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Normalizable wave functions Rle constlucted fol bound stRtes Rnd re8onRnces f lorn the
S-matrix quantities. The bound-state wave function is of the Schrodinger type. The Schro-
dinger equation does not give normalizable wave functions for resonances. Thus the reso-
nance wave function is of the non-Schrodinger type. An S-matrix model is constructed to
generate the desired resonance wave function. , The manner in which this model departs from
the conventional Schrodinger picture is discussed in detail. This S-matrix model is then
applied to the P-wave two-pion system with a satisfactory numerical result for the p-meson
rRdlus.

I. INTRODUCTION

While there are justifiable beliefs' that physics
comes from singularities in the complex plane, it
is refreshing to note that the study of analytic prop-
erties came from the physical principles that can
be best stated in terms of space and time. ' While
there are also contrary views' that-one should
stick to the quantities that are directly related to
space and time, it is not wrong to assume that
physics remains unchanged even if we translate the
space-time property into more convenient lan-
guages such as analyticity. There are at present
two distinct approaches: One is to use exclusively
the S matrix and the other is to use wave functions. ~

Both approaches have their own strengths and
weaknesses. Therefore, we ean do better if we
know both methods and know how to make up the
shortcomings of one method by using the other.

The purpose of this paper is to give examples
where tI1e wave-function approach helps the S-ma-
trix method, and vice'versa. We shall specifically
discuss bound states and resonances in both S-ma-
trix and wave-function approaches. We have in
mind the S matrix with the usual analytic proper-
ties. By wave function, we mean the solution of
the Schrodinger equation and its possible modified
form. Both bound states and resonances are rep-
resented by the S-matrix poles. There corre-
sponds a normalizable wave function to each bound
state. For resonances, however, there are only
quasi-local wave functions' for the real physical
energy near the pole and the wave function corre-
sponding to the resonance pole is an exponentially

increasing function at large distance. We would

like to have normalizable wave functions for some
of the, resonances and have the quasi-local wave

function for the physical energy coming from this
completely localized base at the exact location of
the resonance pole.

Let us discuss the physical significance of the
above proposal. As is well known, the Schrlinger
equation has two linearly independent solutions.
The physical assertion that the probability of the
particle being at the infinite distance be zero and

that the probability be finite at the origin enables
us to discard the irregular and nonlocal solutions.
This condition in fact produces normalizable w'ave

functions and the discrete energy spectrum. There
are plenty of new discrete energy spectra in ele-
mentary-particle physics. Since many of them
obey attractive spectral rules such as the SU(3)
scheme, "we are led to suspect that these spectra
may be coming from some form of boundary condi-
tions as those of the hydrogen atom and the har-
monic oscillator came from their respective

, boundary conditions. Now the c'omplieation arises.
Some entries in these spectra are resonances
while others are stable particles and stable bound

states. If we subscribe to the original bootstrap
idea and assert that bound states and resonances
are physically equivalent, then the mixed entry in

the new spectra is understandable. As we stated
above, the resonance (at the exact location of the

pole) and the bound state satisfy quite different
boundary conditions. We are thus led to question
the meaning of the "physical equivalence" between

these two seemingly different states. In this paper,
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NORMALIZABLE %AVE FUNCTIONS FOR BOUND STATES. . .

we discuss a possibility of constructing normaliz-
able wave functions for the resonances as well as
for the bound states.

The complex energy plane is a very convenient
place .to represent the discrete spectrum of bound-
state and resonance poles. But, it is not conve-
nient to study boundary conditions with the S ma-
trix alone."Our aim is to construct a model that
will enable us to think of every physically interest-
ing pole in terms of a normalizable wave function.
This picture is not consistent with the conventional
Schrodinger formalism of quantum mechanics, but
we indicate clearly where the departure occurs and
discuss why that particular departure point is more
reasonable than other places. In the following sec-
tions, we shall first present a concrete example
where the wave function can solve the difficulties
in the 8-matrix calculation. %e shall then con-
struct a model that will produce normalizable wave
functions for the resonances.

