
threshold and 1.4 GeV (s =100). The same should be true
to an even greater extent for the absorptive parts of uni-
tax'y amplitudes.

SThe derivative with respect to s of this pole term in
A~@2 is given by

(0)2
3

~ (
(0)2 )2s3 s

which equals 6.31&& 10 5 at threshold.
~Each 8 wave is subtracted at so-—43, and the value pre-

dicted by Weinberg from current algebx'a is imposed
there. The P wave is subtracted at threshold, where it
ls RseuIQed to vanish, These VRluee R19 1mposed 1n R

way which does not constrain the singularities.
«Since the p resonance of KL is too broad (Ref. 5), the

ImA. ' displayed in Fig. 1 are not in good quantitative
agreement with those which occur in nature. However,
the left-hand cuts of KL disagree even more with the
ImA~'~1 which occur in nature than they do with the
I~&'" d1splayed 1n F1g. 1.

««There are also I=2 Regge eum rules for low-energy
parameters, but these converge only because of extreme
cancellatione, and cannot be evaluated with sufficient 're-
liability at present to be of any practical uee. Cf. E. P.
Tx'yon, Phys. Rev. Letters 22, 110 (1969).

«2Cf. M. G. Olsson, Phys. Rev. 162, 1338 (1967).
«3Our 8-wave scattering lengths are defined with oppo-

site signs from those of KL.
«4For example, in the single-term Veneziano model for

m'm amplitudes [C. Lovelace, Phys. Letters 288, 264
(1968)], the contribution to the right-hand side of Eq. (4)
from partial waves with l ~ 2 is 0.21, and the correspond-
ing contribution to the right-hand side of Eq. (5) is 0.012,
assuming one uses Lovelace's values for the Begge pa-
rameters and sets I'(p mm} ='125 MeV.

«5If one expands the 8 and P waves as power series in
(s -2) over the interval 0 ~s ~4, then the integrals in
two of the five conditions of Rosktes are independent of
constant and linear terms, and the integrals in one of
these conditions are independent of quadratic terms ae
weD. It ie also straightforward to verify that if the 8
waves were-linear in s over the interval O~s ~4, and
satisfied the two conditions of Roskies which involve only
8 waves, then the Martin inequalities would all be mar-
ginally satisfied as equahties.

«6E. P. Tryon, Phys. Rev. D 4, 1216 (1971).
«YR. T. Park and B; R. Deeai, Phys. Rev. D 2, 786

(1970).
«SE. P. Tryon, . Phys. Letters 8 (to be published).
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SOIQe genex'Rl coIQIQcnts Rx'6 IQRde on the relRtlonshlp between the factorizRtion of multi-
Begge amplitudes and the singularity structure of multiparticle arnplitudee. A close rela-
tionship is found to exist between the validity of factorization and the absence of simulta-
neous discontinuities in overlapping vax'iablee suggested by the Steinmann relations.

Multi-Regge factorization of the full amplitude
and its total-energy discontinuity have recently
been proven in several models: the dual-resonance
model, ' ladder graphs in g' perturbation theory, "
and Gribov's hybrid model. " The procedure of
taking into proper account the cuts due to singular-
ities in variables which are dependent owing to
nonlinear Gram-determinant constraints eras found
to play a crucial role in obtaining factorization. '4

Here we make some general model-independent
comments on the relationship between multi-Regge
factorization and the singularity structure of multi-
particle amplitudes. In particular, vie find that the
singularity structure suggested by the Steinmann
relations' has a very intimate relationship to fae-
tol'lzatlon.

The 3teinmann relations state that the full ampli-

tude has no simultaneous discontinuity in energy
variables of overlapping channels' in the physical
region. Here we vanish to make the assumption that
the full amplitude ean be expressed in terms of
generalized multi-Froissart-Gribov signatured
amplitudes (see Eg. (1.1) of Paper I [(1 1.1)j). The
Steinmann relation can then be applied to the sig-
natured amplitude itself, since simultaneous dis-
continuities in overlapping subenergies in the sig-
natured amplitude mould lead to corresponding dis--
continuities in the full amplitude (within a given
physical region, the full amplitude has disconti-
nuities coming from only one term in Eg. (1.1) of
Paper I [(I 1.1}]). Therefore, whereas the signa-
tured amplitude fol the process p +p p +p + ~

+p„, in general has discontinuities in the subener-
gies of all groups of adjacent outgoing particles
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0

0
0

FIG. 1. Allowable simultaneous discontinuities for Ag 3.

