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Hadronic corrections to GoIdberger-Treiman relations for vector and axial-vector strange-
ness-carrying currents are calculated. In both cases, the corrections are found to be less
than X0%. A bound for| A&, is set.

In the dispersion-theoretic version, the PCAC
(partial conservation of axial-vector current) hy-
pothesis assumes that the matrix element of the
divergence of an axial-vector current satisfies an
unsubtracted dispersion relation dominated by the
lowest pseudoscalar meson. The Goldberger-
Treiman relation (GTR) derived from this hypoth-
esis provides a direct experimental test of this hy-
pothesis itself. For a strangeness-conserving
axial-vector current, it is believed that the pion
dominance of the divergence of this current is a
good approximation, for the pion pole is far be-
low thresholds of other hadronic states. In fact,
it is well known that many soft-pion results de-
rived from PCAC and current-algebra assumptions
are in very good agreement with experiment. How-
ever, the GTR is experimentally found to have a
10' discrepancy. Pagels' tried to understand this
discrepancy in terms of hadronic continuum cor-
rections but failed. Later, he' proposed a once-
subtracted dispersion-relation version of PCAC as
a remedy.

In this paper, we extend Pagels's calculation to
the study of strangeness-carrying vector and axial-
vector currents. There are several reasons of in-
terest for such an investigation. First of all, we
want to see how good the GTR's for strangeness-
carrying currents are and how large the hadronic
corrections are in cases where the lowest poles
are rather close to the thresholds of the next high-
er states. Second, such calculations can give us
some information about the values on bounds of the
form factors g~ and g~A of weak hadronie currents.
Such information is useful in checking the Cabibbo

theory in strangeness-changing leptonic decays.
In the calculations, we have used experimental

information on the coupling constants as far as
possible. %here no information is presently avail-
able, we have used SU(3) estimates. Our results
show that in both cases of vector and axial-vector
currents, the corrections to GTR's are less than
10% A bound for GA~„ is also estimated.

I. STRANGENESS-CARRYING AXIAL-VECTOR

CURRENT

The matrix elements of the strangeness-carry-
ing axial-vector current A, '„"' and its divergence
between the proton and A states are specified by
Lorentz invariance as

&P(P') I&'„'*'(0)
I A(P) &

= ~,(P') [r„r,F,(t) + q„r,&,(t)

+ q, o„„F3(t))u~(P),

(1)

&P(P') I
& „&'„"'(0)

I A(P) ) = i~p(P')r, ~A(P)D(t), (2)

where q„=(P-P')„, t=q', and F (t), i =1, 2, 3 are
the usual form factors. From Eqs. (1) and (2), it
is obvious that

D(t) =( ~mme) (Ft) —tF, (t) .
PCAC assumes that D(t) satisfies an unsubtracted
dispersion relation dominated by the K pole, i.e.,

(4)
0

frmr'GA~
m~' —t
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where t, is the lowest threshold, f» is the usual
kaon decay constant, and GA~~ is the strong ApE
coupling constant. At t =0, E,(0) = gA, the GTR
follows from Egs. (3) and (5):

(m A+mn) gA =f»GA. K ~ (6)

A@K

However-, the recent, compilation' of experimental
data on e-v correlation measurements in A- pev
decay gave the value gAA/g~~= O. VV~ ~. If we take
the SU(3) ratio for vector-current form factors,
g~~/g» = -(-,')'", then we get g„"=-0.94 and 6,„~
=-0.12, while the recent result' of the up-down
asymmetry experiment in A decay, gA/gA
= 0 40~" leads to 6,„~=0.42.

The main interest of this paper is to evaluate the
possible correction to the GTR due to hadronic
continuum contributions. As seen from Etl. (4),
this correction is equal to

-1 "ImD(t)
vf»GA/, K- ~,

Using- the PGAC relation as an operator equation
in the field-theoretic version, 8„A'„"(x)
=f»m„'QK(x}, we can relate D(t) to the vertex
function K(t) defined by

(8)

&tu'&I j.(o) lAV)& = —,~. ,I~(t)

in the following wa,y:

f,m 'Z(t)

Then 5 can be rewritten as

Experimentally, gA" and GA~~ have not been accu-
rately determined; a decisive check of Eq. (6) at
present is impossible. However, in order to give
sonle ideas about the validity of tile relation, we
would like to quote some experimental data avail-
able. The value' of GA~»2/4w= 13.5+2.5 has re-
cently been obtained using the multichannel effec-
tive-range-approximation model, which is con-
sistent with the SU(3) result with the D Emix-ing
parameter f approximately given by f= 0.35. We
then take GA~E= -l3, where the sign is fixed by
SU(3) considerations. As for gA there are several
possible values. The SU(3) relation gAA = -g„(1+2f')
/&6, with the experimental value g„=1.18 and the
best-fit D-F mixing parameter f' = 0.33, ' gives the
value g„"=-0.8. Prom these estimates, one ob-
tains the deviation from GTR