In Sec, II, we review and reformulate the old
work of the present authors to illustrate that the S-
matrix method (with the usual approximation pro-
cedures) does not always guarantee the boundary
conditions required for bound states. It is shown
that this trouble can be fixed by the use of the
wave-function method. In Sec. III, we review the
situation in the Schrodinger quantum mechanics and
point out that the conventional Schrodinger picture
does not give resonance wave functions satisfying
the desired boundary condition in the asymptotic
region. It is shown in Sec. IV that this trouble in
the asymptotic region can be moved to the origin
where the Schrodinger quantum mechanics is likely
to break down (at least more likely than in the
asymptotic region where experiments are pex-
formed). We do this by introducing an irregular
solution of the Schrlinger equation that gives .".
localized resonance wave function and a correct
phase shift up to a minus sign which cannot be de-
tected experimentally. Removing the irregularity
of this new wave function is definitely a departure
froIIl the Schrodinger quRntum mechanics, In Sec,
V, we discuss this possibility using analytic pro-
perties of the S matrix, and then construct a mo-
del that mill give a nox malizaMe wave function for
the resonance. In Sec. VI, this model is applied to
the calculation of the p-meson radius. Our calcula-
tion gives a. satisfactory numerical result. In Sec.
VII, we point out that the problems discussed in
this pRpex' cRn be formulated Rs the pRx'tlcle locRli-
zatlon ln 8-matrix theory,

ygood e-~r

FIG. 1. "Good" and 'bad" wave functions for the bound
state. The bad component comes from the failure to cut
off the analytic continuation of the incoming wave com-
ponent in the 8 matrix.

turbation theory. Let us consider the first-order
energy shift in terms of wave functions and a weak
perturbing potential,

5E =($,5VQ),

We now contemplate calculating the above quantity
using only the S-matrix quantities such as the N
Rnd D functions.

The 8 matrix, in the physical region, contains
both solutions of the Schrodinger equation satisfy-
ing the outgoing-wave [exp(ikr)] and the incoming-
wave [exp(-iver)] boundary conditions, respectively.
Let us now consider analytic continuation of the S
matrix to a bound state, in which case the mo-
mentum k becomes a purely imaginary quantity iz
where K is positive. During this process, the out-
going wave becomes exp( ar), while—the incoming
wave behaves like exp(ar). For the reasons that
will become clear in the following discussion, we
call them "good" and "bad" wave functions, re-
spectively. See Fig. 1. %hen we reach the correct
binding energy, the bad wave function is to be cut
off by the laws of dynamics which assure a local-
ized probability entity for the bound state. Since
this localization condition is overlooked in many
S-matrix approximations, it is very easy to allow
some bad wave functions to exist even at the bind-
ing energy.

Perhaps the best known work involving the above
effect is the calculation of the n-P mass difference
by the perturbation method developed by Dashen
and Frautschi. " Let us review how this trouble
occurs. Because they fail to cut off all bad wave
functions, their approximation leads in effect to

(good g @ibad)

Now, for the electromagnetic perturbation,

II. BOUND-STATE PERTURBATION

Perhaps the best place to illustx ate the use of
bound-state wave functions is the first-order per- where A, -O, the integrand in normal circumstances



1004 Y. S. KIM AND K. V. VASAVADA

(where only good wave functions are used} would
have an exponential cutoff factor

exp[-(2rr+ X)~]

giving a comfortable cutoff factor even if A. -O,
However, in the case of Eq. (2), the exponential
cutoff factor is merely exp(-Xr} which gives a log-
arithmic divergence for A. -O. It was shown that
this indeed was the source of their so-called spuri-
ous infrared divergence. '

It is widely believed that Dashen's calculation of

Complex k plane S(k)

Bound- state pole

Resononce poles

(a)

the n-P mass difference is wrong and therefore
does not deserve any further attention. We dis-
agree. The Dashen-Frautschi formalism is in-
deed an excellent crossing point where both the
wave function and the 8-matrix methods can be
used for the same purpose. Recognizing the seri-
ousness of the problems of boundary conditions,
the present authors devised an approximation
scheme that will convert the 8-matrix quantities
into a "good" wave function. ' Using this new meth-
od, we went further to calculate the size of the
nucleon assuming that the nucleon is a bound state
of pion and nucleon and obtained a satisfactory
numerical result. "

