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While the Kemmer-Duffin formalism for pseudoscalar mesons eliminates some difficulties
in the analysis of E,s form factors, it gives rise to difficulties in other areas. It is shown

that this formalism leads to: (i) a linear Gell-Mann-Okubo mass formula for mesons; (ii) an
incompatibility between SU(3)-symmetric meson-nucleon couplings and experiment; (iii) (3*,3)
breaking of chiral symmetry (H' =go+ cps) leads to c=-Q.9 and f~/f„= (m„/ng&)~/2.

In a recent letter, ' it was argued that the Kem-
mer-Duffin formalism, ' when used to describe
pseudoscalar mesons, leads to a more satisfac-
tory theory of K„ form factors than does the conven-
tional Klein-Gordon formalism. In particular, the
theory successfully accounts for the large nega-
tive value of the parameter g

=f (0)/f, (0) involved
in the K» analysis. It has been further argued
that this formalism removes the discrepancy be-
tween the value of the Cabibbo angle g~ obtained
from 0+ -0+ p decays and the value obtained from
the IQein-Gordon K„description. '

In this note we show that further consideration
of this formalism leads to certain difficulties
which cannot be resolved easily. We find: (l) Me-
son masses satisfy a, Gell-Mann-Okubo mass for-
mula which is linear in the meson masses. (ii)
SU(3)-invariant meson-baryon coupling in this
formalism corresponds to an octet-broken scheme
in the conventional (Klein-Gordon) parametriza-
tion; this is inconsistent with experiment. (iii) In-
corporation of these mesons in a chiral symmetry
with (3*,3) breaking leads to a linear mass formu-
la, a value of c=-0.9, and f~/f„=(m„/m~)'~'.

Although these difficulties could be ovex come by
such measures as introducing a large q-q' mix-
ing and giving up the idea of SU(3)-invariant me-
son-baryon coupling constants in the Kemmer for-
malism, much of the simplicity which originally
recommended the use of the Kemmer formalism"
would be lost.

The Kemmer-Duffin formalism can be derived
from the I.agrangian density4

Z = —,'Qy'(fs„p~ m)y'+-Z, „, ,

where g is a real field; Tt= g~q= g~(2p p —1).
The 5~5 matrices which describe spin-zero fields
satisfy the algebra'

p"p"p'+ p'p'p" =g"'p'+g"p".
In the case of a free field, the correspondence
between the Kemmer field and the usual IGein-
Gordon field y is (o. =0, 1, 2, 3, 4)

$~=m s~~spp +m6~4lp ~

The vector currents in this formalism are

ye 4 &yabcycp qb

or, in terms of the Klein-Gordon fieMs,

V' =f"(m /m )'i'y's q)' (4b)

It is important to note that the essential difference
between the formalisms is that in the Kemmer
theory it is yg, '~'y' rather than y' that transform
as representations of SU(3). It can be shown that
the matrix element of the current defined in Eq.
(4b) between states of K and v leads to results in
Ref. 1 in the lowest order of perturbation theory;
and further, the matrix element of the divergence
of the current leads to a zero at q' = (mr +m„);
this is a special feature of this model, as has been
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shown in Ref. 1.
(i) Gel/-Mann Ok-ubo mass formula. An octet

breaking of the Hamiltonian leads naturally to a
linear mass formula, as is evident if a symmetry-
breaking term ,'a—md'"T(('(I(b is added to the La-
grangian. More formally, we take the expectation
value of 8„&"between meson states in the limit
q'-0. If'

(M'{p) I
v' IM'{p'))

=i&2f'"u'(p) p g (q')+b q gs(q)

mm "'
xu'(p') ' ' (211) '

a b

where Hb is SU(3) x SU(3)-invariant and where u'
(and v') transform as members of the (3*,3) rep-
resentation. Using the PCAC (partially conserved
axial-vector current) definition'

8 A'=2 ') g,m, Tlg'

= —'g m 'i'y'
(1 la)

(11b)

we closely parallel the work of Ref. V. We first
take the limit"

lim(M'(p) Iu'+ cu' IM'(p'))

Z/2
= -m, ~ u(p') ', (211) b.

