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There is in our model sufficient freedom to en-
sure correct threshold behavior and perhaps some
unitarity effects without affecting the crossing
symmetry and asymptotic behavior of the ampli-
tude. As argued in Ref. 1, such arbitrariness is
expected since unitarity is not yet fully imposed.
However, since amplitude (1) has second-sheet
resonance poles, correct Regge asymptotic behav-
ior for essentially arbitrary a, nonvanishing dou-
ble-spectral functions, and a factorizable N-point
generalization, it may be expected to serve as a
starting point in a search for an exactly unitary
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amplitude.
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However, the main features of our amplitude do not de-
pend on the precise form of N(x). The asymptotic behav-
ior in the second sheet (which we have not considered in

this paper) will restrict this choice.

Obviously, duality in the sense that the sum over -
channel resonances equals the sum over s-channel reso-
nances cannot be maintained in an amplitude that allows
for a finite number of resonances. However it may be
noted that the sequence of resonances and the Regge be-
havior are embodied in an inseparable manner, which
is a distinctive feature of duality.
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It is shown that certain simple bootstrap conditions, applied to a hypothetical universe of
mutually interacting mesons, require SU(%) symmetry of the interactions. The relevant dis-
tinguishing feature of SU(n) is that the matrices of the fundamental representation of the Lie
algebra, together with the identity matrix, are a complete set.

Several years ago it was shown that the applica-
tion of a certain type of bootstrap condition re-
quires the existence of a Lie-algebra interaction
symmetry.! Recently, several arguments have
been given that some bootstrap conditions require
further that the Lie group is one of the special uni-
tary groups SU(x).2™* However, the arguments in
these references are rather complicated. The pur-
pose of the present note is to show that the SU(n)

requirement follows simply from simple assump-
tions, and that a basic special property of the
SU(n) algebras is involved. The basic algebraic
structure of the argument used here is the same
as that in Sec. III of Ref. 4, however.

We assume a set of mesons interacting with tri-
linear interactions, and consider a self-conjugate
basis of this set (i.e., each state is identical with
its antiparticle state). We write the interaction
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constant G as a sum of parts symmetric and anti-
symmetric in the first two indices, i.e., G;;,=Dyy,
+Fy;, where D,;, =Dy, and F,;,= —=F;;,. Whether or
not the subscripts refer to helicities as well as to
internal quantum numbers depends on the model;
we are not interested in the details of the model
here.> We assume that the D and F can be defined
so as to be Hermitian in the last two subscripts,
ie.,®

Dy, =Dfyys Fijp=Fy . (1)

This condition, together with the definition of D
and F, implies that D,;, is real and completely
symmetric, and F,,, is imaginary and completely
antisymmetric.

The basic bootstrap condition is taken to be ei-
ther of the following two equations:

Z Gaer Glor =223 Gasr Gior > (2a)
Z)(ch'r G:zkbr - Gadr G:-kbr) = 72 (Gacr - Gcar)G:(bd ’
T r

(2b)

where the constant A or vy is real, and the set of
intermediate states » must be identical with the
range of the external indices a, b, ¢, and d. The
only other assumption made is that of nontrivial-
ity; we require that any solution must have at least
two different interacting states.

Models leading to one or the other of these con-
ditions are discussed in the literature, and will be
mentioned only briefly here. If the process a +b
- ¢ +d is the s-channel scattering amplitude, and
the initial states in the ¢ and » Mandelstam chan-
nels are a +c and b +¢, respectively, then Eq. (2a)
results from the application of a duality assump-
tion to backward s-channel scattering.” The alter-
nate condition, Eq. (2b), may be obtained from a
finite-energy sum rule, with a pole-dominance as-
sumption, applied to forward scattering.

For convenience, we define a constant H,;, by
the equation H;;,=G;;, sothat H;;,=D,;, -F,;,.
The G and H are each invariant to cyclic permuta-
tions of the indices. For each of the constants G,
H, F, and D, we define matrices in the space of
the last two indices, i.e., G,;, is the jkelement of
the matrix G, .

