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The model for low-energy xx amplitudes proposed recently by Kang and Lee is analyzed
and shown to violate analyticity and/or crossing symmetry, and also Regge sum rules for
S- and P-wave scattering lengths. Possible reasons for these violations are discussed, and
the outline is given of an argument which indicates that the p meson is not a dynamically
bound state of two x mesons.

Recently Kang and Lee (henceforth KL}proposed
a model' for the low-energy» interaction based
on analyticity, unitarity, the crossing conditions
of Roskies, ' the inequalities of Martin, ' and the
current-algebra predictions of Weinberg. ' KL also
assumed that the S waves and P wave can be de-
composed into ratios N/D such that both N and D
satisfy once-subtracted dispersion relations, and
D contains no poles. The model succeeds in gen-
erating p and 0 mesons as dynamically bound
states of the» system, and is in qualitative
agreement' with experiment.

In this paper, we demonstrate that the model of
KL is severely inconsistent with analyticity and/or
crossing symmetry, and with Regge sum rules for

S- and P-wave scattering lengths. We suggest
several possible reasons for these difficulties, and
outline an argument which indicates that the p me-
son is not a dynamically bound state of two &.me-
sons.

Let us denote the I'& partial-wave amplitudes by
Ai'~'(s), and use units wherein m, =a = c = 1 (except
where MeV is explicitly stated). We normalize the
A ' such that

A""(s}= '
i

e'"~sins'
s —4j

for s) 4.
Analyticity and crossing symmetry imply that if

-32&s ~0, then

~ 4-s 2t 2 00

ImA~'i (s) = dtP, 1+ g pal Q(2I'+1) lmAc ~ (t)P; I+s-4„ 4 II

ImA ' (s)= Qy ' 5(s —s' ) (2)

which serves to define the parameters y„' and
s(

tl

It is obvious that one could insert experimental
S- and P-wave phase shifts into the right-hand
side of Eq. (1) to obtain a guide in selecting the
s„' and y„' intended to simulate the left-hand
cuts of physical A '". This procedure was in fact

where P denotes the SU(2} crossing matrix. ' The
Legendre series on the right-hand side of Eq. (1)
diverges over part of the range of integration if
s & -32, but may provide an asymptotic expansion
over some interval of s to the left of -32.

In the model of KL, the left-hand cuts of the $-
and P-wave N functions are represented by a few
poles: three for the I =0 S wave, two for the I = 2
S wave, and three for the P wave. These poles
correspond to the ImA ' ' being represented by
sums of 5 functions for negative s:

used by KL to guide them in their selection of pole
positions. However, instead of using Eq. (1) to
estimate reasonable values for the y„', and then
formulating the N/D equations in terms of these
parameters, KL followed a different procedure.
They chose to formulate the N/D equations in
terms of the residues of the poles in N, which are
initially unknown parameters, They then deter-
mined these residues by simultaneously imposing
the crossing conditions of Roskies, ' the inequalities
of Martin, ' and the current-algebra predictions of
Weinberg, ' and by requiring the generation of p and
0 resonances.

The positions and residues of the poles in the N
functions of KL are presented in Ref. 1. We have
computed the corresponding D functions at the po-
sitions of these poles, and have thereby determined
the residues of the resulting poles inA '

We have also established that the denominator
functions D~'i'(s) and D~'i'(s) contain no zeros on the
physical sheet, while Dt'"(s) contains precisely one
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TABLE I. Values for the parameters representing left-hand cuts
in the model of KL I.see Eq. (2)].

(0)0
(0)2
(1)1

-0.56
-1.28

-14.8

-22
-16

-70
-4.61x 104

-76

0.0153
-0.0542
65.7

-91.8
23 y8

-742

811
4.27x 10~

1870

such zero. This zero occurs at s = -4.61 x10', and
generates R pole in A~'~', mhose residue me have
determined.

