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The method, applicable for small-angle scattering, is based on dispersion relations written
for the logarithm of the scattering amplitude and yields an expression for the phase in terms.
of integrals containing the modulus of the amplitude. Numerical values of the modulus, ob-
tained from unpolarized differential cross-section data, are used as input to the integrals.
Techniques are developed for minimizing the effect of the unphysical region and for treating
the zeros of the amplitude. Although the primary objective is to calculate the high-energy
amplitudes, the method can be used at all lab momentap ~ 0.575 GeV/c, and as a check the
phases are calculated for 0.575~p(2.07 GeV/c. When the t dependence of the zero of the
amplitude is taken into account, the phases, known from partial-wave analyses, are repro-
duced with discrepancies for 7I+p (x p) no greater than 3% (9%%up). The amplitudes A~ calculated
at 2-GeV/c intervals from 2 to 12 GeV/c and at 15, 18, 20, and 30 GeV/c at squared momen-
tum transfers of -t = 0.0, 0.025, 0.05, 0.10, 0.15, 0.20 (GeV/c)2 are presented.

I. INTRODUCTION

Fixed-momentum-transfer pion-nucleon dis-
persion relations are based on the Hilbert trans-
forms

1 lmE(v', t)dv'
HeE v, t =-&

v —v

)
1

))
HeE(v', t)du'

(lb)

which are an immediate consequence of the ana-
lyticity of the function E(v, t) in the energy vari-
able v=(s —u)/M. Here s, u, and t are the usual
Mandelstam variables' and M is the nucleon mass.
Dispersion relations have proven most useful in
those cases where either the real or imaginary
part of the amplitude can be obtained from experi-
ment and the most important instance is F =f(v, 0)
with f the laboratory spin-nonflip amplitude. The
analyticity of the function rests on generally ac-
ceptable assumptions, such as unitarity, crossing
symmetry, and microcausality, and its imaginary
part is directly related to the experimentally mea-
sured total cross section by the optical theorem. '
The successful comparison of the theoretical re-
sults with the forward &N scattering amplitude
measured by Lindenbaum and co-workers' is one
of the major accomplishments of the analytic S-
matrix approach and is of fundamental signifi-
cance as verification of some of the basic axioms

of elementary-particle physics.
For nonforward scattering t e 0 the usefulness of

the Eqs. (1) is drastically reduced because the
optical theorem no longer applies and neither Imf
nor Hef can be measured experimentally. There-
fore, it has been suggested' ' that instead of writ-
ing the dispersion relation of the amplitude I'
=

If I
e'~, it should be written for the logarithm

E=lnf=lnIfI+iQ.

Assuming the required behavior at infinity (as
given in Sec. 11), Eq. (1b) becomes

1 lnI f(v', t) Idv'
v —v

which will be referred to as a logarithmic disper-
sion relation LDR. This form has the advantage
that in some instances it is possible to measure
If(v, t) I

directly. This is the case for vN elastic
scattering where the unpolarized cross section is

with g the spin-flip amplitude. Near the forward
direction, the cross section invol'ves only the
spin-nonf lip amplitude

(4)

an approximation which tends to be valid to larger
values of I, as energy increases. At high energies
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the t dependence of if i
is of the form'

if(v, t) i
= if(v, 0) i

e"'"""' (5)

Throughout subsequent sections, the notation ~
shall refer to &'p. The unpolarized cross section,
in terms of these variables, is

with a(v) and b(v) experimentally known functions
of energy. Equation (5) follows from the well-
known diffraction peak observed in the differen-
tial cross section. At lower energies

if i can be
constructed from existing partial-wave analyses.
Thus, over the great part of the physical region,
for small t, if' is experimentally available as
input for the integral (3).

Since if j must be known for this approach to
work and the amplitude in the usual form can be
obtained from

Ref= ificosg,
Imf= If Ising,

emphasis will, therefore, be placed on the calcu-
lation of the phase P.