The perturbation formula of Dashen and Fraut-
sehi is correct. But the approximations which are
inevitable in strong-interaction calculations led to
the ambiguities mentioned above, and these diQi-
culties can be best understood in terms of wave
functions. In the following sections we shall dis-
cuss a more fundamental question of assigning
"good" wave functions to resonances.

III. RESONANCE IN THE CONVENTIONAL

SCHRODINGER PICTURE

In this section we list all the known properties
of the 8 matrix and the wave function that will be
useful ln the main discussion. The 8-wave Schr0-
dinger equation is

Complex k plane

Transition point+

(+)
(k, r)

sin (kr+ 8)

sin(kr -8)

where the potential lr(r) is assumed to have the
usual behavior that will give the desired analytic
property of the 8 matrix. We can construct two
linearly independent wave functions f(- k, r) and

f (k, r) satisfying, respectively, the outgoing- and
incoming-wave boundary conditions. These solu-
tions are called the Jost solutions. We shall use
throughout this paper the notation of De Alfaro and
Regge.

Using the Jost solutions, we can construct the
regular wave function

FIG. 2. Complex k planes. (a) Bound-state and res-
onance poles in the complex 0 plane. We assume that
this analytic property remains unchanged in our new
model. P) Wave functions in the complex k plane. By
assigning Q~ ~(k, x) to the lower half-plane, we obtain a
localized and irregular wave function for the resonance.
When a bound state becomes a resonance through a vari-
ation in the strength of potential, this transition occurs
at the origin 0=0. This transition is not analytic.

This solution satisfies the required regularity con-
dition at r =0 and allows us to write the complete-
ness relation for all physical solutions. This wave
function furthermore has the familiar asymptotic
form

y"(0, r)- sin(kr+ 0),

where 5 is the phase shift.
We shall assume throughout this paper that the



NORMAI. IZABI. E %AVE FUNCTIONS FOR BOUND STATES. . .

FIG. 3. %'ave functions for bound states and reson-
ances. (a) Bound-state wave function in the Schrodinger
picture. It is normalizable. 4b) Resonance wave function
in the Schr'odinger picture. Et is regular at the origin
but increases exponentially for large ~. This wave func-
tion is not normalizable. (c) Resonance wave function
in the modified picture. The wave function decreases
exponentially for large x but is irregular at the origin.
This wave function is not normalizable. (d) Regularized
resonance w'ave function. The irregularity at the origin
is removed. This wave function does not come from the
Schrodinger equation and thus represents a departure
from the Schrodinger picture. All of the. resonance
wRve functions considered here contRin Rn oscGlatory
structure within the exponential envelope. This structure
has been ignored for simplicity.

S matrix defined as S(k) =f(k)/f (-k) has the desired
analytic properties. f(k) and f(-k) are called the
Jost functions and are discussed extensively in the
literature. " The entire real k axis constitutes the
continuous eigenvalue spectrum. For discrete
eigenvalues corresponding to bound states, the
Jost function f(-k) has zeros. Because the other
Jost function f(k) has singularities and some of
them axe poles, the 8 matrix ean have poles which
do not come from f(-k) =0. These singularities
have been discussed in the literature. " In this
paper, me x'.estriet ourselves to only physically
interesting poles which come from f(-k) =0.

It is well known that f(-k) can have zeros only
along the imaginary axis if Imk is positive. See
Fig. 2. The physical states corresponding to these

IV. RESONANCES IN THE MODIFIED PKTURE

In spite of this appa, rent lack of localized picture
for the resonance, the most important development
in particle physics during the past decade has been
the formulation of the concept that particles and
resonances belong to the same multiplet and that
they share the common physical origin. Further-
more, there have been many successful model cal-
eulat1ons based on the assuQlption that the reso-
nances, like particles, behave like localized en-
tities. It is thus compelling to look into the pos-
sibility of localizing the resonance wave function.
%'e show that the Schrodinger equation has indeed
a solution that satisfies the correct locality con-
dition at least in the asymptotic region.

