
PHYSICA L REVIEW D VOLUME 5, NUMBER 4 15 FEBRUARY 1972

There Is a Measurement Problem: A Comment

Arthur I. Fine
Sage School of Philosophy, Cornell University, Ithaca, Nezv Fork' 14850

(Received 4 November 1971)

A possible difficulty is suggested with Moldauer's approach to the problem of measurement.

I agree with the interpretation adopted by Mol-
dauer in response to the measurement problem,
namely, to suggest that pure state %&~i [his Eg. (2)]
as well as mixed state W [his Eq. (3)j should each
be interpreted as representing the situation in
which the apparatus observable has some definite
value, with the probabilities given by the coef-
ficients of (3). Indeed this is the strategy I sug-
gested in Secs. V and VI of the paper cited by Mol-
dauer as Ref. 1 above.

I would point out, however, that this interpreta-
tion is at variance with an almost universally ac-
cepted rule for the application of quantum me- .

chanics. It is the rule according to which if the

state of a system is pure, and if some observable
of the system has a specific but perhaps unknown
value, then in fact the state of the system is an
eigenstate of that observable. For, state 0 ' is
not an eigenstate for the apparatus observable,
yet that observable is claimed to have a value
(that is a specific but perhaps unknown value) in
that state.

Thus the strategy adopted by Moldauer is at
variance with quantum mechanics as it is usually
interpreted. This is just to say that there is in-
deed a measurement problem and that this ap-
proach to its "solution" involves a modification of
ordinary quantum mechanics.
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A number of general remarks are given in connection with earlier discussions of the
outer automorphisms of internal-symmetry groups.

I. INTRODUCTION

Recently it has been suggested" that the intrin-
sic properties o'f internal-symmetry groups are
very important. Indeed, a "bootstrap principle"
was proposed: The outer automorphisms of degen-
erate-symmetry groups are themselves symme-
tries. These symmetries are in general hidden. '
From a number of conversations and correspon-
dences that we have had, it appears that a few
more, largely pedagogical, remarks may be use-
ful in clarifying the ideas in these considerations.

II. THE MEANING OF THE BOOTSTRAP

PRINCIPLE

It should be emphasized, first of a11, that the
proposition in Sec. I is a physical principle, as
opposed to a possible mathematical theorem. In

g-&(g), g«.
Now, if G has an outer automorphism of the form

Out(Q)—
p (2)

it is quite clear that there are two possible repre-
sentations of G corresponding to the same set of
matri, ces S:

fact, it is not difficult to construct mathematical
models violating the principle. As such, the boot-
strap principle can only be proved or disproved by
comparing with reality.

%hat, then, in discussing a symmetry group G,
motivates our consideration of its outer automor-
phism Out(G)? It turns out that, in applying G to
physical problems, Out(G) has to be reckoned with.

Let us be explicit. When using G, we are inter-
ested in its representation:
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ox'

(a) g-&(Z), g-&(g},

(b) g-~(Z}, Z-&(g)

III. HIDDEN SYMMETRIES

Hidden symmetries were defined' as symmetries
of the Hami. ltonian, but not of the physi. cal states.
Their nature was Mly understood in solid-state
physics, Rnd has been extensively discussed, How-

ever, there has been some reluctance in using hid-
den symmetries in particle physics. %e mill now

argue that, fundamentally, hidden symmetries
should be the rule, rather than the exception.

It is, generally agreed that' symmetries refex' to
the laws of nature, but not the initial conditions.
Quantum mechanically, the laws of nature corre-
spond to operators (including the Hamiltonian),
while the initial conditions correspond to the state
vectors, or wave functions. As such, a symmetry
operator maps the whole set of physical operators
into themselves, while leaving the Hamiltonian
invariant,

The degenerate symmetries (8}are those for
which, from a given state la), we generate other
states

(5)

with the condition that lP& is also one of the states
realizable in the same physical system under con-
sideration. Indeed, this very property, plus the
superposition principle, "explains" ' the fact that
symmetry principles are far more powerful in
quantum physics as compared with classical phys-
ics (since most symmetries are degenerate for
quantum systems, but very few are degenerate for
classical. systems). Nonetheless, it is also un-
necessary to restrict ourselves to degenerate
symmetries exclusively.