We have undertaken a program aimed at making
the LDR a useful theoretical tool for the calcula-
tion of scattering amplitudes near the forward
direction, and this paper reports the first results
of that effort. There are two major difficulties
encountered in using this technique. The first is
the presence of an unphysical region where no in-
formation about the amplitude's modulus can be
obtained from experiment. This difficulty is also
encountered in conventional dispersion relations. '
The other, unique to this problem, is that the
zeros of the amplitude are singularities of its
logarithm and, therefore, a knowledge of the loca-
tion of these zeros is required for the evaluation
of Eq. (3). We have developed techniques for sur-
mounting these difficulties, and they will be dis-
cussed in detail in the following sections.

The objective is to calculate the small-angle &N

phase for energies above the region where partial-
wave analyses are feasible. As far as we know,
this cannot presently be accomplished in a model-
independent way. Philosophically, the ideal in
this calculation has been the mell-known forward
dispersion relations which, aside from the asymp-
totic behavior of.the total cross section, seem to
rest on a minimum of generally acceptable assump-
tions. For this effort, a relatively small angular
interval has been taken -t &0.2 (GeV/c)'. In a
subsequent calculation, an extension of the results
out to 0.6 (GeV/c)' will be attempted.

A'=A+, B,

which have been shown to have the asymptotic be-
havior' at fixed t

v 'iA(v, t)i&K, iB(v, f}i&K' as v-~,
whence

v ' iA'(v, t) i
&Z" as v- (7)

where K, K', and K" are constants. Let us as-
sume that at small t the phase of A'(v, t) is bounded
for large v and that A'(v, f) does not fall off more
rapidly than some power of v '. Both of these as-
sumptions are valid at t= 0. Then Eq. (7) implies

lnA'(v, t)
2wy12 0 as v

&v -Vi )

which with Eq. (8) insures the vanishing of the
contribution of the infinite contour as is required
in the derivation of Eqs. (I}.

t (v+M —t/4M)'
'4M ' I f/4M

(6}

where A'(v, 0) = 4'(v, 0}and W = s"'.
The amplitude A'(v, t) at fixed t, regarded as a

function of the complex energy v, is analytic in
the upper plane, has cuts along the real axis from
thresholds at av, (v, = p+ t/4M) to +m, and has the
usual nucleon poles at A., = v(-g'/2M+ t/4M) on the
axis between thresholds. Here p, is the mass of
the pion. A' can be expressed in terms of other
amplitudes, A and B,

II. SUBTRACTED LDR

It is convenient to use the invariant amplitudes
A' and B rather than f and g because of their prop-
erties under crossing symmetry, '

iA,'(v, t) i
= [A,'(- v, t) i .

+V(

FIG. 1. Contour in the complex energy plane used in
the denvation of Eq. (9).
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A' may, in general, have zeros anywhere in the
complex energy plane, but for reasons to be pre-
sented in Sec. IV, we shall assume it has no real
zeros and only one, located at X, in the upper
half plane. Under these conditions, application
of Eq. (lb) to the function

lnA'(v, t)
V2 —V 2}X/2 (8)

at fixed t on the contour shown in Fig. i yields
the more complete version of Eq. (3) which we
write for P, a similar expression holding for Q, :

(v' —v, ')"' )" In)A,'(v', t)(dv' "" In(A'(v', t)(dv'
J („t+v)(vt~ „2)U~ +

J („t v)(v», ~)X~2
+ — "» + "»

v, (A. —v} (v —v, }~ (g - v)
(9)

For details of the derivation see Ref. 4. The factor (v" —v,') "' serves two important purposes; it makes
the integrand imaginary between thresholds and it ensures convergence of the integrals at the upper limit.

Initial calculations were made with Eq. (9), but it was found that it gave poor results for tv 0 (as deter-
mined by our checking procedure in Sec. V}. The difficulty was a large contribution to the integrals from
the unphysical region v, & v' & p, . The values of A' obtained by the Lehmann continuation are very large,
probably too large, and the contribution is magnified by the factor (v" —v, '} '" which is large for v' small.