I.et us consider the solution

p' '(k, r) =
2,k [f(k)f(k, ~)-f(-k)f(-k, &)] (9)

This wave function differs from the regular solu-
tion P

' (k, r) by the sign of k in the Jost solutions.
p~ ~(k, ~}has the asymptotic form

'(k, r) - sin(kt' —5) (lo)

y' '(k, r)= .„f(k)f(k, r)

poles are bound states, and each bound state has a
corresponding normalizable wave function. Sup-
pose f(-k) =0 in Eq. (6); then

y" (k, r) = .„f(k)f (-k, ~),

whose asymptotic form is exp(ikr) which decreases
as exp[ -(Imk}rj for large r.

If f (-k) has a zero in the lower half-plane at a
point very close to the real k axis, it corresponds
to a resonance. However, unlike the case of the
bound state, Qt'(k, r}, though regular at the origin,
cannot represent a localized entity for the reso-
nance because it increases exponentially for large

See Pig. 3. This problem is also discussed in
the literature. "

In See. II, ere traced the "bad" behavior of the
bou d-state wave f net o t a eerta approx ma, -
tion procedure. In the case of resonances, this
"bad" feature comes from the analytic continuation
of the Schrodinger equation and is inherent in the
conventional formalism of quantum mechanics. It
ig a matter of changing the sign of the exponent to
obtain a "good" wave function. In 3ec. IV, me shall
investigate the posslb1llty of 1elatlng this sign to
the quantity that is noI; measurable, and see
whether me can change the sign of the exponent us-
ing this measurement aspect.



1006 Y. S. KIM AND K. V. VASA VADA

at the resonance energy where f(-k) =0 in the low-
er half-plane.

Both Eq. (10) and Eq. (11) can be analytically
continued from the master form of Eq. (9). The
asymptotic form of Eq. (10) differs from that of
the regular solution by the sign of the phase shift.
However, this sign of the phase shift cannot be
determined exPexi mentally. Therefore, both
y"(k, r) and Q~ ~(k, r) give the same result as far
as scattering experiments are concerned. At the
resonance energy where f(-k) = 0 in the lower
half-plane, Q' '(k, r) decreases exponentially for
large r and thus produces a localized picture for
the resonance state.

While the analytic continuation of P~'~(k, r) to
the upper half-k-plane (the so-called physical
sheet) gives a good normalizable wave function for
the bound state, the analytic continuation of

'(k, r) to the lower half-plane gives, without
contradicting the scattering experiment, at least
an asymptotically acceptable form for the reso-
nance as a localized entity. Thus we are led to
assign P~'~(k, r) to the upper and P~ ~(k, r) to the
lower half-plane. See Fig. 2.

Q~' (k, r) of the upper half-plane cannot be ana-
lytically continued to P~ ~(k, x) of the lower half,
nor can they be interchanged by symmetry opera-
tions such as time reversal. The newly introduced
wave function P~ ~(k, r), even at the resonance en-
ergy, lacks the regular behavior at the origin.
See Fig. 3. For the S-wave case, the regular be-
havior requires Q-~ near origin, and an r'" be-
havior for the lth partial wave. The new wave
function behaves like ~ '.