In Table I, we present the s~'~ and y~'~ cox're-
sponding to the poles in the 8 waves and P wave of
KL. Note that five of the nine s~'~ lie on the inter-
val -32 & s & 0, where Eq. (l) is exact, while three.
of the four remaining s„'~ lie on the interval -76
~+ s & -32.

In Fig. 1, we present the ImA '~ for s &0 ob-
tained by inserting the physical-region 9 - and
P-wave absorptive parts of KL into the right-hand
side of Eq. (l). Since the f, resonance occurs at
s = 84, inclusion of the D waves mould not signifi-
cantly alter the ImA. ~'~ displayed in Fig. 1 for
-s & 80.' However, Eq. (l) is not strictly valid for
-s & 32, so it is an open question mhether the
ImA~'~ in Fig. 1 are good approximations for 32
& -g &80.

Observe in Fig. 1 that ImA~ is negative for
0 ~-s &14, mhereas y~, ', which represents ImA. ' '
in the vicinity of -s =0.56, is positive. Observe
also that ImA ' ' is positive for 14 & -s ~ 80,
mhereas y~'~, which represents ImA. ~'~ in the vi. —

l5

Im A
to)o

Im AIO—
iQ& Im A

FIG. 1. IIX ' for negative s obtained by inserting
the physica1-regipn 8 and P waves of KL into the right-
hand side of Eq. (1).

cinity of -s = 22, is large and negative.
Turning to the I = 2 8 wave, me see that y~,'~' and

ax'6 ln Qualltatlve agreement with Flg. 1.
However, the values of s~,'~' and s~,'~' do not appear
to be especially mell suited for representing
IIX~'~'. As for the very distant pole resulting
from the zero in D~'~3, the relative magnitudes of
y3 Rnd s,' ' are such that the corresponding pole
term in A~'~' is nearly constant over the low-ener-
gy region. ' Since the value of A ' ' is fixed by as-
sumption at a subtx'action point near threshold, '
this very distant pole plays no significant role in
the lom-energy dynamics of A~'~', and me shall not
discuss it further.

Turning nom to the P wave, me see that ImA~'~'

ls posltlve Rnd quite SIQRll for 0 ~ -8 & 15, but ls
negative and much larger for 15 & -s & 70. Homev-
er, y~,'~', which represents ImA~'~' in the vicinity
of -s = 15, is positive and very Earge. Ne also
note that y,' ' and y,' ', which represent IrnA~'~' in
the vicinity of -s =34 and 76, respectively, are
enormous. In fact, y,' ' and y,' ' are both at least
ten times larger than is consistent with Fig. 1,
while the enormous value of y~,'~' requires that
ImA~'~' must become very large in the region just

' above that displayed in Fig. 1, if yet another in-
consistency is to be avoided.

From the preceding analysis, it is evident that
several of the pole parameters of KL are severely
inconsistent mith the ImA~'~' of Fig. 1, even on the
interval 0& -s & 32, where Eq. (l) is exact. ' Since
Eq. (l) is a consequence of analyticity and crossing
symmetry for the full amplitudes A (s, t), we con-
clude that the amplitudes of KL are severely in-
consistent with the analyticity and/or crossing
symmetry of physical' (s, t)

%6 remark that the five conditions of Hoskies
which involve only the S waves and P wave are
sufficient to ensuxe crossing symmetry, in the
sense that any 8 waves and P mave which sahsfy
these conditions axe the partial waves of souse set
of fully croSSing-syIQIl1etric functloQS. Homevery
the crossing-symmetric functions of which the S
waves and P wave are a part may lack the ana, ly-
ticity of physical A. '(s, t).' Since the S waves and
P wave of KL satisfy the five conditions of Roskies
to good approximation, we conclude that it is pri-
marily the analyticity of physical''(s, t) which is
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violated by the model of KL. This violation is
present even though the inequalities of Martin are
well satisfied. Thus it is clear that the combined
conditions of Hoskies and Martin are not sufficient
to ensure that models for low-order partial waves
are consistent, even roughly, with the analyticity
and crossing symmetry of physical A (s, t).