We have attacked this problem by trying to arrange the calculation in such a way that the unphysical re-
gion does not give much of a contribution no matter what values of A are (within reason}. This was ac-
complished by using a subtraction procedure with

(v' —v, ')'" lnA'(v, t)
(v —v, )(v+ v, )

(10)

The factor (v' —v, '}"', which is still needed, is retained in the numerator where it will tend to reduce rath-
er than exaggerate the contribution of the poorly known unphysical region, and the high-energy convergence
is restored by subtracting the LDR at +vo vo is chosen near the upper end of the partial-wave region
where the subtraction constants introduced ())), (v„ t) are available from the partial-wave analysis. The net
effect of this change is to shift the weighting of the integrals away from the very low energies to the rnid-
dle and upper partial-wave regions where, presumably, the input data are most accurate. The new form
of the LDR is

v'-v' '" v+v
v vi 2vo 2 v()

v' —v, ' "(v"—v, ')"'tnlA, '(r', t)ldv'
&

"(v"-,')'"tnlA'(v', t)ld ')
m(v' —v ')"' J (v'+ v)(v" —v'}, (v' —v)(v" —v ')

v v' —v' "' v — A.

1

v 2 2 l/2 2 2
Vo V~ Vo V ~ 'V~ + VOX Vo + V

~ Vl. VOX,

v —vx 2vo vx(vo+A. } 2vo vx(vo —A. }

+ ' Immi «X (v —v) (X «)
)1

v, k (v,' —v,')'"(y+ v, )

While this new expression involves more terms than Eq. (9} it is not different in any essential way. It does,
however, require as experimental input the values of Q, (v„ t}.
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III. A'(v. , t) AS INPUT DATA

The values of A.' used in the integrals can be
divided into four parts according to the energy
range. A' is in units of F.

(i) Resonance reg/'on p & v &2 GeV. At these en-
ergies the amplitudes vary most rapidly and they
are obtained by reconstruction from existing par-
tial-wave analyses, particularly that of Wagner. '
For pion lab momentum p & 4.0 GeV/c this part of
the range of integration gives the major contribu-
tion of the integrals to the LDR.

(ii) Diffraction peah r-egion g& v&24 GeV. Near
the forward direction, the differential cross sec-
tion (6) reduces to its first term and at higher en-
ergies this cross section is observed to fall off
exponentially with t as

siderable contribution to the integrals, and it
should be -remembered that the phases calculated
at 15, 18, 20, and 30 GeV/c are sensitive to the
details of the assumed asymptotic behavior.

(iv) Unphysical region v, & v& t/, . For t~0 there
is a short range of energy just above threshold
for which cos6 & -i and the scattering is not a
physically realizable process. This problem is
well known in ordinary dispersion relat'ions and
the standard method of obtaining the amplitude in
this region is through analytic continuation of the
partial-wave expansion as proposed by Lehmann. '
Our amplitudes are constructed in this way al-
though the values of v and I; are outside the range
for which this procedure has been proven to con-
verge. However, the subtraction procedure will
be shown to damp any contribution to the integrals
to an acceptable value.

Therefore,

(12)

B = 23.75, u = -O.VO.

Assumptions about the very-high-energy region,
which can readily be changed as new data become
available, impose an upper limit on the energy at
which the LDB can be used with confidence. We

find that above 12 QeV this region makes a con-

where a and b are weakly energy-dependent. '
From approximately 2 to 24 GeV (7/-p) and 16 GeV
(v"p), the cross sections" were fitted to the form
(12) and values of A'(v, 0), a(v), and b(v) were ob-
tained. The A'(v, 0) obtained by this process of
extrapolating the differential cross section to the
forward direction are slightly different from those
calculated from the optical theorem via the for-
ward dispersion relations.

(iii) Very high energies v»4 Ge V. Above 24
GeV no angular data, are available and, as is the
case with forward dispersion relations, some as-
sumptions must be made about. the behavior of the
amplitude in this range. a and b are observed to
be nearly constant for P & 8 GeV, and their average
values are used at higher energies.