This irregularity behavior cannot be eliminated
within the framework of the present quantum me-
chanics. Earlier in this paper, we have stated
that the Schrodinger quantum mechanics, if ana-
lytically continued in the conventional manner,
gives a resonance wave function that cannot de-
scribe a localized entity. By introducing the above
irregular solution, we have simply transferred
the trouble from the asymptotic region to the ori-
gin (r = 0), where the present formalism of quantum
mechanics is likely to break down (at least more
likely than in the asymptotic region). While we do
not have any systematic departure from this point,
we may mention that many field-theoretic calcula-
tions indeed lead to the singularities at the origin
that are not familiar in nonrelativistic quantum
mechanics. "

By considering boundary conditions and measure-.
ment aspects in the asymptotic region where ex-
periments take place, we have been able to pack
all the troubles in the Schrodinger picture into a
single irregularity point at the origin. This of
course creates many problems. Perhaps the im-

mediate question to ask would be: What happens
to the completeness relation if Q~ '(k, ~) is taken
seriously as a physical wave function? We do not
have a satisfactory answer. However, we point
out that many field-theoretic models, such as the
Bethe-Salpeter equation, lack this kind of com-
pleteness. "

Without discussing further the fundamental
questions raised above, we shall construct a res-
onance model in Sec. V. This model will give a
localized and regular wave function for the reso-
nance and will be a departure from the conven-
tional Schrodinger formalism.

V. MODEL FOR RESONANCES

We have shown in Sec. IV that the Schrodinger
equation has a solution having an acceptable be-
havior for localized resonances in the asymptotic
region. Because of the irregularity at the origin,
this wave function does not have a proper meaning
in quantum mechanics. However, it is not wrong
to speculate that quantum mechanics breaks down
in the small-distance region (within the Compton
wavelength of hadrons). This is the physical basis
upon which we plan to build a model that will pro-
duce a localized and norrnalizable resonance wave
function.

The reason why we are so eager to build nor-
rnalizable resonance wave functions has been
given in Sec. I. The next question is naturally
hose. In order to proceed, let us look into the cir-
cumstances that led to the popular proposition that
bound states and resonances are equivalent. Since
Frazer's successful calculation of the nuclear
electromagnetic form factors, almost all strong-
interaction calculations involved a discrete repre-
sentation of the continuous energy spectrum. In
doing so, resonances are treated like bound states,
and this technical convenience together with the
more prominent discrete nature of resonance spec-
tra eventually led to the above-mentioned proposi-
tion. Though there have been many numerical suc-
cesses in this school of thought, its physical im-
plication has not been fully explored. '

We are thus invited to look for a formulation of
quantum mechanics in which one can obtain wave
functions not by solving the Schrodinger differential
equation but by summing over a complete set in a,

manner similar to what we do in dispersion the-
ory. " As we shall see in the following discussion,
the Gelfand-Levitan formalism indeed satisfies
this requirement. " Unlike the case of solving the
Schrodinger equation, the input parameters are
those of the S matrix (not those of the potential).
This is the point we like to exploit in this paper.
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The Gelfand-Levitan (6-L) formalism is a beau-
tiful mathematical theorem, but is not widely
understood. Instead of going through rigorous
mathematical steps, we shall use here first the
familiax' language of the completeness relation.
Because there is an excellent parallelism between
the 0-L formalism and the completeness relation,
we believe this is the easiest way to exploit the
content of the Gelfand-Levitan theorem.

Let us therefore look at the situation in the
completeness relation fix'st. '6 Consider all reg-
ular solutions of the Schrodinger equation Q(k, r)
normalized as

lim y(k, r) r-
t' ~0 (12)

Then the complete-orthonormality relation states
that

g C, y,*(k„r)y,(k„r')

r oo

+ — k'[f (k)f (-k)]-'y+(k, r) y(k, r') dk
~II 0

= 5(r-r'),
(13)

mhere the summation b is over all bound states,
and k, is the imaginary momentum corresponding
to the nth binding energy. . C, is the normalization
constant:

and consequently its contribution can be pulled out
of the integral sign. Thus even in the Schrodinger
picture, resonances form an almost discrete
spectrum. But the Schrodinger picture does not
give normalizable resonance wave functions.