Further, g)(g) and s)(g }are in general inequivalent:

&(I)& &(s).

[Being inequivalent, the use of a)(g) or $(g) has
different physical implications. ] The 'question is:
Which representation, $(g) or $(g), should one
use forg7 The bootstrap principle in Sec. I is
merely the following statement'. It is physically
equivalent to use either u(g) or x)(g).

MathematicaQy, this physical. equivalence means
that Out(G) is a symmetry operator. Note that this
statement entails that under Out(G) the Hamiltonian
remains 1nvRrlRnt Rnd the operRtox's transform
among themselves. The action of Out(G) on phys-
ical state vectors requires some careful analysis,
and mill be done in Sec. III.

Let us consider an explicit example. The binding
force of atoms is electx'omagnetic, and parity is
conserved. In fact, the atomic states are eigen-
states of P, so that P is surely a degenerate sym-
metry. However, let us consider an aggregate of
atoms, say our left hand, to be denoted by lg~ &.

From lg~& we may also study its excited states,
but parity always remains good:

[P,H] = 0.

On the other hand,

Pl&.&
= Is.&,

where i/a& is an identical mirror image of i i)~&

(the right hand). Further, corresponding to each
excited state of lg~& we also have one from lg„&.
However, the state lg„&may or may not exist. Its
existence is also unimportant for the description
of the behavior of le, ) The.refore, for the aggre-
gate of atoms lg~&, P becomes a hidden symmetry.
As such, I' is not very useful. However, even here
it does restrict the possible forms of H by [P,H J
=0. Further, if lP~& together with its excited
states behave in a certain way, then, provided

lg„& might be prepared, it must behave identically.
The difference between I' in particle physics

(where P is supposedly degenerate) and in classi-
cal physics (where it is hidden) lies in the use of
the superposition principle. ' Indeed, we could
have defi.ned states

14.& =~2.(lt&&+ lg, &), (8)

which are eigenstates of I'. The trouble is that,
physically, it is very difficult to prepare the states

Alternatively, we may say that the transition
probability between lpga& and 14& is very small,
or, there is a selection rule forbidding the transi-
tion. ' This selection rule does not have anything
in common with the familiar selection rules. in
quantum mechanics (such as energy conservation,
charge conservation, etc. ) It may be called a
"macroscopy. selection rule. " It is due primarily
to the complexity of the states' i&I, & and i&a).

But are there also complicated states in particle
physics'? Perhaps a prototype is the vacuum state.
Because of displacement invariance

8'~u'g l0) = l0), .

we may say that the vacuum l0) is actually a mac-
roscopic state. A localized "particle" state may
then be regarded as a "local excitation" of the vac-
uum. It is perhaps not. surprising that there may
exist symmetries G for which l0) is not an eigen-
state:



Indeed, it is not meaningful to superimpose

since lO), are very difficult to prepare, physically.
Even though the "physical vacuum" lO& is not an
eigenstate of G (so that G is hidden}, much can
still be learned from the existence of G. Thus, the
possible forms of the Hamiltonian is restrained:

[fI,G] =o. (12)

Further, a nontrivial restriction is placed on the
set of physical operators in that they must trans-
form among themselves9 under G.

Let us now go back to our discussion of the boot-
strap principle. When we say that the outer auto-
morphism Out(G) is a hidden symmetry, we are
restricting the forms of the Hamiltonian,

[ff, Out(G)] = O, (13)

as well as the possible set of physical operators
that must be used. ' On the other hand, starting
fI'onl a pllysIcal Hllbert space for G Out(G)
carries the state vectors outside of the original
space. Thus, to properly treat Out(G), we must
enlarge the original Hilbert space, even though it
was quite adequate as long as we restricted our-
selves to operators in C.