Forward dispersions relations have shown that
above 25 GeV the. contribution of the real part to
A'(v, 0) is less than 2/o, and we have, therefore,
approximated A' by its imaginary part. ' This was
obtained through the optical theorem from Carter's
fit to the total cross section, "

(13)

with

0„=21.8, 8, = 21.85, e, = -O.SO,

""ImA', (v', t)dv'
V+V

(14)

where we have written the unsubtracted version
for simplicity. Here G„' is the &N coupling con-
stant squared. In the work of Jorna and McClure"
this equation with values of the imaginary part
from the optical theorem was employed to locate
the zeros of the forward rN amplitudes. With the
fact that ImA,'(v, 0) is positive for all energies
and reasonable assumptions about the asymptotic
behavior, it was shown with the aid of the phase
representation" that there is only one complex
zero in the upper plane. This was located (at
0.132 and 0.096 GeV) and it was found that there
were no zeros on the real axis between thresholds.
As a practical matter, it was observed in the com-

IV. LOCATION OF THE ZERO

The complications caused by zeros of the ampli-
tude present one of the major obstacles in any
attempt to make practical use of logarithmic dis-
persion relations. The problem arises because
the logarithm is singular at a zero of the ampli-
tude, giving rise to the X-dependent terms in Eq.
(11). To numerically evaluate such a term it is
necessary to know the location of the zero in the
complex energy plane, a location which depends
on t. While a few properties of the zeros can be
proven, e.g. , that some exist, there is no practi-
cal way of locating them for an arbitrary t.

The function A'(v, t) for fixed t is completely
determined all over the complex plane by the val-
ue of its imaginary part along the real axis through
the conventional dispersion relations,

G„' 1 f"ImA,'(v', t)dv'
V —A.~ V- V

lip
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FIG. 2. Im A~ (v, t) at partial-wave energies for vari-
ous momentum transfers. Curves (a), (b), and (c) corre-.
spond, respectively, to -t =0, 0.1, and 0.2 (GeV/c)~.

small values of t such as are considered in this
investigation, it is reasonable that the zero situa;
tion is not very different from that at t =0. To
support this view, we have calculated ImA,'(v, t)
from the partial waves for several values of t from
threshold to =2.0 GeV. This is shown in Fig. 2.
It is clear that while there is significant change in
ImA,'(v, t) as t increases, enough to make the zero
of the function generated from it through Eq. (14)
shift, the over-all behavior of the function is the
same. For example, it remains positive over the
great part of the energy range. Because of the
generally similar structure of ImA,'(v, t) for -t
~0.2 (GeV jc)' and for reasons to be discussed in
Sec. V (ii), we have made the assumption that for
small t values there is only a single zero which
moves as t changes. The question of zeros will
be discussed further in Sec. VI.

putation of Ref. 10 that a key factor in there being
only one zero was the positive definiteness of
ImA,'(v, 0). As v varies from the zero in a given
direction, the real and imaginary parts of the
function generated by Eq. (14) tend to move mono-
tonically away from zero. For nonforward angles,
lacking a way to obtain ImA,'(v, t) for all energies,
a numerical zero search cannot be carried out.

The location and number of zeros is determined
through Eq. (14) by the imaginary part of A'. For

V. NUMERICAL EVALUATiON AT LOW

ENERGIES AND IN THE FORWARD DIRECTION

There are two numerical checks by which the
LDR can be tested: the forward direction Bt any
experimentally practical energy and nonforward
scattering in the partial-wave region.

(i) Forward scattering. At t = 0 the input data
discussed in Sec. III are sufficient for the evalua-
tion of Eq. (11). There is no troublesome un-
physical region and the location of the zero is
exactly known. The subtraction point was taken

180 I I 1 I I I I I I Il& I I I I I I I I I

FIG. 3. The forward
phases P~(v, 0). The points
are calculated with the LDR
Eq. (11). The dashed and
solid curves are, respec-
tively, the partial-wave and
forward-dispersion-relation
results.
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FIG. 4. The phases
P~(v, t) at partial-wave en-
ergies. The solid curve is
obtained from partial-wave
analyses. The long-dashed
and short-dashed curves
are calculated with Eq. (11)
using the zeros y(0) and

y (t), respectively. The
y's are discussed in Sec.
v(ii),

at P =1.278 GeV/c. For comparison, values of
ReA' and ImA' are available from partial-wave
analyses for P & 2.07 GeV/c and from conventional
forward dispersion relations for higher momenta,
both being in substantial agreement with experi-
ment. Our LDR forward phases for both &'p are
shown in Fig. 3 compared with these two. The
agreement is quite good except for P & 0.1 GeV/c,
where p tends to be too large. The principal-
value integrals are quite sensitive to the behavior
of the integrand, and at these lowest energies
lnA' varies rapidly. We believe the disagreement
here is due to our parametrization of the data and
does not reflect any fundamental shortcoming of
the method.