[ g'& 01 (t 0+Pl) t 12' 012& 123& 1,2, ... , 10$ 0,1, ~ ~ .,0-1&.
etc. ], it is assumed to have no simultaneous dis-
continuities in two subenergies which overlap (e.g. ,
s» and s», s0» and s12 „„etc.). We believe
this is a very plausible assumption and clearly
leads to a full amplitude that satisfies the Stein-
mann relation, but do not attempt to justify it
further here. Both the dual-resonance model and
the g' ladder model satisfy it, as we shall see in
the Appendix.

We first briefly discuss the 2-3 amplitude and
then discuss the factorization of the 2-4 a,mplitude.
We expect that the discussion can be straightfor-
wardly generalized to arbitrary production ampli-
tudes A.,

The signatured 2-3 amplitude is assumed to
have the Regge behavior [see Eq. (I 1.3)]

A,'„",' -P(t, ) r(- a.,)(-SO,)"'P(t„ t2, K,)

&«( ~.)(-s-,.)"p(t.),

1 2

0

FIG. 2. Allowable simultaneous discontinuities for A&

the Steinmann relations demands" that P have sin-
gularities in x„

P(tl, t2' Kl) =( IC1) 2V2(tl, t2; IC1)+( Kl) 1 Vl(tl, t2', Kl),

(2)

so that

where K, = sOls»/s0». As it stands, Eq. (1) appears
to exhibit a simultaneous discontinuity in the over-
lapping variables &op and s», whereas the only al-
lowed simultaneous discontinuities are those corre-
sponding to the heavy lines in the tree diagrams
shown in Fig. 1. Thus consistency with our use of

(3)

The two-Reggeon vertex for the full amplitude is
thus (see Fig. 3 of I)

R(t„ t„' K,) = $, '$2 '[(e ""1+7',+ T2e ""le""2+T1T2e ""2)K, 2V(t„ t„K,)
+(e ""2+3,e""'e '""2+1,+ T, 32e ''"1)K, 1V(t„ t„K,)].

We assume the signatured 2-4 amplitude has the Regge. behavior

A, ',' '-P(t, ) I'(-C2, )(-&0,) 17(-&2)(-&12)"2r(-C23)(-&23)"3P(t3)P(t„ t„ t„K„K;,ItI) .

(4)

The variable ItI -=s»»s»/s0»s»3 is required to be unity in the Regge limit, owing to the Gram-determinant
constraints. However, we include it as a variable in order to be able to specify where the limit is taken
with respect to singularities in the independent variables due to the right-hand cut in so», . Thus, for ex-
ample, a change of P by e'" corresponds to taking the asymptotic limit on the opposite side of all cuts in
the independent variables due to cuts in so»3.

The dependence on p is also crucial for the satisfaction of the Steinmann relations. Equation (5) appears
to have simultaneous discontinuities in s„and s» and s„and s», whereas the only allowed simultaneous
discontinuities are those corresponding to the tree diagrams of Fig. 2. Thus consistency with (5) demands
that
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P=(—K) n2( K ) nspnsv +( K ) nl( K ) nsfnsvs 4( K ) n2( K ) nspnava

+( /(' ) 1(—K ) nspnlv 4. ( K ) nl( K ) napnlvl

where we have suppressed the arguments, t„ t„ t„Kz and Q so that

Aa 4 ( ol)
" ( ola)

" ( olas) as

+ ( sla) ( ~ola) ( aolas) V 13 + ( aol) ( as) ( olas) Vaa

+( ~12)" "
( siss)" " ( solas)" I Vis+( sas)" " ( siss)" I( solas)" Vla ~

Factorization of the signatured amplitude for all s,&...a- -~ (or all s,.&...a-+~+ ie), where ill =1, implies
[using (1), (2), (5), and (6)]

V,',(K„K,) = V,(K,) V, (K,),
V~»(K„K2) = V, (K,) V, (K,),
V',,(K„K,) = V, (K,) V(K,),

V,',(K„K,) + V,',(K„K,) = V, (K,) V,(K,) .