IV. AN EXAMPLE

(15)4s~

is a symmetry operator. " However, there is no
reason to expect that g~ and Pe must coexist in a
given system (in "our" world), or that f must be a
degenerate -symmetry operator.

Mathematically, we have the symmetry group
SU(2)«, . The center consists of four elements:
1, (-I)'~, P, and P'-=(-1)'~P. They are the "ob-
servables" in the theory. Note that

Let us return once more to the well-known dis-
cussion of Yang and Tiomno, ' which is a careful
analysis of the following familiar, yet somewhat
vague, statement: The parity of half -integral-
spin states is not absolute.

Consider the rotational symmetry [(SU(2)] com-
bined with parity (Z,). Yang and Tiomno defined
the two types of spinors g„and gs by

t

P(4~, 4) =(+4~ -4s)
The important point is that g„and gs are different
when they coexist, but, when isolated, they are not
intrinsically different. In other words, the two
types are physically equivalent. Or, what amounts
to the same thing, the exchange operator f, defined

so that f also effects the exchange of the operators
I' and P',

while leaving all other operators invariant; i.e. , f
is an (and the only') outer automorphism of the
group SU(2)&Z, . The question is: Can we distin-
guish, in an intrinsic and absolute way, the two
observables P and I"~ The preceding discussion
says that we cannot, and therefore f is a symme-
try operator.

Looked upon in this way, the "bootstrap princi-
ple" in Sec. I is really a mathematical formulation
and a genel allzatlon of Yang and Tiomno 8 theory
of types As. in Eq. (3}, to represent g by the in-
equivalent S(g) or $(g) amounts to using two dif-
ferent types of state vectors. The intrinsic physi-
cal equivalence of the two different types is re-
flected in the symmetry Out(G). On the other hand,
Out(G) is in general hidden since the two types do
not necessarily coexist in the physical system
under consideration.

V. AMBIGUITIES OF THE PARITY OPERATOR

The physical equivalence of P and P' = (-I)'~P
[Eq. (17)] expresses the ambiguity of the parity
operator when we combine the rotational symme-
try and the parity. The basis of this result may
be traced back to the two-to-one correspondence
between "mathematical" and "physical" symmetry
operators. "

Now, in the SU(2) group, the element
(-1) ~, being in the center of SU(2) and hence com-
muting with any group element, is represented by
+ I, where I denotes the identity matrix. However,
under the assumption of SU(2) symmetry, the +
sign cannot be observed physically since there can-
not be transitions between half-integral- and inte-
gral-spin states. We must then conclude that, even
though 1 and (-I)'~ are different mathematical op-
erators, physically they both represent the iden-
tity operator.

We turn next to the question of combining I' with
an arbitrary symmetry group G. One must first
identify the enlarged group which contains P and G,
and, having done that, ask whether P is well de-
fined,

Let us limit ourselves to the case when G is
either the gauge group (e'8") or the U(2) group [hy-
percharge and isospin with (-1)"= (-1)"]. The re-
sulting groups are, "not unexpectedly, U(l) &&Z,
and U(2) xZ„where Z, is the cyclic group of or-
der 2: P, I' =I.

Given U(1) &Z, and U(2)XZ„ is P well defined' ?
Mathees' analyzed the first case and concluded
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that P and e'" »P = (-1)rP are physically equivalent.
Or, the relative parity between states with even
and odd Y values is arbitrary. For U(2) xZ„fol-
lowing the arguments of Yang and Tiomno and of
Mathews, it is not difficult to convince oneself that

P and P'=(-1)rP=(-1)"P
are physically indistinguishable. This is again
based on the lack of transition between half-inte-
gral- (odd Y') and integral- (even Y) isospin states,
under the assumption of isospin symmetry. Con-
sequently, if isospin symmetry is conserved, then
the parity of isospinors is not absolute.