There is generally better agreement for &'P than
&-p, a result which we also find to hold true in the
nonforward-scattering check. This taken in light
of the rather substantial disagreement seen in
Fig. 3 between the partial-wave and the conven-
tional dispersion-relation phases suggests that
the input data for &'p may be more reliable than
7r p.

(ii) Nonfoxuard scattering From p.artial-wave
analyses, the amplitudes A'(v, t) have been recon-
structed, both modulus and phase, from threshold
to P=2.07 GeV/c and for 0~ t~0.20 (G-eV/c)'.
While our main objective is to calculate the high-
energy phases, the LDR gives them at all ener-
gies and, as a further check, we can require that
it reproduce these known ones in the partial-wave
region. All necessary input data except the loca-
tion of the zero are provided by the procedures of
Sec. III, and as a first approximation we assumed
that the zero remained fixed at its I, =0 location. "
The results of this calculation are shown in Fig. 4
as the long-dashed curve. It is obvious from the
figures that there is a systematic discrepancy be-
tween our results and the partial-wave values for
both &'P. The phases calculated with. the fixed
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I I I I

0.03 0.06 0.09 0.12

Re V (Gev)

FIG. 5. Locus of the zero y (t) of the amplitude A' (v, t)
in the complex energy plane.

zero X(0) are too small below the subtraction en-
ergy and too large above.

The subtraction procedure, introduced in Sec. II
to damp the contribution of the unphysical region,
has reduced it to a maximum of 5% (&') of the total
phase at p = 0.575 GeV/c and -t =0.20 (GeV/c)' and
as the energy increases this percentage steadily
decreases. Thus, the subtraction procedure is
quite successful in reducing the effects of the un-
physical region and is, we feel, one of the more
important results of our study. Below p =0.575
GeV/c the unphysical region becomes increasingly
important, agreement with the partial waves is
poor, and this momentum roughly defines the
limit below which the LDR is not reliable. For
phases at partial-wave energies, the contribution
from the asymptotic region is largest at p=2. 07
GeV/c where it reaches a maximum of 15% (w-).

Thus, the contributions of the unphysical and
asymptotic regions, where assumptions were nec-
essary, are both relatively small in the partial-
wave region.

This process of elimination strongly suggests
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TABLE I. The phases Q~ (v, I;) of the amplitudes A.'~(v, f) as given by Eq. (11) using the zeros X(t). At each p and t the
upper number is P {de{,) sna the lower IA'I {F)~

P
(GeV/c)

-t
(GeV/e)2 0.00 0.025 0,05 0.10 0.20

0.57

0.71

1.88

4.0

8.0

10.0

12.0

15.0

18.0

30.0

73
8.9

78
16.7
76
18.0

100
28.3
98
34.2
99
36.6

101
37.8

100
61.3
96
83.2
98

114.7
96

143.3
97

162.4
103
214.0

99
225.5 '

99
270.1

98
364.8

80
7.7

Sl
14.6
80
15.4

102
25.7

101
313

102
33.1

103
34',3

1Q2

55.4
98
75.5

100
102.2

98
127.7

99
145.0
104
189.1
101
202.0
101
240.8
101
324.2

89
6.8

85
12.8
84
13g2

104
23.4

103
28.7

104
30.0

105
31.0

104
50.1

101
68.5

101
91.2

100
113.9
101
129.6
105
167.5
102
181.1
101
215.1
105
288.5

105
5.3

94
9.8'

94
9.7

108
19.3

107
24,0

109
24.4

109
25.2

107
41.0

106
56,4

105
69.7

103
91.0

104
103.9
107
132,0
104
146.2
103
172.3
106 .