We wish to emphasize that the inconsistencies
between Eq. (1) and the pole parameters of KL are
greatest in the P wave and in the I =0 S wave.

Although the model of KL does succeed in gener-
ating p and e mesons as dynamically bound states,
the forces of the model in these channels are quite
inconsistent with the forces occurring in nature. "

Another interesting test of the model consists of
comparing the S- and P-wave scattering lengths
with the I = 1 Regge sum rules for them. " These

sum rules are obtained by evaluating the following
dispersion relation at appropriate values of s
(Ref. 12):

S —4 t dS 2s(s ' —2)Ar(s) = Ji,(, )
Im Tr(s')+ (, )(, )

A~(s'), (3)

where A~ denotes the forward amplitude with iso-
spin I in the s channel, and

T~ = ,'Ao~+-,'A--~ —$A2~

denotes the combination of forward amplitudes
with I=1 in the t channel.

Upon evaluating Eq. (3) at s = 0 and noting that
crossing symmetry implies"

A~(0) = —,'A'„(4) + pA„'(4),

one obtains a sum rule for the S-wave scattering
lengths" ai -—Az(4), I = 0, 2:

2a, —5a, = — ImTz'(s) .24 " ds

4 ss —4 (4)

Evaluating A. ~ near s =4, one obtains the P-wave
scattering length a, :

4 f ds s-2
a, = —

~
—,Im T~s +8,A~s, 5

where

a, '-lim A ' '(s)).
4

s-4

In the model of KL, 2a, —5a, =0.63." However,
upon substituting the S- and P-wave absorptive
parts of KL into the right-hand side of Eq. (4), one
finds that ImA ' contributes 0.46, ImA ' ' contrib-
utes -0.04, and ImA ' ' contributes 0.67, for a
combined value of 1.07. The net contribution to the
right-hand side of Eq. (4) from partial waves with
l ~ 2 is usually estimated to be about 0.2,"and is
universally regarded as positive. Thus we see that
the left- and right-hand sides of Eq. (4) disagree
by a factor of about 2 for the model of KL.

The KL value for a, is 0.038. However, one finds
upon substituting the absorptive parts of KL into
the right-hand side of Eq. (5) that ImA~'~' contrib-
utes 0.017, ImA o ' contributes -0.002, and ImA ' '

contributes 0.053, for a combined value of 0.068.
. The net contribution from partial waves with l ~ 2
is usually estimated to be about 0.01,"and is cer-
tainly positive. Thus the left- and right-hand sides
of Eq. (5) also disagree by a factor of about 2 for
the model of KL.

We shall now suggest and briefly discuss several
possible reasons for the preceding difficulties with
the model of KL.

A. The Number of Poles Used to Simulate

Left-Hand Cuts May Be Too Small

Two of the five conditions of Roskies, and all the
inequalities of Martin, test second- and/or higher-
order derivatives" of the amplitudes. These de-
rivatives are quite sensitive to the details of near-
by singularities, and it may be that the number of
poles used by KL is simply not large enough to ac-
commodate all the constraints imposed by KL,
unless some of the residues are given unphysical
values.

In fact KL remark that when the nearest pole po-
sitions are varied by about ~b. s~= 1, the resonance
masses vary by amounts up to nearly 100 MeV.
Since the distance between the two poles nearest
s =0 exceeds hs =14 in each of the three channels,
there is no evident reason why one should not con-
sider variations of the nearest pole positions by
amounts up to ~As~=5 or more. In that case, it
would appear from the aforementioned remark of
KL that the resonance masses would vary by
amounts greatly exceeding 100 MeV. This extreme
sensitivity of the results to the pole positions is
quite consistent with our suggestion that too few
poles are being used to represent the left-hand
cuts, when so many constraints are being imposed
on second- and higher-order derivatives.
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B. Physical mn S Waves May Not Satisfy