Now we make a departure from quantum me-
chanics and propose the following completeness
relation with noxmalizable resonance wave func-
tions".

g C,y,*(k„r)y,(k„r')+ pC, y,*(k„r)e,(k, r')

oo

+ — k'[f (k)f (-k)] 'p*(k, r) q(k, r') dk
0

= 5(r r'),—

mhere all the resonance effects have been screened
out from the continuum integral. We denote this
effect by k'[f (k)f (-k)] '. In order to accommo-
date the proposition of resonance-bound-state
equivalence, we assert that the resonance wave
function Q~(k~, r) has all the desirable properties
of the bound-state wave function. The resonance
wave function is expected to be complex. It is
well known, however, that for each resonance
pole there is a. conjugate pole at -k~. See Fig. 2.
Because of this conjugate pole the over-all sum-
mation mill be real. Since we are assuming that
the 5 matrix is analytic as before, the normaliza-
tion constant, which is defined as

~P,(k„r)~' dr {14)
oo

~Pp(kp, r)~'dr,
P 0

This normalization constant can be derived from
the 8-matrix quantltles

1 -1 df (-k)
C~ 4ik' dk (15)

In the above completeness relation, the integral
measure k'[f (k)f (-k)] ' is strictly an S-matrix
quantity. In the sum over bound states, the coef-
flclent Q ls Rlso RQ $-matrix quantity. Thus this
completeness relation formally (not uniquely) en-
ables us to obtain the wave function Q(k, r) directly
from the 9-matrix quantities without using poten-
tials.

Since we are interested in resonances, we should
discuss where the resonance stands in the com-
pleteness relation of Eq. (13). The bound states
are all contained in the summation. However, the
resonances are included in the continuum integral.
For a rapid change in phase shift such as

6(k) =v8(k' —kp'),

~(k )
smkr " (,)

sinkr'
d

0
(20)

where the kernel K{r,r') satisfies the integral
equation

is expected to be approximately equal to the real
part of the S-matrix expression of Eq. (15) eval-
uated at the resonance energy:

1 1 df( k)
(19)

P %=A p

where the imaginary part of this expression is ex-
pected to be small in narrow-resonance approxi-
mRtlons.

With this preparation, let us go to the. Qelfand-
Levitan equation. The theorem states that one
can obtain the wave function Q{k,r) uniquely (un-
like the case of the completeness relation) from
the 5-matrix quantities in the following manner"'":

where kp~ is the resonance energy, we can show
that the integrand exhibits a 6-function behavior

K(r, r')+g(r, r')+ dtK(r, t)g(t, r') =0.
~o

(21)
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The second kernel g(x, r') is to be obtained from
the 8-matrix:

(22)

with

d p(E) = C,6(E —E,) dE, E &0

(23)
du(E) =

—,[[f(k)f (-k)] '-1j dE, E &0

where E = O'. Here we assumed for simplicity
that there is only one bound state at E =E&. C, is
the normalization constant defined in Eq. (15).
Since g(s, t) is completely determined from the
S-matrix quantities, both K(x, r') and P(k, r) come
directly from the S matrix. The complex conjuga-
tion on (sinkf)/k in Eq. (22) is not needed in the
original form of the 0-L theorem because it is
xeal. This mill however prove convenient when
we treat resonances with complex momenta.

We note here that the input-output relation in
the 6-L formalism is identical to that of the com-
pleteness relation. We are then led to consider a
modification in the input system of Eq. (23) ac-
cording to what we did in the completeness rela-
tion. Assuming for simplicity that there is only
one resonance, me are led to the following set of
input measures:

d p(E)= C, 5(E, E,), E &-0

dp, {E)=—[[f(k)f(-k)] '-1}dE

authors did for the bound-state case." If there is
only one bound state with no resonances, we can
consider an approximate solution of the Gelfand-
Levitan equation assuming that f(k) = 1 (which cor-
responds to a plane-wave approximation) through-
out the continuous spectrum. Then

d p(E) =, C, 5(E —E,) dE, for E &0

d j(E)=-, 0, for E &0.
(25)

If me put in this approximate measure, the inte-
gral equation for K(r, r') becomes separable, and
consequently the bound-state mave function be-
comes

y, (a, &=("," ")(i+c,
' sinkt

dt
k 42= E~

1.C,
"""

dt dr

(25)
Since k is imaginary at the binding energy, the
above wave function has an exponential cutoff fac-
tor for large r. The cutoff strength is proportion-
al to the distance between the bound-state pole
and the- real k axis. This is an approximate but
manifestly normalizable wave function that can be
obtained directly from the 8-matrix parameters.
Assuming that the nucleon is a bound state of pion
and nucleon the present authors'x ment further to
calculate the strong-interaction radius of the nu-
cleon by taking

+ C, 5(E k, ') dE, E &0.