229.7

118
4.2

104
7.5 .

105
7.3

112
16.0

112
20.0

114
19.8

113
20.3

111
33.7

110
46.5

107
55.9

106
73.1

106
83.7

109
104.8
105
118.6
106
138.9
107
184.0

131
3.2

116
5.7

117
5.6

116
13.2

116
16.5

118
16.0

116
16.2

113
27.7

113
38.3

111
47.5

109
59.0

108
67.8

110
83.8

106
96,6

106
112.7
109
148.4

0.57

2.00

4.0

6.0

8.0

12.0

20.0

30.0

155
15.7

118
9.6

112
30.1

109
30.9

108
32.5

107
56.6

101
87.3

104
106.0
103
139.0
104

146,3
106
204.1
106
213.6
104
235.9

99
347.0

153
14.9

120
9.2

112
28.0

110
28.6

109
30.5

108
52.0

102
78.5

104
95.7

103
116.Q
104
131.5
105
182.0
105
191.5
105
211,4
100
311.0

155
14.0

123
8.9

113
25.9

110
26.5

109
27.9

108
47.8

102
70.8

103
86.5

102
111.5
103
118.7
104
162.4
104
171.8
102
189.7

97
279.1

153
12.1

127
8.1

113
22.2

111
22.8

110
23.9

109
40.3

103
57.7

103
70.9

103
89.9
102
96„2

103
130.0
103
139.0
104
153.5
91

225.7

153
10.0

130
7.5

114
18.9

111
19.4

111
20.3

109
34.0

105
47.3

104
58.3

103
72.8

102
78.7

103
104.7
103
113.1
103
124.9
91

183.7

154
7.9

133
6.8

113
16.0

111
16.6

111
17.3

109
28.7

106
38.9

104
48.2

103
58.3

103
64.6

103
84.7

102
92.5

104
102.2
100
150.3
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that the systematic discrepancy seen in Fig. 4
is due to the neglected t dependence of the zero
terms. Under this assumption we have found, at
each. I;, values of X = g, +iy, which best remove
this difference. This is actually quite a strin-
gent requirement because the two real numbers
X, and g, fix the location of the zeros of bothA, '

and A', since these are symmetric-with respect
to the imaginary axis." Once chosen at a given t,
they must remove the discrepancy in both ampli-
tudes for all energies in the partial-wave region.
Further, the functional dependence of the phase
given in Eq. (11) on the zero location is through
rather complicated logarithmic functions, and
there is no assurance beforehand that any choice
of )( will improve both Q, and P . Finally, the
zeros so determined, regarded as functions of t,
must move in the complex energy plane in a con-
tinuous way from the known t = 0 location.

The values of ()(„)(,) which best remove the dis-
crepancy were found to be (0.11,0.13), (0.07, 0.28),
(0.05, 0.35), (0.05, 0.40), and (0.05, 0.45) for -t
=0.025, 0.05, 0.10, 0.15, and 0.20 (GeV/c)', re-
spectively. Their locus i.n the energy plane is
shown in Fig. 5. Reevaluation of the LDR (11)
with the new zero locations yielded much im-
proved values of the phases, particularly Q+ where
the difference from the partial-wave values was
reduced to less than 3% at all energies (the new
phases are shown in Fig. 4 as the short-dashed
line). The improvement was generally less dra-
matic for Q where differences ranged up to 9%

at P=2.07GeV/c. Again, as was noted for the
forward direction, this may be due to the uncer-
tainties in the & P data. With the zeros now fixed
for each I; value and the other input data as dis-
cussed in Sec. III, the phases are completely de-
termined by Eq. (11) for all energies.