Once-Subtracted Dispersion Relations

C. Physical em S Waves May Contain

Zeros at Complex s Which Require

Poles in the Corresponding D Functions

It has recently been conjectured that physical »
partial waves with I =0 and I = 2 contain infinitely
many zeros at complex s on the physical sheet. "
Thus it may be that if one decomposes the S waves
into ratios N/D wherein both N and D satisfy once-
subtracted dispersion relations, then poles are re-
quired in the D functions to generate some of the
conjectured zeros at complex s.

D. The p and/or 0 Mesons May Not

Be Dynamically Bound States

of Two m Mesons

This possibility is an especially interesting one,
and we shall now outline an argument which indi-
cates that the p meson is indeed not a bound state
of two & mesons.

Veneziano» partial waves with I =1 satisfy un-
subtracted dispersion relations, "so it is reason-
able to assume that the physical' '~' satisfies a
once-subtracted dispersion relation, namely,

~»,
( }

s —4 " d, ImA ' '(s')
v „„(s'—4}(s' —s)

' (6)

It appears likely that Veneziano» partial waves
with I =0 and I =2 grow exponentially along any ray
to infinity in the left half of the s plane. " Even if
physical S waves were to differ from their Vene-
ziano counterparts by satisfying polynomial bounds
at infinity, one subtraction might not be sufficient
to result in the convergence of dispersion integrals.

Although Eq. (1) can be used to determine
ImA~'~'(s) for -32&s&0, we presently have no
means at our disposal for computing ImA~' '(s) for
s & -32. However, Eq. (6) implies that

4 "",ImA~'~'(s')
a, = — ds'

( f 4)2 i (7)

so a great deal can be inferred about the left-hand
cut of A~'~' by comparing Eq. (7) for a, with Eq. (6).
In fact the value of

4 " » ImA ' '(s')
1 p ( t 4)2

can be determined strictly from physical-region
absorptive parts, simply by comparing Eq. (7) with
Eq. (6), while using Eq. (1) over the interval -32
& s &0. Since a knowledge of a, is equivalent to a
knowledge of the effective strength of the distant
left-hand cut when the latter is viewed from the
low-energy region, this technique is quite useful.

If one uses the Froissart-Gribov representation
to subtract out partial waves with /~ 3 from the A~
given by Eq. (3), one can obtain a new representa-
tion for Ai'~'(s}. This new representation can be
used to evaluate HeA ' ' over the interval -32 & s
& 0, strictly in terms of physical-region absorptive
parts. " By comparing this new representation for
A '~' with Eq. (6), it is possible to derive formulas
for the second and all higher negative moments of
ImA '' over the interval -~ & s &-32, strictly in
terms of physical-region absorptive parts. An in-
vestigation of this kind has been carried out" and
indicates that the left-hand cut of A '' is too weak
to generate the p resonance, even when the possi-
bility of substantial inelasticity is taken roughly
into account. Details of this investigation will be
reported in a forthcoming publication.

*Present address: Department of Physics and Astron-
omy, Hunter College of CUNY, New York, New York
10021.
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(0)2 )2s3 s

which equals 6.31&& 10 5 at threshold.
~Each 8 wave is subtracted at so-—43, and the value pre-

dicted by Weinberg from current algebx'a is imposed
there. The P wave is subtracted at threshold, where it
ls RseuIQed to vanish, These VRluee R19 1mposed 1n R

way which does not constrain the singularities.
«Since the p resonance of KL is too broad (Ref. 5), the

ImA. ' displayed in Fig. 1 are not in good quantitative
agreement with those which occur in nature. However,
the left-hand cuts of KL disagree even more with the
ImA~'~1 which occur in nature than they do with the
I~&'" d1splayed 1n F1g. 1.