Here again, the resonance effect has been screened
out from the continuum measure.

Starting from the formalism of quantum me-
chanics in which one obtains wave functions by
summing over a complete set of states, me de-
rived a prescription of treating resonances like
bound states. Though this prescription may px'o-
duee results which cannot be found in nonrelativis-
tic quantum mechanics, this type of practice is
quite common in dispersion theory and is com-
pletely in line with the present-day particle the-
ory. We shall study consequences of this pre-
scription in Sec. VI.

In Sec. V, we have seen how the Gelfand-Levitan
measure becomes modified when resonances are
treated like discrete bound states. In this section,
we shall use this model to calculate a strong-in-
teraction radius of the p meson.

In order to stress the resonance-bound-state
equivalence, we shall briefly review what the

If there is only one resonance with no bound
states, the Gelfand-Levitan measure, according
to what we did in Sec. V, becomes

dp(E)=0, for E&0

dp{E)= —[[f(k)f(-k)] '-1] dE
(2S)

+Cp5(E —kp )dE, E &0.

If me use the Breit-Wigner representation of the
resonance, screening out its effect from the Jost
function would take the form of factoring out its
zero corresponding to the resonance pole in the
following manner:

f (-k) =f(-k)/f, „(-k), (29

where f»(-k) is the Breit-Wigner form of the Jost
function. Both f(-k) and f»( k) have their ze-ros
at the resonance pole and thus f(-k) has no zero
at the pole.

Let us now consider P-wave pion-pion scatter-
ing. In this ease, the Breit-Wigner representa-
tion for the p meson is valid for f (-k) itself
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throughout the entire conceivable energy region.
Thus

(~) = (p p, ry p)/(yI„y p)

f(-k) =few(-k)/f, ~(-k) = l (3o) (1+C~ dt) dr. (SV)

d p, (Z) =0, for Z &0

dp(Z) = C&5(Z -kz') dZ, Z &0.

%ith this approximation, we can solve the Gelfand-
Levitan equation in the same way as we did for the
bound-state cRse. The resulting wave function 1s

This wave function behaves like

y,(k, r) =~'"

at the origin and

p~(k, r) - exp(-j Xmk
j y)

for large x, and thus behaves like the bound-state
wave function of Eq. (26). The resonance wave
function of Eq. (32), which is an approximate form,
satisfies the exact normalization condition

few(-k) = (k —kp)(k+ kp)/k'. (35)

Then according to Eg. (28),

(Hek, )4

2Imkp
'

Since Imkz is negative, Cz is a positive quantity.
Using the above information, we can now calcu-

late the stx'ong-interaction radius of the resonance
in exactly the same way as we did for the bound-
state case:

oo

Q p*(k p, r) &f) p(k p, r) dr.
p 40

While one cannot get this normalizable wave
function by solving the Schrodinger equation, we
obtained the above form by simply treating x'eso-
nances like discrete bound states in the Gelfand-
Levitan formalism. Using the procedure well ac-
cepted 1n dlsperslon-theox'y cRlculRt1ons ~ we 1n-
deed obtained an almost identical form for both
resonance and bound-state wave functions. While
we are not able to constxuct a complete theory at
this ti.me, this pair of wave, functions constitutes
an attractive starting point for a further study of
spatial properties of the resonance-bound-state
equivalence proposition.

Now the remaining task is to determine C& from
the resonance parameters. Again within the frame-
work of the Breit-%'igner representation,

This expression is strikingly similar to that of the
bound state in Eg. (2V).

