 2 - dm 2t]

1/2 at ’

(41)

where :
(my+my)?

PR gy

AY(0)= .

~ 2 2
- f:( ey
(m g+ my)

< AY(0).

The integral in Eq. (41) can be evaluated numeri-
cally, and we obtain

|Dy | <AL /2G 107(0.2 BeV™Y)
<(A")12G 5 2(0.2 BeVTY),

(42a)
(42b)

where again we use SU(3) coupling ratios, i.e.,
Gppx/ Graw==(1+21)/V3 and G0,0G5opx-/G ry’
=2(1-f)(1-2f)/V3, and take the D-F mixing pa-
rameter f=~0.35.

‘Now we have Eqgs. (37) and (38), and inequalities
(36a), (36b), (42a), and (42b). Inequalities (36a)
and (42a) give better bounds, while (36b) and (42b)
are more reliable because they are independent of
the experimental uncertainty in f,. One can also
obtain a bound for G,,, from Eq. (37),

mp—my) gy |+ Dy

<

- 14 _DO
(mp mp)lg/\l H < !GApKl

J. CHEN

5
where DY is the bound of |D,| as given by (36a)
and (36b).

The factor A"(0) is calculated by Mathur and

Okubo® as

AV(0)=2K,,=Zyab, (44)
with

a=~-0.89,

1-x2 f
b= T2 X =_: s
f‘vrzmﬂ’z

YT+ )1+ D)

The factor f, may be estimated in two ways;

(A) The sum rule given by Glashow and Weinberg,
21 (0N fr=f o2+ i’ = f %, with the experimental
value f/f . f.(0)=1.28, leads to

F2/f2=1-0.562552. (A)

Note that A >0 implies |x|>1.25. (B) We may
obtain from the simple sum rule,® '® f _=f,+f,,
that

fk/fir=1_x‘ (B)

Al =0 implies 1 <|x|<2.52. If we accept the re-
sult of Okubo'! and Li and Pagels® that f,(0) <1,
then the experimental value of f,/f, f,(0)=1.28
implies 1 <x<1.28. For x in this range, as x in-
creases, |f,| will increase in case (A) and de-

9

~ crease in case (B).

By k-pole dominance of D;, Egs. (37)-(38) and
inequalities (36a), (36b), and (43) set bounds for
[Dyl, 1Gppcl, and [8], the correction to GTR.

If we approximate g’ by its SU(3) value, g%
=—(2)'/2,% and take f, =131.7 MeV, G, =13.66,
m, =1050 MeV, we obtain the result listed in Table
I, so that we reach two conclusions:

(1) The correction to GTR is less than 10%, a
bound independent of the uncertainty of f,. It may

[fl ’
If ] « be a few percent or much less, depending on vari-
(43) ous possible values of f,. For more precise com-
TABLE I. The bounds for [8] and [G,,,| using the K7 dominance.
With (36a) With (36b)
| Dyl = | Dyl =
x Aflfal Mev) ol =IGppil = (MeV) |s|= <IG ppecl =

(A) 1.28 0.28 14.2 0.065 5.51 6.275 21.64 0.10 5.3 6.45

1.25 0.35 0.95 0.004 4.72 4.76 20.31  0.094 4.3 5.18

(B) 1.25 0.25 14.15 0.065 6.17 7.03 20.31 0.094 5.98 7.21

1.20 0.2 13.67 0.063 7.33 8.77 17.97 0.083 7.56 8.93

1.08 0.08 10.02 0.046 19.66 21.58 11.05 0.051 19.57 21.66

1.04 0.04 7.24 0.033 39.86 42.62 7.61 0.035 39.79 42.68
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TABLE II. The bound for |g¥|.

With (36a) and (42a)

With (36b) and (42b)

{DLIS IDL'S

x (MeV) lgkl= (MeV) leKl=

A) 1.28 1427.70 8.09 1892.16 10.74
1.25 1471.52 9.95 1776.33 10.08

®) 1.25 1274.78 7.23 1776.33 10.08
1.2 1057.99 5.8 1571.04 8.92

1.08 407.91 2.35 965.80 5.49

1.04 203.96 1.19 665.40 3.78

parison, we need more accurate experimental
values for f,, x, gh, and the strong coupling con-
stants G,,x, Gpz0,0 and Gpo,e-.

(2) G 4 ,x has opposite sign to f,, as seen from
Eq. (37) and the bound of |D,| calculated in Table
I. Its value varies with f,. However, the most
reasonable value would be around [G,,, [=5 as
given in case (A).

On the other hand, using the K7 dominance of
D,, the relation follows from Egs. (28)-(29),

lg %l <(mp=m) (DL |+|Dyl). (45)

One can estimate the value of |g}| if one can de-
termine |D,| and |D,|. By using inequalities

(36a), (36b), (42a), and (42b), we list the results
in Table II. Unfortunately, the bound for [gh| is
much bigger than the SU(3) value, |g}|=~1.225,
except when f, becomes very small, which seems
unlikely. This is due to the fact that the inequality
(42) is not very stringent, |D,| is proportional to
f. and |D,|> |D,| in the acceptable range of x.
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