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threshold and 1.4 GeV (s=100). The same should be true
to an even greater extent for the absorptive parts of uni-
tary amplitudes. '

8The derivative with respect to s of this pole term in
A2 j5 given by
7(3 0)2

(sgo)z RY ’

1
T
which equals 6.31x 105 at threshold.

9Each S wave is subtracted at s0=i , and the value pre-
dicted by Weinberg from current algebra is imposed
there. The P wave is subtracted at threshold, where it
is assumed to vanish. These values are imposed in a
way which does not constrain the singularities.

0since the p resonance of KL is too broad (Ref. 5), the
ImA! displayed in Fig. 1 are not in good quantitative
agreement with those which occur in nature. However,
the left-hand cuts of KL disagree even more with the
ImA! which occur in nature than they do with the
mA®! displayed in Fig. 1.

UThere are also I=2 Regge sum rules for low-energy
parameters, but these converge only because of extreme
cancellations, and cannot be evaluated with sufficient re-
liability at present to be of any practical use. Cf. E. P.
Tryon, Phys. Rev. Letters 22, 110 (1969).

120, M. G. Olsson, Phys. Rev. 162, 1338 (1967).

130ur S-wave scattering lengths are defined with oppo-
site signs from those of KL.

l4por example, in the single-term Veneziano model for
mr amplitudes [C. Lovelace, Phys. Letters 28B, 264
(1968)1, the contribution to the right-hand side of Eq. (4)
from partial waves withl =2 is 0.21, and the correspond-
ing contribution to the right-hand side of Eq. (5) is 0.012,
assuming one uses Lovelace’s values for the Regge pa-
rameters and sets I'(p — ) =125 MeV.

151f one expands the S and P waves as power series in
(s —2) over the interval 0 =<s <4, then the integrals in
two of the five conditions of Roskies are independent of
constant and linear terms, and the integrals in one of
these conditions are independent of quadratic terms as
well. It is also straightforward to verify that if the S
waves were linear in s over the interval 0 =s =<4, and
satisfied the two conditions of Roskies which involve only
S waves, then the Martin inequalities would all be mar-
ginally satisfied as equalities.

16E. P, Tryon, Phys. Rev. D 4, 1216 (1971).

R. T. Park and B. R. Desai, Phys. Rev. D 2, 786
(1970).

185, P. Tryon, Phys. Letters B (to be published).
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Factorization of Multi-Regge Amplitudes. II*

) J. H. Weis
Laboratory for Nuclear Science and Depaviment of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 26 October 1971)

Some general comments are made on the relationship between the factorization of multi-
Regge amplitudes and the singularity structure of multiparticle amplitudes. A close rela-
tionship is found to exist between the validity of factorization and the absence of simulta-
neous discontinuities in overlapping variables suggested by the Steinmann relations.

Multi-Regge factorization of the full amplitude
and its total-energy discontinuity have recently
been proven in several models: the dual-resonance
model,! ladder graphs in ¢* perturbation theory,2?
and Gribov’s hybrid model.** The procedure of
taking into proper account the cuts due to singular-
ities in variables which are dependent owing to
nonlinear Gram-determinant constraints was found
to play a crucial role in obtaining factorization.l#

‘Here we make some general, model-independent,
comments on the relationship between multi-Regge
factorization and the singularity structure of multi-
particle amplitudes. In particular, we find that the
singularity structure suggested by the Stéinmann
relations® has a very intimate relationship to fac-
torization.

The Steinmann relations state that the full ampli-

tude has no simultaneous discontinuity in energy
variables of overlapping channels® in the physical
region. Here we wish to make the assumption that
the full amplitude can be expressed in terms of
generalized multi-Froissart-Gribov signatured
amplitudes (see Eq. (1.1) of Paper I [(I 1.1)]). The
Steinmann relation can then be applied to the sig-
natured amplitude itself, since simultaneous dis-
continuities in overlapping subenergies in the sig-
natured amplitude would lead to corresponding dis-
continuities in the full amplitude (within a given
physical region, the full amplitude has disconti-
nuities coming from only one term in Eq. (1.1) of
Paper I [(I 1.1)]). Therefore, whereas the signa-
tured amplitude for the process p,+p;,—p,+py +***
+P,-, in general has discontinuities in the subener-
gies of all groups of adjacent outgoing particles
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FIG. 1. Allowable simultaneous discontinuities for A,_,.
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etc.], it is assumed to have no simultaneous dis- o 3 ! 3
continuities in two subenergies which overlap (e.g., o)
Sop and Sy, So, and s, . -, etc.). We believe
this is a very plausible assumption and clearly
leads to a full amplitude that satisfies the Stein-
mann relation, but do not attempt to justify it
further here. Both the dual-resonance model and

a b a b

the ¢® ladder model satisfy it, as we shall see in
the Appendix.