1 m»' *"1m'(t)
v GA~»~, t(t —m»')

=5~+6~,
with 5, 5„defined by

1 m»' "~ A'"&' 1m'(t)
5~=— '

2 dt,
v GAP»" tp (™K)
1 m» )" 1m'(t)2 (12)

K GAp» (, )2 t(t —m»2)

Now we discuss the low- and high-energy contri-
butions separately.

(2) High-energy contribution. From Eg. (9), the
imaginary part of Nt) is found to be

-'(2 )'g6'(p. -e)&0lj (0)I &,& lj,(0)IA(p)&
n

2QppsQA

The application of the Schwarz inequality to the
sum on states gives the inequality

1m'(t) =

f lmZ(t}J'- —,'Aa,
with

(13)

%e then get

A =(2w)(t-m»'}'p»(t).

For t&(mA+m~)', we can show that B=orf/, where
o~(t) is the total Ap annihilation cross section in
the 'S, state with relative velocity l/. Thus,

~
1m%(t) [' ~ 2»(t —m»')'p»(t)err(t)v. — (15)

0'„ is bounded by the umtaxity condition

gr(t) ~4m/k', (16)
&'=(t-m )(t-2m 2}/4t, m, =mA+m//„

where k i,s the momentum in the c.m. system of
Ap. CQBlbinlllg Eq,s. (14}, (15), alld (16), we find

that

~=(2 )'P6'u. -~)t&0lj,(0)l &I',
n

D = (»}'g6'V.—e&l &p&0l jp(0) I n&/&ps, nA
I'.

Note that &0[j (0)In(q)& =(m '-t)&0[/ (0}~ &n, and
the spectral function p~ appearing in the kaon prop-
agator defined by

&'(t) =-i "d'» e"*&0l 2'@,'(»)4»(0) I 0&

PK(t') „+~E (& +2 if%

is equal to

p»(t) =(2»)'p6'V. —4) I&0l A»(0)I n& I'.

p 1/R(t)X'

A@K //I " » (t m 2)l/4(t m 2)l/4(P m Rm 2)1/3
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Again, by applying the Schwarz inequality to the
integral, one obtains the inequality

As seen from Eq. (4), we know that
ao t

dt & b,»(0)—
mg

Obviously, the value of S»(0) obtained from K-pole
dominance will give a nuH result. Mathur and
Okubo' have estimated A»(0) by a method indepen-
dent of A-pole dominance, and found that 6»(0)
= 14.65f,'m, '/f„'m»'. With the experimental value
G~»= -13, the inequality (18) gives the bound of
~a

l 6„l -0.O1V.

It is one order larger than the corresponding cor-
rection to the GTR for axial-vector strangeness-
conserving current. If we take a less stringent
bognd for the integral of the spectral function, e.g.,

p»(t)
dt « ~»(0),

then we get a weaker bound for 6», l 6„(~0.049.

(g) L,ore-energy eonA'ibution 5~. For
«(mA+ m~)', there are two-particle states pK, &uK,

mK*, qK*, OK, and Em, and three-particle states,
such as EKK and md, which may contribute to the
correction 5~. Qf the two-particle states, we con-
sider only pK, ~K mK~, and qK* contributions.
%e believe that these will give the main contribu-
tion, or at least the order of possible low-energy
corrections. The contributions of oK, Km, and
three-particle states are not discussed because of
the lack of experimental data on coupling constants
needed, and are neglected; In the case of the
strangeness-conserving current, Pagels' has
made rough estimates and found that the om con-
tribution is at most 2%, and the 3v contribution is
less than 1% because of the smaHer available
phase space. Similar arguments can apply to our
case too.

