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Is There a Quantum Measurement Problem?*
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It is shown that the quantum-mechanical state vector correctly describes not only the prob-
abilities for the outcomes of measurements, but also the correlations between the outcomes
of successive measurements. In particular, von Neumann's axiom M is shown to be redun-
dant. Consequently, no extra-quantum-mechanical "reduction" of the joint object-apparatus
state vector is required for a full statistical description of a sequence of measurements. It
is also shown that any attempt to determine experimentally whether or not a reduction of the
joint state vector has taken place during a measurement is incompatible with the preserva-
tion of the outcome of that measurement.

INTRODUCTION

Recent papers have questioned the completeness
and logical consistency of quantum mechanics on
the grounds that the quantum-mechanical equations
of motion do not yield a correct account of some
aspects of observed phenomena. Thus, Fine' as-
serts that in general the end result of the quantum-
mechanical description of a measurement is the
"unacceptable" situation where "neither the object
nor the apparatus has a definite state, "which is
taken to imply that "no laboratory observations
can be cited in support of the quantum theory. "
Earlier, D'Espagnat' had claimed that "the idea
that the pointer (on the measurement apparatus) is
always left in some interval of the scale cannot be
even approximately correct if quantum mechanics
is strictly true, " and he had emphasized that "the
problem is a real one. "

Wigner' has claimed that these difficulties arise
from a philosophical attitude which ascribes an
element of "objective reality" to the quantum-
mechanical state vector and that the problem can
be circumvented by regarding quantum mechanics
merely as a, calculational tool for the computation
of correlations between the outcomes of successive
measurements on a system. He appears to regard
the choice between these two views as a matter of
taste. Nevertheless he has argued on the basis of
the "realistic" view "that this theory is not ade-
quate for the description of life, including con-
sciousness. "

I wish to show here that quantum mechanics cor-
rectly describes such observable phenomena as
the position of the pointer on the measurement ap-
paratus. The contrary views expressed by Fine
and D'Espagnat and implied by many other authors
appear to. be unfounded. I will also show that quan-

tum mechanics correctly describes the correla-
tions between successive measurements on the

same system. Accordingly, von Neumann's axiom
M, ' which independently postulates certain types of
such correlations, is in fact derivable from the
remaining postulates of quantum mechanics. This
axiom has been interpreted as requiring a sudden,
noncausal, nonunitary projection or "reduction"
of the quantum-mechanical state vector when a
measurement is made. The redundancy of axiom
M removes any need for such an extra-quantum-
mechanical process, and the widespread search
for physical or nonphysical mechanisms that
would either accomplish a reduction or approxi-
mate it becomes pointless.

von Neumann's own examples of state-vector
"reduction" turn out to be wholly causal conse-
quences of physical interactions with other sys-
tems, as is demonstrated by von Neumann's own
mathematical results. '

The "reduced" state of the joint object-apparatus
system has an interesting interpretation that is
related to the logical structure of the measurement
process.

The "classical" nature of the measurement ap-
paratus plays no essentia/ role in the quantum-
mechanical description of the measurement pro-
cess, It merely provides a convenient way of in-
suring the permanence of the record of a mea-
surement.

In this paper I take quantum mechanics to be a
statistical theory which, in general, describes
the distributions of the outcomes of ensembles of
measurements. Individual cases are treated as
members of such ensembles.

This paper does not deal with any of the fol-
lowing questions: Is a probabilistic theory a suffi-
cient description of phenomena that have only sta-
tistically reproducible properties? What is the
precise meaning of probability'? Should quantum
mechanics provide instructions for the measure-
ment of a/l Ot)s:,erypblesT
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IS THERE A QUANTUM MEASUREMENT PROBLEM '?

For simplicity I consider first the case of a
von Neumann measurexnent' in which the measured-
object system is initially in the pure state g„c„Q„,
where P„are eigenstates with eigenvalues X„of
the observable 0 to be measured. The measuring
apparatus is initially in the pure state E„so that
before the measuring interaction between object
and apparatus the joint system is in the pure state,

y(l) gc y @ g (I)
n

The measurement interaction between object and
apparatus that was considered by von Neumann
produces a unitary transformation U, of 0 ' with
the property that if e„=5,-„, then the transformed
state is @;S4, where g, is an eigenstate of the
observable A of the apparatus whose eigenvalue
p, ; describes a certain pointer position. As a con-
sequence, the state of the joint system after the
measurement interaction is

g(2) U @(z) gc p 8) t. (2)