Let us now look at the above expression as a
function of t'he width parameter P defined as

The integral converges for nonzero p because the
integrand decreases like exp(-2P~) for large v. As
P becomes vanishingly small, it may seem that the
integral diverges like l/P. However, the C~ factor,
together with the t integral, makes the denomina-
tor large, and this counteracts the 1/P divergence.
%8 can in fact show analytically that the above in-
tegral is bounded by a PlnP factor. This nieans
that (~) vanishes in the zero-width limit and that
(r) increases as the resonance width increases in
the narrow-resonance region. This is consistent
with our physical common sense that a "loosely"
bound resonance has a wider width and has a
larger strong-interaction radius.

Let us now calculate the radius of the p meson.
The I' wave ge-neralization of Eq. (SV) is"

*"
l kt1+C ' ' dt

~0 j P
(38)

According to our computer calculations, the nu-
mex'ical value of the above integral becomes
0.78 F for I =90 MeV where I'=-4Imk~, 0.85 F
for I' = 120 MeV, and 0.88 F for I'=150 MeV. As
we predicted above, the radius increases as the
width increases.

If we use the formula

ft' =(2o +l) (,
given in Regge-pole theory, ' and use the weIl-
established value of n' =1 GeV ' for the slope of
the p-meson trajectory, the "radius" 8 turns out
to be 0.7 F. This is very close to our numerical
value.

Starting from a model in which nonrelativistic
quantum mechanics i.s modified in such a way that
resonances and bound states are treated equally,
we have obtained a very reasonable numerical re-
sult for a strong-interaction radius of the p meson. ,

%8 have also obtained a reasonable relation be-
tween the size of the resonance and its width.

One could raise the populRx' quest1on whether
treatments based on nonrelativistic quantum me-
chanics have any validity in calculations involving
x esonances like the p meson. However, we should
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note that most of the successful calculations in the
quark model have been done within the framework
of nonrelativjstj. c quantum mechanics. ' Though
most of them are independent of the detailed be-
havior of radial wave functions, the quark model
is basically based on a standing-wave description
of the resonance, the concept which is quite sim-
ilar to what we pursued in this paper, It should be
noted further that radial behaviors of the quark-
model wave functions are receiving increasing re-
cent attention. "

VII. CONCLUDING REMARKS

We started in this paper from the premise that
we should use both S-matrix and wave-function
methods. We then adopted the view that the wave
function comes directly from the S matrix and that
the conventional quantities such as the potential
and the Schrodinger equation do not have to come
into our S-to-Q(r) picture.

This new approach has certain advantages.
First, it gives a normalizable wave function to the
resonance as is illustrated in the preceding sec-
tions. This normalizability for the resonance as
well as for the bound state may have a deeper im-
plication in the theories where bound states and
resonances are treated equally. ' Second, the S
matrix is a convenient quantity to accommodate
Lorentz invariance, ' while the potential is not.
Therefore, the S-and-Q(r) combination is a better

set of variables in relativistic dynamics. The
Bethe-Salpeter equation is a good example in this
direction. " Third, the S-matrix quantities are
directly measurable from experiments. Our p-
meson calculation illustrates this convenience.

The central issue in this paper has been how to
localize the two-body interacting system. Loosely
speaking, the word "local" means that some quan-
tity is nonzero within a specified space-time re-
gion and vanishes or almost vanishes outside
this region. Indeed this locality concept is the
backbone of the present-day quantum theory. Neg-
ligence or oversimplification of this problem has
led to many difficulties which are often manifested
by divergent integrals. "' It is not clear whether
our way of representing the locality property is
consistent with other fundamental physical princi-
ples such as Lorentz covariance. " Inasmuch as
the localization issue remains as one of the un-
solved fundamental problems, the particle localiz-
ation in S-matrix theory such as the one discussed
in this paper opens up an important new line of re-
search.

Note added in Proof In his re.cent paper, Chew
discusses the quantum superposition principle
as embodied in an S matrix. " In this present
paper and in our previous papers, ' we have dis-
cussed the problem of translating the S-matrix
language into that of wave functions. We believe
that the use of wave functions is the best tool for
studying the quantum superposition principle.
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