The pK contribution in the Born approximation
comes froDl the following diagrams as shown by
Fig. 1. Assuming the p coupling to mesons and
baryons is SU(3)-invariant and universal, then
only the charge coupling contributes since the
D-type coupling is excluded. The contributions
from these diagrams' are directly calculated to be

8 p»»gp»»GA p» m» mp PD(™+) 1 Pg
ImA;(t) =

g Bg
p
2 ( A P) 2tl12(pt2 tj /2

Bgp FAp

(t —m,2)(pomp+ 2p„mp) mp'
+ 2(mp +m» -m~ )+(m~-m~)

Alp Slp

(2P.'P,.+ m, ')4 ~P ~P,
X tan-'

4)P(t|IR (2psP + m 2)R 4 ~P~2P 2

(20)

ImK„(t)=-, , [m «-2(t+m ')m '+(t —m„')'][t'-2(mpa+m„')t+(m ' m2)']'"—,16''mp't t —m»')

W~gpKK

K'

/~&gp~
P A

FIG. 1. (a) and (b) The pK contribution to the divergence of the axiaI-vector and strangeness-carrJJing current.



p„={t+m,2 -m„')/2t",

p, = (t+ m~' —m, ')/2t'",

p,' = -(t+m, ' —m, ')/at".

p (p
2 m R)1/2

I p I
= (mA'- po'}"',

Assuming that gppfpf Pp«and GA~~ are momen-
tum-independent in ( mp +mr)' &t &( m~ +m~)', the
numerical integration of Eq. (20) leads to

(al)

(
gPNNgPE'E 4 8 && 8 '0 56 AA g

~APK ~APE

where we have assumed SU(3) couplings for the
strong interaction and the universality of vector-
meson coupling, i.e., gp»=gp«= —,'gp„. For
numerical estimation, we take the average value'

GA~~= -ls and the D-E mixing parameter in. the
baryon-baryon-meson interaction f =E/(D+E)
= 0.35; while g~ „„'/4m = 2.43 is obtained from
p-27 decay, taking rp =325 MeV and mp=v65
MeV. Then we get

5„~g= 0.033,

5„~g—-0.006,

so that

5~-—5pg+5 ~+5„~g+5q~g
= 0.051. (24)

The results of Eqs. (19) and (24) show that had-
ronic corrections are a few percent in magnitude,
one order larger than those of the strangeness-
eonserving current as discussed by Pagels. %e
f1nd thRt d1sx'egRx'ding some VRx'1atlon 1n 6 cRused

by the experimental uncertainty on strong coupling
constants, the correction. is of the same order as
5.„,given by Eq. (I), and so at the present level of
experimental information, the kaon PCAC hypoth-
esis can indeed be understood thx"ough an unsub-
tracted dispersion relation.

If we assume SU(3) couplings, and neglect the
mass difference between ur and p, and ~-g mixing,
it is simple to see that 6 p~ = 5 ~.

Similar calculations for -K*w and K*@ intermedi-
ate states give the results

5~~+= 4.8 +0.56 -2,6 &&10"2,

22)

&p{p') I
s„v'„'*'(0)

I A{p)& =a(t)~, {p')~,(p), (26)

where q„=(p- p')„and t= q'. -The form factors

f, » and D are dependent on t only. It follows
from Eqs. (25) and (26} that

a{t)=(m, —m, }f,{t}+tf, (t),
so that

D(0) = (mA —m, )g~~, (2V)

where g~A =f,(0) is the A-decay constant of the vec-
tor current.

Assume D(t) satisfies an unsubtracted dispersion
relation, i.e.,

], "ImD(t')
a(t) =-, dt',

0

then we may write

D(0) =(mA —m~)gA

1 ""ImD(t)
=—

J
dt

with
+(NEA+lltp) lma(t)

D

dt's

I " ImD(t)
(30)

Dg =— dI;.
(mA+mp)2

Fl'0111 Eq. {28), lt 18 obvious that ill tile SU(3) llllllt,
D(0) =0. The Goldberger Treim-an relation follows
from the PCVC (partial conservation of vector cur-
rent) assumption that the z pole dominates the dis-
persion integral,

(m~ —m~)g~~= f„GA p„,
where f„ is the a-decay constant and GA~„ is the

strong coupling constant.
(1) Hi gh-energy conA'ibution. Similar to See. I,

the Schwarz inequality implies that

I lma(t) I
'- hap" (t)o",(t)~, (32)

where pv(t) is the spectral function appearing in
the following vector-current propagator:

vergence between the A and proton states can be
written as

&P{P') I
v'„"'(o)

I A{P)&

= i'(p')(f, y „+f2q„+f,o„„q„)u~(p),

(25)

II. STRANGENESS-CARRYING

VECTOR CURRENT
t(t)l= td'x e'"&o

I
g-s „v„""(x)s „v„'-"(0))I o&

By Lorentm invariance, the matrix elements of
vector strangeness-carrying current and its di-

""p'(t')
(33}
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p A
G„z.~. gX'pK

(a)
FIG. 2. (a) and (b) The K7( contribution to the divergence of the vector and strangeness-carrying current.