It is this expression which has been criticized as
being inconsistent with the observed fact that after
each measurement the pointer has a definite posi-
tion p, ;." At the same time it is claimed that this
observed fact is correctly described by the "re-
duced" mixture with density operator,

(4b)

Clearly, therefore, 4 ~'~ and 8'both specify that
the probability of finding the pointer to have the
position )1, is

~ c; )' and both are in complete agree-
Illent with expel'lellce ln tllRt 1'egR1'd. By tile sRnle
token both 4 ') and 5' specify (c, )' for the proba-
bility that the object system is found to be in state

Furthermore, both%' ' and W specify that
whenever the object is in state (I), the pointer value
is p]q

(P gl 11)+(&) «P
8& 8 11)w

(Pe; el'(') (Pe, @,)g

Equation (4a) demonstrates the fact that the pure
state (2) specifies a definite probability for the oc-
currence of the stationary pointer position p, &.

'
Using the same method, it is easily shown that a
properly constructed apparatus (Q,P&, = I and
P&.Pl, =()„Pl,.) h. as the following two additional
properties. After a measurement the pointer is
left in one of the positions )1; with certainty (prob-
ability one) and the pointer is never (probability
zero) left jointly in two different positions p. ; and

Together these three statements imply that at
the conclusion of any measurement the pure state
(2) specifies that the pointer is definitely in one
and only one of its possible positions p, ~

which corresponds to the ensemble of "reduced
states" Q„Sg„with weights

~
c„~'. Here P

& &

is the projection operator corresponding to the
pure state $„3t„. It has been said that, in con-
trast to 0 2~, the mixture 5' i.s in agreement with
experience because each of its components is a
state in which the pointer has a definite position

The question of whether, in more general cir-
cumstances, such a mixture 8'can arise in the
measurement process has been called "the prob-
lem of measurement" by Fine' and has been shown
to admit no exact solution. ' "

But what of the assertion that W specifies defi-
nite pointer positions and that 4 "does not'P The
only correct and realistic way to test this asser-
tion is to calculate the pointer positions specified
by 4 ' and by 5'according to the rules of quantum
mechanics. ' The probability of finding the appara-
tus with pointer position p, &

when the joint object-
RppR1'Rtlls systelll ls ill stRte 4' is givell l)y (4
P, &P(')). When the system is in state W, the
same probability is given by TrP,

&
W. The op-

erator p, &,
is the projection operator correspond-

ing to the apparatus having pointer position p, &.

Evaluating these two expressions, we find that

CORRELATIONS BETWEEN POINTERS

But, it may be argued, surely 4 -'~ and 8' will
lead to different results if the above measurement
of 0 is followed by a measurement of another
observable Q characteristic of the object system.
In particular, it might be thought that if the mea-
surement of 0 established one of the elements of
the mixture 8' as "the" state of the system, a
second measurement of 0 on the same object sys-
tem would surely yield the same result, while the
linear combination 4'~'~ appears to offer no such
promise. Let us see what the facts are.

Let ()) have eigenstates g& with eigenvalues I(,,
and let the von Neumann apparatus that measures
Q have pointer observable B with eigenstates ql
and eigenvalues v;. I et us also assume for sim-
plicity that the P; and the g& span the same sub-
space of the Hilbert space of the object system so
that there is an expansion,

(6)

where the d;; form a unitary matrix.
%e now suppose that first the observable 0 is

measured with apparatus A. Then Q is measured
with apparatus J3. Before both measurements the
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joint state of object and apparatus A and 8 is as-
sumed to be

4 ' =Q c„p„t'08'go.

After the interaction between the object and the ap-
paratus A the state becomes

q ' = UP ' =Q c„g„S$„8g,. (8)
n

Finally, the interacti. on with apparatus I3 produces

4 ' = U&q =Q c„Qd„(„8(„8q„.
The probability that pointer A has the value g, is
Rgaln

( is g, s i&~&» =( pig ); e~&~&» =
I c;I'

The probability that the pointer B has the value v;
is found to be

&P s g, „,&&«»=g lc.l'Id&I', (ll)

and the joint probability that the pointer A has the
value p, &

and the pointer B has the value v& is

& I'ie g, e „,&~&» =
I c&

I'I d&gl'.