««There are also I=2 Regge eum rules for low-energy
parameters, but these converge only because of extreme
cancellatione, and cannot be evaluated with sufficient 're-
liability at present to be of any practical uee. Cf. E. P.
Tx'yon, Phys. Rev. Letters 22, 110 (1969).

«2Cf. M. G. Olsson, Phys. Rev. 162, 1338 (1967).
«3Our 8-wave scattering lengths are defined with oppo-

site signs from those of KL.
«4For example, in the single-term Veneziano model for

m'm amplitudes [C. Lovelace, Phys. Letters 288, 264
(1968)], the contribution to the right-hand side of Eq. (4)
from partial waves with l ~ 2 is 0.21, and the correspond-
ing contribution to the right-hand side of Eq. (5) is 0.012,
assuming one uses Lovelace's values for the Begge pa-
rameters and sets I'(p mm} ='125 MeV.

«5If one expands the 8 and P waves as power series in
(s -2) over the interval 0 ~s ~4, then the integrals in
two of the five conditions of Rosktes are independent of
constant and linear terms, and the integrals in one of
these conditions are independent of quadratic terms ae
weD. It ie also straightforward to verify that if the 8
waves were-linear in s over the interval O~s ~4, and
satisfied the two conditions of Roskies which involve only
8 waves, then the Martin inequalities would all be mar-
ginally satisfied as equahties.

«6E. P. Tryon, Phys. Rev. D 4, 1216 (1971).
«YR. T. Park and B; R. Deeai, Phys. Rev. D 2, 786

(1970).
«SE. P. Tryon, . Phys. Letters 8 (to be published).

PHYSICAL BEVIEW D VOLUME 5, NUMBER 4 15 FEBRUARY 1972

Factorization of Multi-Regge Amplitudes. II*

J. H. Weis
I.abo~atoxy fox Nuclem" Science and Dept. tment of Physics,

Massachusetts Institute of Technology, CambxidI. e, Massachusetts 02139
(Received 26 October 1971)

SOIQe genex'Rl coIQIQcnts Rx'6 IQRde on the relRtlonshlp between the factorizRtion of multi-
Begge amplitudes and the singularity structure of multiparticle arnplitudee. A close rela-
tionship is found to exist between the validity of factorization and the absence of simulta-
neous discontinuities in overlapping vax'iablee suggested by the Steinmann relations.

Multi-Regge factorization of the full amplitude
and its total-energy discontinuity have recently
been proven in several models: the dual-resonance
model, ' ladder graphs in g' perturbation theory, "
and Gribov's hybrid model. " The procedure of
taking into proper account the cuts due to singular-
ities in variables which are dependent owing to
nonlinear Gram-determinant constraints eras found
to play a crucial role in obtaining factorization. '4

Here we make some general model-independent
comments on the relationship between multi-Regge
factorization and the singularity structure of multi-
particle amplitudes. In particular, vie find that the
singularity structure suggested by the Steinmann
relations' has a very intimate relationship to fae-
tol'lzatlon.

The 3teinmann relations state that the full ampli-

tude has no simultaneous discontinuity in energy
variables of overlapping channels' in the physical
region. Here we vanish to make the assumption that
the full amplitude ean be expressed in terms of
generalized multi-Froissart-Gribov signatured
amplitudes (see Eg. (1.1) of Paper I [(1 1.1)j). The
Steinmann relation can then be applied to the sig-
natured amplitude itself, since simultaneous dis-
continuities in overlapping subenergies in the sig-
natured amplitude mould lead to corresponding dis--
continuities in the full amplitude (within a given
physical region, the full amplitude has disconti-
nuities coming from only one term in Eg. (1.1) of
Paper I [(I 1.1}]). Therefore, whereas the signa-
tured amplitude fol the process p +p p +p + ~

+p„, in general has discontinuities in the subener-
gies of all groups of adjacent outgoing particles