or(t) - 12m/(),' (35)

From E(ls. (32), (33), and (35), applying the Schwarz

inequality to the dispersion integral D~, one ob-
tains

lD„l - (-')'"(m +m ) '[a"(0) f 'm ']'—" (36a)

(-.')'"(m +m )-'[t '(0)]'". (36h)

(2) Lou) energy con-tribution. For t& (mz+mp)o,
there are many intermediate states, such as ~,
Km, KA, K„n states, etc. , which may contribute
to the dispersion integral D~. However, we be-
lieve that the lowest states Km or ~ dominate the

where

p (t) = (2)})'p 6 (p„—q) l &0 l [])t l „"'(0)
l n) l

' .
(34)

orr(t) is now the total Ap annihilation cross section
in the L = 1, J= 0 state, and so is bounded by the
unitarity condition

low-energy contribution, or at least this contri-
bution will give the order of D~. Furthermore,
since experiments indicate that m, is higher than
the Km threshold, in order to avoid double count-
ing, we can only take into account either the ~-
pole or Km contribution.

If we dominate D~ by the ~-pole contribution we
simply have the relation

D(0) =(mA —mp)gA=f„GA, „+D„,
so that the correction 5 to GTR is given by

f(t A 9K

(m A
—m, )g~r

De
(mA —mp)gA

r'

If we dominate D~ by the Km contribution and use
the Born approximation as indicated by the dia-
grams shown in Fig. 2, direct calculation' gives

-(2+ ~2GA p~G, „„d(t) p,ImD (t) =
a 16m tp

m~t'~' — mA mp)p, j—
4I pl p, (-2p,.p, + my+ m, o —m,2)

xOmp -m A) + (m A- m )p(p„ t/'")

[m„t "—(m-',t mt')p ]( tp, p +m '+-mt m-)p 't m})-
(39}-(2+ ~2GAzo„oGrpr d(t) p,

xom ~ - mp) —(m~ —mp)p„t '"
——'[m t t (m m)p'']' (tp p'+m -+m ' -m)p t t'})'-'

—(t+m 2 m 2)/2t~~ P =(P o —m ')' o

p=(p'-m, ')'", p'=-(t+m'-m ')/2t'"
p =(t+m '-m '}/2t'"
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The form factor d(t) is defined by

(o I a„v„""(0)I sc-ao) = (1/&2)d(f)

which is bound by an inequality given by Li and
Pagels'.

[tp'(t)I'"
ld(t)l =—'

3 [(t+m ' —m '}o-4m 'f]"' (40)

A'(0) =2m„= ,'~uf, (44)

where D'„ is the bound of ID„I as given by (36a)
and (36b).

The factor b. (0) is calculated by Mathur and

Okubo as

From Eqs. (30), (39), and (40}, applying the
Schwarz inequality again, we obtain

IDil'-&,'(0)
8

"(IA'~o&'
I ImD, +ImD, I

~( ~„,)o [( f+m'rm, -'P —4m„'f]'"

where

(~A. ~~&'

&1,(0) = —d& = f„'m„'
(mE+ na„)

~A (0).
The integral in Eq. (41) can be evaluated numeri-
cally, and we obtain

ID j-{6, )'"G '(0.2 Bev ')

~(A )"oG„~'(0.2 BeV '),
(42a}

(42b)

where again we use SU(3) coupling ratios, i.e.,
G„ox/G,~=-(1+2f)/v3 and G„zo,oGzo~x /G,~„'-
= 2(l —f)(I —2f )/&3, and take the D-F mixing pa-
rameter f= 0.35.

Now we have Eqs. (37) and (38), and inequalities
(36a), (36b), (42a), and (42b). Inequalities (36a)
and (42a) give better bounds, while (36b) and (42b)
are more reliable because they are independent of
the experimental uncertainty in f, . One can also
obtain a bound for GA~„ from Eq. (37),

(mA-mI} Ig A I-D'8
IG

(mA-mn) Ig A I+Ds
jf. j

(43)

1 x fQ
xo

f„,=l —x. (B)

A"„&0 implies 1 &Ixj &2.52. If we accept the re-
sult of Okubo" and Li and Pagels' that f,(0) &I,
then the experimental value of fx/f „f,(0) = 1.28
implies I &x&1.28. For x in this range, as xin-
creases, jf, I will increase in ca.se (A) and de-
crease in case (B).