We first briefly discuss the 2 -3 amplitude and
then discuss the factorization of the 2 -4 amplitude.

FIG. 2. Allowable simultaneous discontinuities for A4,_,,.

We expect that the discussion can be straightfor- the Steinmann relations demands®” that g have sin-
wardly generalized to arbitrary production ampli- gularities in «;,
tudes A4, .. -

aun Bty by 1) = (=,)72V(ly, b5 1) + (= 1)1 Vi (8, U K,),

The signatured 2 -3 amplitude is assumed to
have the Regge behavior [see Eq. (I 1.3)]

A2T—1>13-2 ~ B(tl) (- al)(—-sm)"‘lﬁ(tl, Ly Kl)

(2)

x F(—az)(_slz)azﬁ(tz) ’ (1) so that
T

where k, = 5;,8,,/So5- AS it stands, Eq. (1) appears Aziz ~ (=800 )17 %2( = S015)*2 V3 + (= 515) 72741 (= 5g10) 1, .
to exhibit a simultaneous discontinuity in the over-
lapping variables s,, and s,,, whereas the only al- ®3)
lowed simultaneous discontinuities are those corre-
sponding to the heavy lines in the tree diagrams The two-Reggeon vertex for the full amplitude is
shown in Fig. 1. Thus consistency with our use of thus (see Fig. 3 of I)

J

R(ty, tyy k) =&,71E, ™ [(e™ ™1 4+ T, + T,e™ ™16 T2 4 T T,0 ™ ™2 )k 2V (4, Ly K,)
(e M2 4 T eI 7 T T e T ) LY (2, £y k)] (4)
We assume the signatured 2 -4 amplitude has the Regge behavior
A"~ Bt T (=) (= 500) " T(= ) (= 810) "2 (= ta) (= 50) SB(La)Blly, Ly b5 Koy K5 ). ()

The variable ¢ =Sy 55515/ S0125125 1S required to be unity in the Regge limit, owing to the Gram-determinant
constraints. However, we include it as a variable in order to be able to specify where the limit is taken
with respect to singularities in the independent variables due to the right-hand cut in sg;,,.' Thus, for ex-
ample, a change of ¢ by ¢2™* corresponds to taking the asymptotic limit on the opposite side of all cuts in
the independent variables due to cuts in s;,,.

The dependence on ¢ is also crucial for the satisfaction of the Steinmann relations. Equation (5) appears
to have simultaneous discontinuities in s, and s,, and s,, and s,,, whereas the only allowed simultaneous
discontinuities are those corresponding to the tree diagrams of Fig. 2. Thus consistency with (5) demands
that
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|on

B = (_Kl)-az(_xz)-a3¢asvga + (—Kl)'“l(—’fz)-%(P%st + (-Kl)-az(_’{z)-aquaz ng

+(=k,) U= Ky) THIPULV Ly 4 (=) (=) T*2 %1V L (6)
where we have suppressed the arguments, ¢, £, Z;, k;, and k, so that
Aszff "~ (_301)a 1'012(_3012)052"013(_ 50123)u3 Vga
+(=815) 0271 (= 501 ) ¥ 3TN L= S 155)* 3V T3 + (= 8)¥1742(=855)* 372 (= 515) 2V 5,
+(=815)27%3( = 5155)* 173(=S155) 1V 15 + (= 855) 3 7¥2(=5154)*2 ™ 1(=S199) 1V 5 - (7

Factorization of the signatured amplitude for all s;,...,~ =« (or alls,,,..,~ +o +i€), where ¢ =1, implies
[using (1), (2), (5), and (6)]

Vis(ky ) = Valky) Vi(K,),
Via(ky, k) = Vo(Ky) Vp(Ks),
Via(ky, ;) = V() Vy(ky),
V3.(ky, ;) + Vis(ky, k) = VoK) Va(ky) .