VI. AMBIGUITIES IN BROKEN CHIRAL

SYMMETRIES

So far, the equivalence of parity operators does
not have any. operational consequences. A new
element is now injected by consid'ering the chiral
rotations. It turns out that the operators P and
(-1)' P are actually' transformed into each other
by the chiral operator W=(-1)' (W'=1):

WPW=( 1)"P=( 1)"P. (18)

The physical meaning of %is now clear: It re-
verses the parity of isospinors. If

[H, W] =0,

then the parity of isospinors is not absolute; while
1f

(20)

then it is meaningful to speak of "scalar isospinors"
and "pseudoscalar isospinors, " so 'that absolute
parity may be assigned to isospinors.

In See. V, it was concluded that isospinors can-
not have absolute parity if isospin is conserved.
Consequently, when the chiral symmetry [SU(2)
xSU(2) or SU(3) xSU(3)] is broken down to U(2), the
Hamiltonian must obey

(19')

A strong-interaction theory based on Eq. (19') was
di scussed earlier. '5'

Let us now consider the (3,3)+(3,3) model" of
broken SU(3) &&SU(3) symmetry, where the Hamil-
tonian takes the following form:

H=H, +a(u, -vYu, )+b(u, + ',v 2 u,)-
=—H, +H,'+ H,'. (2l)

In this case, '

N aN =a, +a,'- JJ,',

so that H is nonunique" when b 40. However, con-
siderable controversy" ' was generated as to the

physical interpretation of this result. In the fol-

lowing we will turn to a critical review of Refs. 19,
20, and 21.

The physical equivalence of P and (-1)~~P, here-
after referred to as the N' symmetry, were not
challenged in these works. However, the condition
8'HR' =0 was regarded as unnecessary.

In Refs. j.9 and 20, it was suggested that the non-
linear nature of chiral symmetry made Eq. (19')
unnecessary, while for linear models, the N' sym-
metry was automatically satisfied. Indeed, in a
linear model, '9' when WHWtH, the isospinors
kaon and x meson have masses so that

M»=f(b) M =f( &),-
M~&M„ if b40.

(23)

(24)

It was argued that, inasmuch as N' effects the in-
terchanges h —b[E-q. (22)] and kaon» meson,
there is no problem with the N' symmetry. Actu-
ally this argument amounts to using & twice
(which is the identity). In fact, as long as M» wM„,
the W symmetry is violated, so that P and (—I)~ P
are no longer physically equivalent. (Compare
with the charge-conjugation symmetry. If the
positron and the electron have unequal masses,
the equivalence between particle and antiparticle
is surely destroyed. )

What about nonlinear modelsl In this case, if
WHS't H, then the time dependences of E~, 6 7 and
F45 5 6 7 are different. This means that the "vector"
and "axial-vector" isospinors do not behave the
same way; i.e. , to use P or (-1) P ls aga111 physi-
cally distinguishable.

In Ref. 21 (also Ref. 20), emphasis was laid on
the nonuniqueness of H. In particular, Dashen gave
a detailed prescription on how to get rid of the non-
uniqueness. Three basic assumptions were made:

(1) The physical vacuum ~0) is unique.
(2) There is a one-to-one association of H' and

(3) The unique physical 0) is fixed by requiring
that, as H'-0, SU(3)i0) = 0).

Now, one of the basic implications of the trans-
formation W is the physical equivalence" of SU(3)
and BU(3), generated by E. .., and P5, , ,
[Mathematically, SU(3) and SU(3) are described
by different symbols, and can abvays be distin-
guished. ] It is clear that, if we take assumption
(3) for granted [i.e. , somehow SU(3), and not
SU(3), can be chosen], the physical equivalence
between SU(3) and SU(3) is g priori ruled out. We
believe, therefore, that assumption (3) cannot be
implemented, physically. (See also Ref. 22. )

Assumption (2) was suggested in analogy with
ferromagnetism. In this case, an external mag-
netic field (along the z axis) fixes both H' and (0)
uniquely. In fact, , the symmetry group of both H'



SU(2)IO&=Plo&= lo&. (26)

However, in SU(2) xSU(2) there is a finite rotation

eimw (13) ( 1)2I-

which renders B' nonunique:

WHW =a a e'-(-' -')

Further, unlike SU(3}xSU(3) for which WSU(3)W
=SU(3}, here W commutes with the entire SU(2)
xSU(2) group. [The only effect of W is WPW
=(-1}'IP.] This shows clearly that the (2, -', ) model
of broken SU(2) xSU(2) is nonunique, and that prop-
erties of IO& (Dashen's prescriptions) cannot re-
solve this nonuniqueness. ""

The way out of all these difficulties is to abandon
the uniqueness of the physical I0& and demand

8'HB =H,

wlo&=lo)» lo&.

(19')

(29)

[Since W is a chiral rotation, Eq. (29) is not sur-
prising at all. ] In other words, W, which ex-
presses the physical equivalence of P and (-1)"P,
1s an exact, but hidden symmetry. " It is realized
by the double degeneracy of the physical vacuum
state. Thus, even though SU(3) xSU(3) and SU(2)

and IO) is SO(2) —rotations around the z axis. How-

ever, for chiral symmetry H' is supposed to have
the symmetry U(2), and IO), an SU(3) group. The
8' symmetry corresponds to the fact that, given
U(2), there are two SU(3)'s in which U(2) may be
embedded. The association of H' and IO& is, there-
fore, not one-to-one.

Finally, we come to the time-honored assump-
tion (1). In our opinion, after we have been deal-
ing with degenerate vacua in chiral theories for
so long, there seems to be no reason to insist on
(1). Indeed, the interpretation of W as a hidden
symmetry calls for a relaxation of this assump-
tion.

Some further insight on Dashen's prescriptions
can be gained if we study, instead of broken SU(3)
xSU{3), broken SU(2)xSU{2). Let us consider the
(&,—,')model of broken SU(2) x SU(2):

(25)

[The (-,', —,') model corresponds to the (3, 3) +(3, 3)
model of broken SU(3) x SU(3), when. b w0. Specif-
ically, H'-Hm, as defined in Eq. (21).] Here, the
physical IO& is an eigenstate of isospin and parity,

x SU(2) are broken, a finite chiral rotation W'

=(-1)'- remains invariant. Within the context of
broken SU(3) x SU(3), the physical vacua are eigen-
states of U(2):

U(2) 10& = Io&, U(2) 10& = Io& (30)

As II'-0, one of them becomes an eigenstate of
SU(3), and the other, SU(3).

Finally, we emphasize that, even though IO) is
degenerate, since the degeneracy is finite (two-
fold), there is no problem of zero-mass (Gold-
stone) bosons

VH. FURTHER REMARKS

1. Because of the existence of conflicting sym-
metries, ' our discussion would be theoretically in-
consistent, unless one takes for granted" the
sharply distinguishable classes of interactions (the
strong, electromagnetic, etc.). For each interac-
tion, there is an exact symmetry group, which
gives rise to further exact symmetries from its
outer automorphisms.

2. The use of hidden symmetry (or degenerate
symmetry) in particle physics is dictated by physi-
cal expediency, not by any a ~iozi principles. The
question at stake is what states are easily pre-
pared (i.e., physically realizable). This "initial
condition" dictates whether a symmetry is to be
hidden or degenerate.

3, The description of a physical system in quan-
tum mechanics calls for the use of operators and
state vectors in a Hilbert space. It is known that
the relation between quantum-mechanical symme-
try operators and "physical" oper'ators is many-
to-one. " The use of hidden symmetries suggests
that also the quantum-mechanical state vectors
and the "physical" states have a many-to-one cor-
respondence. Both possibilities are related to the
intrinsic properties of the symmetry group under
conslderatlon —the former, 1ts center, and the
latter, its outer automorphisms.

4. In our discussions, a very prominent role is
played by the global properties of the Lie groups
under consideration. ""Much has been learned on
continuous symmetries by studying the local (in-
finitesimal) properties of Lie groups It is re.-
markable that the discrete symmetries seem to be
equally well understandable in terms of their global
properties.
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