We consider first the bootstrap condition of Eq.
(2a). If one permutes cyclically the indices a, b,
¢, and d in this equation, and compares with the
original equation (using the Hermiticity and cyclic
permutation invariance of the G’s), it is seen that
A must be either 1 or —-1. It can be shown that
there are no nontrivial solutions if A=-1, so we
take A=1. The following three conditions are then
obtained from this bootstrap equation in Ref. 4: (1)
There is no nonzero solution in which all D’s van-
ish. (2) There is no nontrivial solution in which

all F’s vanish, so D’s and F’s must both exist. (3)
The F’s must be proportional to the structure con-
stants of a compact, semisimple Lie group.

If one makes use of the Hermiticity condition of
Eq. (1), then (for A=1) the condition of Eq. (2a)
may be written as the db element of the matrix
commutator equation,

(H,, G,]=0. (3)

Two further equations may be obtained by using
Eq. (1) to remove the asterisks in Eq. (2a) and then
applying the permutation operators (1+II,.)II,,,
where II,; interchanges the labels i and j. These
are the db elements of the matrix equations,

[Gc7 Ga] = —ZEFcar Gr; (4)
{Gc’ Ga}=22Dcar Gr’ (5)

where { } denotes an anticommutator. These latter
two equations are equivalent to bd elements of the
following equations involving the H matrices:

[Hr:’ Ha] =22Fcar Hr’ (6)
{Hc7Ha}=ZEDcarHr' (7)

The derivation of the SU(x) requirement from
these equations is simple. Since the F,;, are pro-
portional to the structure constants of a Lie alge-
bra, Eqgs. (4) and (6) state that the G, and H, are
representations of the algebra. If, for any state a,
all F,;; vanish, then it follows from Eqgs. (3) and
(4) that G, (and consequently D,) commutes with all
G, and H;. By Schur’s lemma, such a D, must be
a multiple of the identity matrix in any irreducible
subspace of the G or H. We consider now an irre-
ducible subspace of the G, representation. If the
states ¢ and j belong to the algebra (i.e., F, and F;
are nonzero), Eqgs. (4) and (5) imply that all prod-
ucts G,G; are linear combinations of the G, and the
identity matrix. Thus, the G, and the identity ma-
trix are a complete set for the corresponding ir-
reducible representation of the Lie group. If this
representation is of degree n, Burnside’s theorem
states that it contains »? linearly independent ma-
trices.® Thus, there are n? -1 matrices in the
representation of the Lie algebra, linearly inde-
pendent of each other and the identity matrix; this
defines simultaneously SU(z) and the fundamental
representation.

Since the H equations, Eqs. (6) and (7), differ
from the corresponding G equations only in the
sign of the commutator equation, the H’s must be
the fundamental representation conjugate to that of
the G’s. The meson states are direct products of
these two representations, and hence correspond
to singlet ® regular representation.
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Next we suppose that the starting equation is Eq.
(2b); we assume at the outset that y#-1. Taking
the symmetric and antisymmetric parts of this
equation with respect to the interchange b= d sep-
arates it into an even part (involving DD and FF
terms) and an odd part (involving FD terms). If
the permutation operator I1,.(1 -1I,,,) is applied to
the odd part, and the result compared with the ori-
ginal odd part, it can be shown that y must be uni-
ty. By using other permutation operations of the
same general nature, one can derive Eq. (2a) (with
a=1) from Eq. (2b). Hence, the conclusions are
the same as those given above.

It has been suggested in the literature that the
special property of SU(n) that permits bootstrap
equations to be satisfied, is the existence of a

symmetric, trilinear interaction involving only the
regular representation.?'® -Such an interaction is
present only in the case of SU(x), with > 3.> How-
ever, this is not the property that is crucial for
bootstrapping. SU(2) lacks this property, but leads
to solutions of the bootstrap equations of this paper
and of Refs. 2 and 3, solutions in which the sym-
metric interactions are singlet-singlet-singlet and
singlet -triplet-triplet interactions. The group
property that is crucial for bootstrapping distin-
guishes both the SU(n) groups, and the fundamental
representation of these groups. It is the property
that any linear combination of the matrices repre-
senting the algebra is a linear combination of these
matrices and the identity matrix.
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