The full amplitude A,_,, is a sum over eight terms of the form (5) (see Fig. 4 of I). Factorization implies
that it must have the form

A2—>4 NB(tl)[r(—al)ELSOJ.al]R(tD tz; Kl)[r(-az) gzslzaz]R(tza ts; Kz)[r(_as)gssz:;as]ﬁ(ta) . (9)

(8

Using (6), (8), and Fig. 4 of I, one finds that A,_, indeed has the form (9) if one additional condition holds:

i T =iTag ,=iTog 73 =ifoy ,=iTog ;i To 1
etT1gmiT2e =i T3S (K, K,) + €™ e T2t T YL (k) K,)

1

= (e M1 g2 Mgl T | p=iTa1 g iy _ g=ifa, gifiag _ gifoy g=iTag) Y (1 YV (k).

-2isinTa,

The verification of this requires a considerable
amount of tedious algebra, which will not be given
here. We only remark that the precise phases due
to ¢ from (6) are essential in compensating the
mismatches between the phases in «; and «, ob-
tained by applying the +i€ prescription to A4,_,, and
the phases in «, and «, in the two-Reggeon residue
(4).® The existence of two terms in (6) contributing
to the coefficient of k,*1x,~%3 is important for the
same reason. The singularity structure (6) sug-
gested by the Steinmann relations is therefore in-
timately related to the factorization of 4, _,,.

It is interesting to solve Eqgs. (8) and (10) for V3,
and Vig

sinm(a, - a,,) sinTa
e o) ) ),

V3., k) == -
ik k) sinma, sinm(a, -
sinm(a, — @,) sinna, (11)

1 =
Vil 1) = sinna, sinm(a, - ;) AR

The sines in (11) have a very natural interpreta-
tion. From (3) we note that only V; contributes to
the simultaneous discontinuity in s;, and s,,,. Since
there is no reason a priovi to expect this discon-
tinuity to vanish for @, - @, or a, integral, or to be
singular for a, integral, we expect [note the

(10)

I'(-a,) and T'(-a,) in (1)]
sinta,

Vilky) = sinm(a, — a,)

V.(x,),

where ¥(«,) need not have such zeros or poles.
Similar reasoning suggests
sinta, .

sinm(a, — a,) Va(Kz),

Vi(k,) =
and, comparing (5) and (7), we have
sinma, sinma, -
Si-nﬂ(az - 051) sinm( o= al) V13(K1) Kz) ’

Vi, k) =

sinra, sinTa,
sinm(a, - a,) sinn(a, — a,)

Vis(ky, K5) = Vi3("1, Ky) -
Equations (11) are just what is needed to allow con-
sistency between these “natural” zeros and poles.

Using (6), (8), and (11), it is straightforward to
show that the total-energy discontinuity of 4, _,,
also factorizes. The singularity structure (6) thus
plays a vital role in giving factorization for both
the amplitude and its total-energy discontinuity.

Finally, we recall that in I we noted that factor-
ization follows if the signatured amplitude has the
form [see Eq. (I3.5)]



1046 J. H. WEIS 5

AZT_I,,;ZT:; ~(—-sm)al(_sm)az(_szs)asf f f dz], d22 dzsg(tj,)f(zl; t]_’ tz)f(zz; tz; ta)g(ta)
0

o 0

Xf f f dy]_ dyg dys yl-al-lyz"dz—lys"ots-l
o 0 o

2, o) 2,2,¢
X exp;['yl =Y2=Ys +< K_l)yxyz + Z Y2Y3 = K).—Kz Y1Y2¥3] >
(12)

if the integrations over z; introduce no further singularities in ;. The integral over the y, in (12) is pre-

cisely the dual-resonance amplitude with k; - k;/z;. Since we show in the Appendix that the dual-resonance
model satisfies (6), (8), and (11), the form (12) will also. The form (12) is therefore a very general form
for amplitudes which incorporates satisfaction of the Steinmann relations [as well as the factorization con-
ditions (8) and (11)].° '

APPENDIX

We show that the dual-resonance model (DRM) is consistent with our assumption about the singularity
structure of the signatured amplitudes, in particular its consequence (6).!° In the DRM, we have [see Eq.
(12.9)]

T(-ay)T(-0p) (= as)B(ty, by, b5 Ky Koy D) = f f f'dyldyzdys:v;“l“yz'“?"ys""s'l
[ ] 0