VI. HIGH-ENERGY RESULTS AND
CONCLUSIONS

Our objective is to obtain the small-angle phases,
P„ for energies above the partial-wave region,
and this calculation can now be accomplished. We
have concentrated on the range 2.0 & P & 12.0 GeV/c
calculating the phases at six t values at intervals
of 2.0 GeV/c. The results vary slowly and uni-
formly with energy, and interpolations within
these intervals can be made with reasonable con-
fidence. Phases are also presented for p =15, 18,
20, and 30 GeV/c, but at these higher energies
the results are strongly dependent on the assump-
tions made about the asymptotic region and they
should be viewed with appropriate caution. All
results are given in Table I, including those in
the partial-wave region. Also listed for conve-
nience are ~A,

'
j, the latter at diffraction energies

being obtained between data points by linear inter-
polation. Because Eq. (11) is quite long, a break-
down of the contributions of the various types of
terms at several energies is given in Table II.
The angular dependence of both phases and moduli
at a sequence of fixed energies is shown in Fig. 6.
Part of our motivation' in developing the LDR

TABLE Q. Contributions to the total phase (1), of the different types of terms appearing in Eq. (11). The terms are
grouped as follows: Those depending on the (A) threshold phase (t)~(v&, t), (B) location of the pole A, ~, (C) location of the
zero )((t), (D) subtraction-point phase $~(vo, t), (E) direct integrals over in)A~(v, t)(, (F) crossed integrals over
ln IA' (v, t)~. All entries are in degrees.

p
(GeV/c) (GeV/c) E

0.57

1.88

4.00

8-.00

0.0

0.2

0.0

0.2

0.0

0.2.

0.0

0.2

2.X
2yl
1.0

—1.0
—0.3

0.3
-0.1
0.1

—0.5
0.5

-0'.2
0.2

—0.5
0.5

-0.2
0.2

-0 4
0.0

—0.8
-0 6

0.0
0.0
0.1
0.1
0.,1.
0.0'

0.2
0.1
0.1
0.0
0.2
0.1

22 7 ~ 7
-216.6
-229.3
-221.6

58.3
56.8
59.2
57.6

123.8
121.2
125.3
122.1

152.6
149.9
153.4
150.4

221.0
209.7
266.0
262.5

71.1
60.1
78.1
74..7
36.3
25.3
37.1.
33.7

20.9
9.9

19.3
15.9

-20.8
76.0
15.4
29,7

7.3
29.9
94

12.4

47.2
61.3
38.7
41.2
95.3

106.8
77.2
77.9

99.1
87.6
79.1
84.7

-38.2
-35.2
-30.8
-31.5

-107.3
-101.3
—87.7
-88.3

—170.6 .

-163.4
-139.3
-140.7

98

100

113

155

154

112

113

107

109

104

104
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FIG. 6. The high-energy phases (t)~(v, t) calculated
with Eq. (11) (solid curve) and the magnitudes [A„'(v,t) (

(dashed curve).

method was to find an independent way of check-
ing the widely used Begge-pole theory and these
phases invite comparison, but we will not do so
here.

The LDR shows that because of analyticity, the
phases of A,' are in the main determined by their
moduli, and it is interesting to note that differ--
ences between', ' are more pronounced in the
phase than in the modulus. Although ~A'~ is some-
what larger in the forward direction than ~A,'~ and
falls more rapidly with increasing t, the so-called
crossover effect, the two are not greatly different.
On the other hand Q, is nearly flat with changing
t at 4.0 GeV/c developing a downward slope at
lllgllel' nlonlellta, willie Q 1'lees fl'Gill tile fol'wal'd
direction with very little change as energy in-
creases. It may also be noted that at 20 GeV/c a
dip around -t =0.05 (GeV/c)' begins to appear in
Q„and to a lesser extent in () . It is even more
pronounced at 30 GeV/c. This dip appears to be a
consequence of our assumption that the exponential
behavior (12) persists to much higher energies
with approximately the same values of a(v) and
b(v). If this effect is real and not an.artifact of
faulty asymptotic assumptions, it may be observ-
able in very high energy, small-angle polariza-
tion measurements.