All of these results axe the same as those obtained
from the reduced-state equation (3). It follows
from (12) that the conditional probability that B
has the value v~ if A has the value p, , is Id, &

I', as
expected. ' In particular, if @=0, that is, if the
measurement of 0 is repeated, then d;;= 5;,, and
the above conditional probability. tells us that ac-
cording to the unreduced state 4~'~ a second von
Neumann measurement of 0 on the same system
will yield the same result as the first measure-
ment with certainty. This constitutes, therefore,
a de~ivation of von Neumann's axiom M .'

It is also instructive to consider the case mhere
one measures 0, then Q, and then measures 0
once again by means of an apparatus A'. This
leads to the final state

(12)

n, m, k

(12)
Computing from this the joint probability that the
pointer on apparatus A reads p, ; and the pointer on

apparatus A' reads p, , one gets

&Pie~, eeet &~«&=g lcII'Id~. l'Id;. I', (14)

which is not identical to I c, I' if Q fails to commute
with 0. Again the result (14) agrees with the cor-
responding result computed from the reduced state.

This result (14) depends in an essential way upon
the correlation of the coefficients in Eq. (12) with
the state q„of apparatus B. Without this important
correlation, Eq. (14) would become

that is, the original state Of the object mould be
restored despite the interveni. ng measurement of
the noncommuting observable Q. This would in-
deed be contrary to experience. Furthermore,
since no information on the outcome of the mea-
surement of Q is assumed, the result (14) can de-
pend in no may upon an "aet of observation" of the
observable Q or the apparatus B, but is merely
the result of the physical interaction between the
object Rnd the RppRX'Rtus +. This fRct should be
experimentally observable, for example by the
succession of Stern-Gerlach arrangements dis-
cussed by %i.gner. '

The observer who reads the pointer on an appa-
ratus can be included in the description. One en-
larges the Hilbert space to include also the ob-
server mho during some period of time interacts
with the apparatus (looks at the pointer). The sub-
sequent correlation between the pointer position
and the observer's memory is again confirmed by
evaluating the expectation values of the appropri-
ate projection operators in the entire Hilbert
space. This correlation can be extended to other
observers by interaction (communication) with
them. Correlations of the memory contents of
many observers establish the "objectivity" of an
event.

von Neumann gave a constructive proof for the
existence of measuring intexactions which result
in transformations of the type U, .' However, it
has been pointed out, particularly by Margenau, '
that in practice the von Neumann definition xepre-
sents a too xestricted class of measurement inter-
actions. The von Neumann apparatus as defined by
Eq. (2) merely correlates its state with that of the
object system without affecting the state of the ob-
ject. It is easy to generalize this by appending to
the von Neumann apparatus a device which changes
the final state of the object after the pointer has
been set. The transformation (2) is then replaced
by an expression

U,'@ '~=Q c„g„„p„S$„. (2')
n, 75

This apparatus records the state which character-
ized the object before the measurement.

Or one couM construct an apparatus in mhieh the
object state is modified before the pointer is set.
Then (2) becomes

U. % '=Q c„g„„@8 $„ (2")
nj nt

and the apparatus records the state of the object
efter the measurement. In general, the state-
ehanging function and the von Neumann function
are both performed by the same piece of apparatus.
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The measurement interaction (2') permits the de-
scription of measurements in which photons are
absorbed, , provided the vacuum is included as a
photon state. It would appear that all measure-
ment interactions fall into one of three categories
represented by U„U,', and U,".

The modifications (2') and (2") do not affect the
conclusions drawn above in any essential way. The
conclusion stands that the unreduced state is in
complete agreement with all observations and all
"experience, " including the correlation between
successive measurements.

INTERPRETATION OF THE REDUCED STATE

Since the reduced state (3) predicts the above-
mentioned phenomena as correctly as the unre-
duced state does, the question arises: Wherein
1188 the dlffel'ence between the reduced Rnd the
unreduced states T The answer is obtained by com-
paring the expectation values of an arbitrary
Hermitian operator 6 with respect to the two
states. We have

(15)

G. as = (sts.. & Gka'@ hs) ~

If 6 commutes with either 0 I ox with 1(3A,
the right-hand side of (15) becomes identical to
(16). Therefore, the only way of distinguishing
between the xeduced and the unreduced states is by
measuring an observable that does not commute
with the object-observable 0 and does not commute
with the apparatus-pointer-observable A. Let Z
be such an observable.