V1Yo Y2¥s  PYYaYs Y
X - — - —_— i s
exp( V1T ¥ Yt T s ) (A1)
Doing one integration, applying three times the Mellin-Barnes formula'!
iee
I'(-a)(1 +z)°‘=—l-. f dr T'(-a +7)T(=7)z",
21 J e
and then doing the remaining two y; integrations gives
1 \3 fie [i® (i
I‘(-al)I‘(-aZ)F(-as)B=(%> f f dpdqdrT(=a, +p)T(~=a, +p+q-7)T(-a5+4q)
-f 00 ~joo - oo
XD(=p+ ) T(=g +7)T(=7)(=K) (= 1;) 7 $" . (A2)

An integral representation of the hypergeometric function!? can be used to rewrite the right-hand side of
(A2) as

(@nipr=a)]" [ [ dpdg T=a, +p)T(-ay + p)(=p)(~ 1) T(= ay + ) (=, + ) T(=q) (=)~
"i‘° -f o0

X Fy(=py =G5 =05 1= ). (A3)
Using the usual formula for analytic continuation of the hypergeometric function,’® we can extract the sin-
gularity in ¢ to obtain

io  riw
[@7d)*T(=0p)] ™ f_m f_iwdi) dq T(=ay +p)T(=a, + P)T(=p)(= k) P T(=ap + @) T~ a5 + @) T(=q)(— k)™

5 [smn(p - a,) sinmg sinn(g - a,) sinmp q:l , (A4)

- - += -
sinma, sinn(p - q) sinma, sinm(g = p)

where the remaining hypergeometric function has been evaluated at unit argument.!* Finally, we can close
the p and ¢ contours in their left-half planes, picking up the singularities in I'(-a, +p) and I'(~a, +p) and
I'(-a, +4q) and T'(-a,+q), respectively. Of the possible eight terms only five are finite, since one of the
two factors in the final bracket vanishes if p = o, or ¢=a,. These five terms correspond to the five terms
in (6).° Equations (8) and (11) are also satisfied where

©

Vi(k) = [[(=0,) T(=as,)] - Z I(-a,+)T(a, - a, - z):—fi
etc. e -
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Eikonal Approximation and the Light Cone*
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This comment considers the high-energy behavior of a particle of arbitrary spin interact-
mg w1th an external potential A, ..., (¥) by means of a J Bye « o Hng RET (x) interaction, where
JH° I 45 a function of the fields and their derivatives. It is shown that in the eikonal ap-
proximation, “exponentiation” occurs when the light-cone commutation relations satisfy

fw dx"ffdy"[J*' TR, IR (9) ey 420 =0.

It has become apparent that the knowledge of cur-
rent commutators on the light cone provides useful
theoretical and experimental information about the
high-energy behavior. The structure of light-cone
commutators of currents in various model field
theories has been exposed by Cornwall and Jackiw,?!
Fritzsch and Gell-Mann,? and Gross and Treiman,?
and many applications of the theory have already
been given.*™®

In this comment we wish to indicate a new area of
applicability of light-cone techniques —the study of
the eikonal approximation. This approximation has
become a useful method in calculating high-energy
scattering amplitudes in various model theories.”®

That there should be a connection between the
light-cone approach and the eikonal approximation
can be seen in various ways. For example, the
natural variables in the eikonal methods are the +
and - components familiar from the light cone.
Also, the work of Gross and Treiman® abounds in
eikonal -type exponentials in their light-cone for-
mulas. More specifically, Lee® and Chang'® have
related “exponentiation” of the eikonal approxima-

tion in quantum electrodynamics to the properties
of current commutators on the light cone.
Recently, Weinberg!! has shown for the scatter-
ing of a fast particle of arbitrary spin in an exter-
nal electromagnetic field that exponéntiation occurs
provided that the anomalous magnetic moment
obeys a generalized Drell-Hearn sum rule.* The
Drell-Hearn sum rule can be related to the light-
cone commutation relations.® Thus there is a gen-
eral relation between the exponentiation of the ei-
konal approximation and light-cone commutators.
In this comment that relationship is directly ob-
tained. It is found that for a particle of arbitrary
spin [field ¢(x)] interacting with an arbitrary ex-
ternal potential A{1:1!{m(x) by the interaction
JolllEn AT m(x), exponentiation of the eikonal
approximation to the wave function & (x; p, A, a; A)
=(0out|¢(x)| p, A, @ in) is valid provided that

f dx‘f dy~[J

B a0, %, 2),

Jg;::tﬂm(o’ -37.1.) y—)] =