(7)

(8)

The full amplitude A, , is a sum over eight terms of the form (5) (see Fig. 4 of I). Factorization implies
that it must have the form

A -p(t, )[I'(-ll )$ s "1]R(t,t; K )[r(-ia,)~,s„"2]II(t„ „fK)[r(- ir)g, s„" 3) J3( t).

Using (6), (8), and Fig. 4 of I, one finds that Aa, indeed has the form (9) if one additional condition holds:

ei slnei snaei svsns (K K ) 4. e-ionic-ssnaeisnsVl (K K )13 ly 2 13 1& 2

1 (ei nle 2i naei ns + e i nle i ns e i nlei ns ei nle i n3) v(K ) v(K )—2$ Sing Q2

(10)

The verification of this requires a considerable
amount of tedious algebra, which will not be given
here. We only remark that the precise phases due
to Q from (6) are essential in compensating the
mismatches between the phases in ~, and e ob-
tained by applying the +i~ prescription to A.2 4 and
the phases iri ~, and ~2 in the two-Reggeon residue
(4).' The existence of two terms in (6) contributing
to the coefficient of ~, 1g 3 is important for the
same reason. The singularity structure (6) sug-
gested by the Steinmann relations is therefore in-
timately related to the factorization of A2,

It is interesting to solve Eils. (8) and (10) for V,',
and V,',:

sinn(isa —as) sinmn,

sinn(iaa —n, ) sins us

The sines in (11) have a very natural interpreta-
tion. From (3) we note that only V, contributes to
the simultaneous discontinuity in s» and so». Since
there is no reason a priori to expect this discon-
tinuity to vanish for ia —u, or cis integral, or to be
singular for iL integral, we expect [note the

I'(-ni) and I'(-o.a) in (1)]
Sin'WQ2

1 1 S ng 2 1

where V, (K,) need not have such zeros or poles.
Similar reasoning suggests

Sln'll D2
3 2 in 3 2

3 2

and, comparing (5) and (7), we have

SinSQf1 SlnZA2

sinn(a, —il ) sin7i(ia —a )

sing (R2 Sing(x3

sining(aa —ns) sinli(al —us)

Eiluations (11) are just what is needed to allow con-
sistency between these natural" zeros and poles.

UslIig (6), (8), and (11) it ls straightforward to
show that the total-energy discontinuity of A,
also factorizes. The singularity structure (6) thus
plays a vital role in giving factorization for both
the amplitude and its total-energy discontinuity.

Finally, we recall that in I are noted that factor-
ization follows if the signatured amplitude has the
form [see Eq. (I3.5)]
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$00 +co $0o

&; ', "-(- .,) (-,.)"(- ..)" ' d, d .d .z(t, )f( „t„t.)f(.;t., t.)g(t.)
&0 0 0 ok0

f+OQ f Oo

X . , dy dy dy y nl Zy "a2 ly -a3-
",0 0 0

&a .&i&34
x exP -P& - P2 —$3+ —P&P2+ —

P2P3 — P&3»g3
Kl K2 K~ K2

(12)

if the integrations over z~ introduce no further singularities in K~. The integral over the y, in (12) is pre-
cisely the dual-resonance amplitude with K,. —K,./z, Since we show in the Appendix that the dual-resonance
model satisfies (6), (8), and (11}, the form (12) will also. The form (12) is therefore a very general form
for amplitudes which incorporates satisfaction of the Steinmann relations [as wel~. as the factorization con-
ditions {8}and (11)].'

APPENDIX

We show that the dual-resonance model (DRM) is consistent with our assumption about the singularity
structure of the signatured amplitudes, in particular its consequence (6)." In the DRM, we have [see Et(,
(I2.8)]

r(-n, )r(-n, )r(-n3)P(t„ tw, t3, K,K„y) =) 'dy, dy3dy3y, "I "y3 " 'y3 — 3-'
0 "0 0

&a&3 &3&3 A'0'33'3
xexp ~p ~g ~$ + + ~, ~

Kl K2 KlK2
(A1)

Doing one integration, applying three times the Mellin-Barnes formula"