By x-pole dominance of D~, Eqs. (37)-(38) and
illeqllalltles (36R), (36b)~ Rlld (43) set bounds fol'

IDsl, IGA~„ I, and I5I, the correction to GTR.
If we approximate g A by its SU{3) value, g A

=-(-,')'~', "and take f, =131.7 MeV, G,~ = 13.66,
yg, = 1050 Mev, we obtain the result listed in Tab1e

I, so that we reach two conclusions:
(1) The correction to GTR is less than logo, a

bound independent of the uncertainty of f„. It may
be a fe%' percent or much less, depending on vari-
ous possible values of f„. For more precise com-

fo'm~'
2(1+n)(I+ 5)

Tile fRc'tor f„111Rybe est11nated 111 'two waysl
(A) The sum rule given by Glashow and Weinberg, '
2f, (0)frf,= f,'+fx' —f„', with the experimental
value f„/f, f,(0) = 1..28, leads to

f„'/f, ' = 1 —0.5625x'.

&o« that a"„o-0 implies jx I
~ 1.25. (B) We may

obtain from the simple sum rule, '"f, =f +f„,
that

TABLE I. The bounds for I@I and IG~KI using the Zvr dominance.

%At

(Mev} -I&Ay. l
= (Mev} -l&oo.l-

(A } 1.28 0.28
1.25 0.35

14.2 0.065
0.95 0.004

5.51 6.275
4.72 4.76

21.64 0.10 5.3
20.31 0.094 4.3

6.45
5.18

(S} 1.25 0.25
1.20 0.2
1.08 0.08
1.04 0.04

14.15
13.67
10.02
7.24

0.065
0.063
0.046
0.033

6.17 7.03
7.33 8.77

19.66 21.58 .

39.86 42.62

20.31 0.094
17.97 0.083
11.05 0.051
7.61 0.035

5.98 7.21
7.56 8.93

19.57 21.66
39.79 42.68



TABLZ II. The 'bound for jg~~j.

Vhth (36a) and (42a)

(MeV)

With (36b) and (42b)

(MeV)

(A) 1.28
1.25

1.25
1.2
1.08
1.04

1427.70
1471.52

1274.78
1057.99
407.91
203.96

8.09
9.95

7.23
5.8
2.35
1.19

1892.16
1776.33

1776.33
1571.04
965.80
665.40

10.74
10.08

10.08
8.92
5.49
3.78

parison, vie need more accurate experimental
values for f„, x, g», and the strong coupling con-
stants Cr Apg~ CrAzo~o) alld Ggopg-,

(2) G»r has opposite sign to f„, as seen from
Kq. (37) and the bound of jD„j calculated in Table
I. Its value varies with f„. However, the most
reasonable value would be around jGA~„j=5 as
given in case (A).

Qn the other hand, using the Km dominance of
D, the relation. follows from Eqs. (28)-(29),

(46)

One can estimate the value of jg„"j if one can de-
termine jD~ j and jD„j. By using inequalities

(36a), (36b), (42a), and (42b), we list the results
in Table II. Unfortunately, the bound for jg~~ j is
much bigger thanthe SU(3) value, jgAj=l. 225,
except when f„becomes very small, which seems
unlikely. This is due to the fact that the inequality
(42) is not very stringent, jD~ j is proportional to

f„and jD~ j» IDe j in the acceptable range of ~.

ACKNOWLEDGMENT

I mouM like to thank Professor V. S. Mathur for
very helpfu1 suggestions and discussions on vari-
ous points.

*Work supported in part by the U. S. Atomic Energy
Commission.

~H. Pagels, Phys. Rev. 179, 1337 (1969).
2H. Pagels, Phys. Hev. 182, 1913 (1969).
37. W. Rogers, Phys. Rev. 178, 2478 (1969).
4N. Brene et aE. , Phys. Rev. 149, 1288 (1966).
5J. Lindquist et a/. , Phys. Rev. I etters 27, 612 (1971).
6V. S. Mathur and S. Okubo, Phys. Rev. 0 1, 3468

(1970).
YHere vie have used the traditional pseudoscalar cou-

pling for the meson-baryon-baryon interaction.

8L.-F. Li and H. Pagels, Phys. Rev. 04, 255 (1971).
98. L. Glashow and S. Weinberg, Phys. Rev. Letters

20, 224 (1968).
S. Qkubo and V. S. Mathur, Phys. Rev. Letters 23,

1412 (1969).
S. Okubo, Phys. Rev. D 3, 2807 (1971).
Note that the inequality (43) is of the first order in the

SU(3) breaking in nature, vrhile the correction to gA~

=-(2) ~ is of the second order as proved by AdemoHo
and Gatto, and so is negligible. See M. Ademollo and
R. Gatto, Phys. Rev. Letters 13, 264 (1965).