a a

If the Hamiltonian is octet-broken, then 9 ~ V' is a
member of the same octet:

e V'=-b[F' H']=f"'H'

If gb, (0) ls SU(3)-sy1111118tl'lc Rs is Resumed, use of
the Wigner-Eckart theorem gives

If we assume large g-g' mixing, then

4m' =3(cos'gm„+sin'em„)+m, ,

resulting in (9=—24 .
(ii) Meson-baryon coup»ng. The SU(3}-invariant

Yukawa coupling of the Kemmer fields is'

g —{Afabc+fldabc)Nay )ib cuqc

or, in terms of the Klein-Gordon fields,

2;„,= {Afab'+Bd~')Ã'y, N ( bm/2)'(" y' (9b)

Tile pl'esenc8 of 'tile fRc'tol' m 111 EII. (Qb) col'-
responds to octet-broken meson-baryon coupling
for the conventional Klein-Gordon formalism. One
can determine the D/(F+ D) ratio either from the
known coupllngs prop and ZopoA or from the cou-
pllllgs g K p Rlld pK A; tile D/(F+D) rRtlo thRt
results is O.V5 +0.25. Assuming the known pe%
coupling constant, the scheme in Eq. (9) leads to
a value for the pK A coupling constant of -30+5.
This is clearly inconsistent with experiment, the
favored value being -15+2.~

(iii) CAB'al symmeA y. Following the work of
Gell-Mann, Qakes, and Renner and of Glashow
and Weinberg, ' we assume

H=H -u -cu,0 8 (10)

Iim (M'(p) Is v'IM'(p'))
q2~ 0

PS PS= V2 f"'g, (0)(m, -m, )u'(P)ub(P') ' -' (2II) '.
a b

We assume SU(3) invariance for the matrix ele-
111811't (ignol'lllg Ij Yj 111-1X111g):

(M'{p}I
'IM'{p'))

mm "'
=(aa"a"+pa'"(a'(a(a'(b'){ ' ' (ar) '

(13)

and neglect the variation of n, P with q'. Taking
the p-0 limit of the left-hand side of E(I. (13), we
find

Iim(M'{p) I
u' IM'(p'))

m '/"
=&2d"'(g m ) '(0Iv'IM'(P')) —' (2w) 'i'.

a

Defining

m ~2
(0 I

v'IM'(p'}) = Jl"%.u{p') ' (2v) -'i'

and collecting the information in Egs. (12)-{14),
we find the following results:

(a) A linear mass formula, in agreement with
Ea (I);

FPl = PÃ ~v + d

(b) a = 0, and hence m„= p(b)'i'. Since Sm = cp,
we find

c = (-')'i ' =—-0 9Ass
fPl Qv

(C) gama —gbmg —gbm~ ~

(d) Il = {gm}ram/C, indePendent Of Qa E = 0.
Result (b) indicates that if the Kemmer forma-

lism describes the pseudoscalar mesons, the
SU(2) x SU(2) limit (i.e. , c = -F2 ) is Ilot very close
to the physical world. Result (c) is more readily



1014 N. Q. DESHPANDE AND P. C. McNAMEE

compared with data. Using the usual Klein-Qor-
don definition of PCAC,

s A'=2 '~'f, m, 'p',
and taking normalizations into account, we find

f, =g.(m, /2)'~'.

Hence

f«/f, = (m, /m«)'~' =0.53, (18)

which is in decided disagreement" with the exper-

(19)

is considerably improved. If it is assumed that
at p,' =0 the form factors f, vary slowly with
q' [f, (m«') =f, (0)], then the left-hand side of the
equation is (1/v2 )(0.39 +0.20), while the right-
hand side of the equation is (1/&2)(0.53), and not
the usual value of (1/&2)(1.28 + 0.06).

imental value of -1.28. It should be noted, how-
ever, that the Callan-Treiman relation derived in
the Kemmer formalism by Ref. 1,

f,(m ') +j (m„') = (1/v 2 )f /f, ,
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A convenient representation is

Pns= ~~~np~84 ~(~)~n4~8p~ s

&n8 = 2&no~80+ 2~F4~ 84- ~as
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