JOAN
gQ

r(-n)(1+a)"= . dr r(-n+3)r(-r)z",
2 lip v

and then doing the remaining hvo y,. integrations gives
t ~oo. r joo +)oe

r(-n, )r(-n, )r(-n3)p= . dpdqdrr( n+p-)1"(-n, +p+q-3)r(-n +q)
2Sg N ~]oo ~ ~ ~ gg

&& r(-p+3')r(-q+3')r(-3)(-K, ) '(-K.) 'p". (A2)

An integral representation of the hypergeometric function' can be used to revrrite the right-hand side of
(A2) as

)co tf oo

[(»i)'r(-n, )] ' dpdq r(-n, +p) r(-n, +p) r(-p)(-K, ) 'r(-n, + q) r(-n, +q) r(-q)(-K.) '
++)(o ~f oo

x 3E,(-p, -q; -n„1—y) .

Using the usual formula for analytic continuation of the hypergeometric function, "@re can extract the sin-
gularity in Q to obtain

[(2wi)'1(-n, )] ' dpdqI'{-n, +p)I'(-n, +p)I'(-p)(-K, ) ~r(-n, +q)I'(-n, +q)I'(-q)(-K) '
]a &-;~

sinw(p —n, ) sinwq sinw(q —n, ) sinwp
X

sinwn, sinw{p —q) sinwn, sinw(q —p)
(A4)

vghere the remaining hypergeometric function has been evaluated at unit argument. '4 Finally, me can close
the p and q contours in their left-half planes, picking up the singularities in I (-n, +p) and I'(-n, +p) and

I'(-n, + q) and I'(-n, + q), respectively. Of the possible eight terms only five are finite, since one of the
two factors in the final bracket vanishes if p=e2 or q= +2. These five terms correspond to the five terms
in (6).3 Equations (8) and (11}are also satisfied where

Oo

~i(K,)=[r(-n,)r(-n, )] 'Qr(-n, +i)r(n, —n, —i) —.',
etc.
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This comment considers the high-energy behavior of a particle of arbitrary spin interact-
ing with Rn extexTial potentiRl A if ~ ~, if (&) by n1eRns of R el Aif ~ p (&) lntelactionq where
J"~ " is a function of the fields and their derivatives. It is shown that in the eikonal ap-
proximation, "exponentiation" occurs when the light-cone commutation relations satisfy

f dx J dy [J'+' ' '+(x), Z' ' '+(y))„+ D--O.

It has become apparent that the knowledge of cur-
rent commutators on the light cone provides useful
theoretical and experimental information about the
high-energy behavior. The structure of light-cone
commutators of currents in various model. field
theories has been exposed by Cornwall and Jackiw, '
Fritzsch and Gell-Mann, ' and Gross and Treiman, s

and many applications of the theory have already
been given.

In this comment we wish to indicate a new area of
applicability of light-cone techniques —the study of
the eikonal approximation. This approximation has
become a useful method in calculating high-energy
scattering amplitudes in various model theories. "

That there should be a connection between the
light-cone approach and the eikonal approximation
can be seen in various ways. For example, the
natural variables in the eikonal methods are the +
and —components familiar from the light cone.
Also, the work of Gross and Treiman3 abounds in
eikonal-type exponentials in their light-cone for-
mulas. More specifically, Lee' and Chang'abave
related "exponentiation" of the eikonal approxima-

tion in quantum electrodynamics to the properties
of current commutators on the light cone.

Recently, %einberg" has shown for the scatter-
ing of a fast particle of arbitrary spin in an exter-
nal electromagnetic field that expon6ntiation occur~
provided that the anomalous magnetic moment
obeys a generalized Drell-Hearn sum rule. " The
Drell-Hearn sum rule can be related to the light-
cone commutation relations. ' Thus there is a gen-
eral relation between the exponentiation of the ei-
konal approximation and light-cone commutators.
In this comment that relationship is dix ectly ob-
tained. It is found that for a particle of arbitrary
spin [field P(x)] interacting with an arbitrary ex-
ternal potential A"„~:::„~(x)by the interaction
8„"".'. '. o""„A"„&."..'"„„(x), exponentiation of the eikonal
approximation to the wave function 4 (x; p, X, n; A)
=—(0 out ( P(x) ~ p, X, a in) is valid provided that

Js,""s„(0yi, y )]=o.