If the idea that the phase is determined by the
modulus is pursued, a change in t dependence
with increasing t can be anticipated from the be-
havior of the integrals which are the major con-
tributors in E(I. (11). The exponential falloff of
A', E(I. (12), implies for a typical integral, ne-
glecting the slightest t dependence in the denomi-
nators

t' (v" —v, ')"'in ~A'(v', i) (&tv' ~ (v" —v, ')"'in ~A'(v' 0) ~dv' (v" —v, ')'I'(at+At')dv'
(v'+ v)(v" —v, ') „' (v'+ v)(v" —v, ') „(v'+v)(v" —v, ')

in which the first term to a good approximation is that associated with the forward direction. Thus

(vt2 v z)1/28(v/)dvl' + {vl2 v 2)1/2b(v/)dvl

(v'+v)fv" —v, '} „(v'+v)(v" —v,')

(15)

For -t ~0.20 (GeV/e)s only the first term is sig-
nificant, but for larger t values the second, of
opposite sign, becomes important. On the basis
of this term alone, we would expect Q, say, to
rise more slowly and eventually decrease.

Viewed in perspective, what we have attempted
to do in this paper is to make a first application
of the logarithmic dispersion relation (2) in a
practical situation. The successful calculation
of the known forward phases, Fig. 3, indicates
the basic soundness of the method. The major
aim, however, is to exploit the potential of this

technique for the determination of nonforward
amplitudes. Vifays of overcoming the various dif-
ficulties encountered have been presented, some
more successful than other s. The subtraction pro-
cedure is quite effective in reducing the influence
of the unphysical region at high energy; its con-
trlbutlon is less 'thall 0.5% fol' p & 4.0 GeV/c. Tile
zeros do not seem to be a serious problem for A. '
over this angular range because it has only one
zero in the forward direction and, at the small t
values considered here, this situation almost cer-
tainly persists. That we can choose a reasonable
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locus for this single zero which almost completely
removes the discrepancy in P„and to a somewhat
lesser extent in p, across the partial-wave re-
gion is consistent with there being only one. Never-
theless, the behavior of the zeros at nonforward
angles is an assumption and is apt to be more
troublesome as the calculation is extended to larg-
er t. Presently, we are working on mays of handl-
ing this difficulty.

The method is, of course, limited by the avail-
able experimental input and, as noted in Sec. V,
the comparison of Q from the partial waves and
forward dispersion relations raises some question
about the'm-p data. Oui results could be affected
either through errors in (A.

'
~

or in the subtraction-

point phase P (v» t). Another limitation for high-
energy appbcations comes from the asymptotic
region. The integrals in the I.DH depend strongly
on the value of ~A'

~
in the neighborhood of the

principal-value point, and the higher the energy
the more criticai is the assumed behavior of ~A'~ .
A modification of the function I' as given by Eq.
(10), which will lessen the dependence of this re-
gion while retaining the virtues of the subtraction,
is being sought.

In the immediate future we plan to extend this
calculation to -t= G.40 (GeV/c)' and later to make
applications of the I.DR to AP scattering and to
mN polarizati. on.

*Based in part on a M. S. thesis submitted by L. Z.
Pitts to Georgetown University.
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Nonleptonic Hyperon Decays in a Current-Current Quark Model*
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The symmetric quark model is used to provide an explanation of the 8- and P-wave non-
leptonic hyperon decays. The current-algebra approach, applied to the current-current
weak HamQtonian constructed of Bose-type quark fields, leads to a remarkable agreement
with experiment.

I. INTRODUCTION

The universal current-current theory of the weak
interactions' has been successful in describing the
leptonic and semileptonic weak processes. How-

ever, attempts made to apply the theory to the non-
leptonic decays led to considerable disagreement
with observations. ' It appears as if the application
of symmetry principles such as SU(3) and CP in-
variance and the assumptions of current algebra
and partial conservation of axial-vector current

(PCAC) cannot always explain the empirical [bI~
=-,' rule observed in all these processes. More-
over, even when octet dominance is assumed, di-
rect application of soft-pion techniques to the non-
leptonic hyperon decays leaves us with the wrong
ratio of P- to $-wave amplitudes. '

It is believed in general that with the above as-
sumptions one can fairly well describe the main
features of 5-wave amplitudes, while the P waves
cannot be understood through similar techniques
since they involve some delicate limiting proce-