It 18 cleRl that lf the II18Rsurement of 0.18 fol-
lowed by a measurement of Z the result of the
measurement of 0 is irretrievably lost. Because
[0,JZ WO a repetition of the measurement of 0 will
not yield the original result with certainty. Simi-
larly, because [A, Zj sso the pointer of the appara-
tus A will not retain its original position with cer-
tainty. Hence, following the interaction responsible
for the measurement of Z, all records of the orig-
inal measurement of 0 Rnd all posslblllt188 of x'8-
constructing its result with certainty have been
lost.

For the scientific purposes of verification and
comparison it is essential to preserve the record
of the outcome of a measurement. This means
that the object and apparatus must be protected
against any interaction that would enable one to
detex'mine the value of an observable of the type Z.

In principle this can always be done. For exam-
ple, the z eomponerit of the electron spin of a cer-
tain hydrogen atom could serve as a satisfactory
pointer, so long as the atom is protected from any
interaction that might flip its spin.

In practice, however, one attempts to exclude Z
interactions by requiring that the algebra of ob-
sex vables which describes the apparatus be Abelian,
for then there exists no observable Z. Operation-
ally this means that the apparatus is a "classical"
object." Pxecisely how to describe a classical
system in terms of quantum mechanics does not
appear to be firmly established yet, though the
approach of Jauch" seems reasonable and prom-
ising. In any case, as observed by Fine, ' the clas-
sical apparatus can at best be Abelian in an ap-
proximate sense. That is neither surprising nor
troublesome. Every classical property has some
very slight chance of being modified by a "quantum
fluctuation, "and every physical measurement,
whether pex'formed on a microscopic or a macro-
scopic system, is at best x'eliable only to within
some arbitrarily small but finite degree of accu-
racy.

IQ the cRse of R clRsslcRl pointer, the difficulty
of measuring Z and thereby distinguishing between
the reduced and the unreduced states' is the same
as the difficulty one has in observing quantum ef-
fect on classical properties in general. Perhaps
this difficulty can be overcome by using for a
pointer one of the cooperative phenomena which
produce quantum effects on a macroscopic scale.
However, in the absence of any actually observed
distinctions between the reduced and unreduced
states, the unreduced state has the clear advan-
tage of logical simplicity and consistency.

von Neumann" applied the concept of "reduction"
not to the complete physical system, as in Esl. (3),
but only to the object system. Mole generally, he
applied this concept to any subsystem defined by an
arbitrary division of all interacting systems. Such
a division is commonly known as a von Neumann
cceut tt

von Neumann also provided a comp1etely causal
explanation for the reduction of the state of a sub-
system. ' He proved that the joint state (2) implies
that the state of the object system by itself is given
by the mixture Q„(c„('P + and that the state of the
apparatus subsystem is given by the mixtuxe
P„)c„~'P&, each component of which corresponds
to a definite pointex position.

This reduction of subsystems from a pure state
before the interaction to a mixture after the inter-
action is therefore a causal consequence of the
physical interaction and takes place during the
finite time interval of the interaction. von Neu-
mann'8 own insistence upon describing this redue-
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tion of subsystems as a separate process is there-
fore difficult to justify.

Finally, von Neumann showed' that the compo-
nents of the two mixtures describing the object and
the apparatus are correlated so that whenever the
object is in state P, the apparatus is in state g;.
Using these correlations one obtains the interpre-
tation of the reduced state (3) as the state of the
separate object and apparatus systems; namely,
again, that state which correctly describes all ob-
servations except those of type Z.

As has been pointed out elsewhere, "all normal
physical measurement operati. ons involve a strict
separation of object and appaxatus systems, ex-
cept during the measurement interaction. By im-
posing this xestriction explicitly, a perfectly cor-
rect description of measurements ean be obtained
also on the basis of the reduced state. """

CONCLUSIONS

(1) The unreduced state vector correctly de-
scribes the probability of finding the apparatus
pointer in any one of its possible positions. It also
describes correctly the correlation between the
outcomes of successive measurements on the same
system.

(2) There is no noncausal state reduction asso-
ciated with the measurement process.

(3) The von Neumann reduction of subsystem
states is an entirely causal process which occurs
during the intex action of the subsystem with other
subsystems.

(4) No extra-quantum-mechanical processes are
required fox' the complete description of a mea-
surement. Specifically, neither the classical na-
ture of the apparatus nor extraphysieal properties
of the observer's "consciousness" are needed.
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