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The quantum stress tensor T,w> is calculated in the (2 + 1)-dimensional black hole found by Banados,
Teitelboim, and Zanelli. The Green’s function, from which (7T, ) is derived, is obtained by the method
of images. For the nonrotating black hole, it is shown that (TW) is finite on the event horizon, but
diverges at the singularity. For the rotating solution, the stress tensor is finite at the outer horizon, but
diverges near the inner horizon. This suggests that the inner horizon is quantum mechanically unstable

against the formation of a singularity.

PACS number(s): 04.70.Dy, 04.60.Kz

Recently, Banados, Teitelboim, and Zanelli [1] found a
black hole solution in 2+1 dimensions which shares
many of the features of its (3+ 1)-dimensional counter-
part [2]. In particular, the static solution has a singulari-
ty and event horizon, while the rotating Kerr-like black-
hole possesses outer and inner horizons and an ergo-
sphere. Asymptotically, however, the 2+1 solution is
not flat, but approaches anti—de Sitter space [3]. 2+1 di-
mensions provides a simpler setting than 3+ 1 and possi-
bly a more realistic one than 1+ 1 [4] in which to study
the quantum properties of black holes, and specifically,
the end point of black hole evaporation. Such an investi-
gation should begin with the quantum stress tensor
(T,,) which describes the quantum effects of the black
hole on a propagating field in a way that allows one to an-
alyze the back reaction. Provided it can be properly re-
normalized, ¢ T‘w> is a well defined local quantity in con-
trast with particle number which is not, in general, a
meaningful concept in curved spacetime. Another
motivation for studying (T ‘“,) in the rotating black hole
is to investigate the quantum stability of the inner hor-
izon. The maximally extended Reissner-Nordstrom and
Kerr solutions include an infinite number of asymptotic
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regions which in principle could be accessed. However, it
has been shown that since the inner horizon is an infinite
blueshift surface, classical perturbations will diverge
there [5], and the associated back reaction will produce
a singularity [6]. Quantum effects for the (1+1)-
dimensional analogue of the Reissner-Nordstrom solution
were investigated in [7] where it was shown that (T‘w>
diverges near the inner horizon. Attempts to include
quantum corrections in 3+1 dimensions [8] are some-
what inconclusive suggesting that the classical instability
either is enhanced or is dampened resulting in a regular
spacetime. In this paper, the exact expression for the
quantum stress tensor is found for the rotating (2+1)-
dimensional black hole and is shown to diverge near the
inner horizon. An estimation of the back reaction sug-
gests that the inner horizon will be replaced by a curva-
ture singularity. We use units in which i=c=G=1.

The (2+ 1)-dimensional black hole solution found by
Banados, Teitelboim, and Zanelli [1] is most easily de-
scribed as three-dimensional anti—de Sitter space (AdS;)
identified under a discrete subgroup of its isometry
group. Recall that AdS; is the three-dimensional hyper-
surface

—Ti+X}-Ti;+Xx5=—1 (1)
embedded in four-dimensional flat space with metric 7,:

R585 ©1994 The American Physical Society



RAPID COMMUNICATIONS

R586

ds’=—dT?+dX?—dT3+dX} )

where [ =(—A)~'2. The hypersurface (1) is a pseudohy-
perbolic analogue of a three-sphere with radius vector
x=(T,,X,,T,,X,), radius V' —x%, =1, and constant
curvature R = —6/12. We will use lower case Latin in-
dices for the four-dimensional embedding space and
lower case Greek indices for AdS;. The isometry group
of AdS; is SO(2,2) and corresponds to the subgroup of the
isometry group of the embedding space which leaves (1)
invariant. Since boosts and rotations in two-dimensional
planes generate the isometry group, the simplest coordi-
nate systems for AdS; parametrize these symmetries. As
we will see, the black hole solution is constructed by iden-
tifying the parameters describing boosts in the (T,X,)
and (T,,X,) planes. Thus, it is in terms of these boost
parameters that we wish to express the metric for AdS;.
We view it in terms of two copies of 1+1 Minkowski
space, M| with coordinates (T,X,) and M, with coordi-
nates (T,,X,) with the constraint (1) p,+p,=1* where
p;=T?—X? In each space M;, one can define Rindler
coordinates

T,=V/p;coshy; , X,=V/p;sinhy; ,

pi>0’ —°°<Xi<°°’
(3)

T,=v —p;sinhy; , X,=V —p,coshy; ,
P,'<O; -—°°<Xi<w’

valid in the light-cone interior (p;>0) and exterior
(p; <0), respectively. Defining Y, =¢ and x,=t, we see
that there are three qualitatively distinct regions: (I)

p1>1%(p,<0), (ID 0<py,p,<1% and (IID) p, <0 (p,>1?),
in which the vectors 8/3¢ and /9t are spacelike and
timelike, spacelike and spacelike, and timelike and space-
like, respectively. It is natural to view I as the asymptot-
ic region of the spacetime. Substituting (3) in (2) with
r?=p,=1*—p,, one obtains the metric for AdS;:

-1

2
ds?=— K%-—l dt*+ dr2+r2d¢2 R

L
12

LPE(—ow0,0) (4)

valid in regions I and II. Since ¢ and ¢ parametrize
boosts, they take on all real values.

The black hole solution is now constructed by making
some combination of ¢ and ¢ periodic. For the static
black hole with mass M, one identifies ¢ with period
27V'M . This is somewhat analogous to the identification
which leads to the static cone solution in 2+ 1 gravity
without a cosmological constant [9]. A salient difference,
however, is that the cone reduces to flat space as M —0,
while AdS;, the covering space of the black hole, is
recovered as M — o. One would expect the event hor-
izon and singularity of the black hole to have a natural
geometric interpretation in terms of AdS;. Indeed, the
event horizon is located at (r =1I) and coincides with the
boundary between regions I and II in AdS; as well as
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with the light cone in the 1+ 1 space M,. The black hole
singularity is located at r =0 corresponding to the
boundary between regions II and III and to the light cone
in M,. r =0 is not a curvature singularity since the cur-
vature is bounded and in fact, constant in AdS;. It is,
however, a singularity because there are inextendible in-
complete geodesics. r =0 is directly analogous to the
Misner space light cone [10] on which incomplete null
geodesics pile up. Asymptotically, the black hole solu-
tion approaches anti—de Sitter space.

The black hole with nonzero angular momentum J is
obtained from (4) by making a linear combination of ¢
and ¢ periodic: (t,r,¢)~(t—nla_,r,¢+na ) where

ay=a(VMFI/I +VM—J/D) . (5)

It is possible to transform to coordinates (7,7,):

1 - ~
I=E(a+t—a_l¢) ,

¢=ﬁ(a+$—a_7/z) , (6)
Q2nF)—a? I?
ri= 2 2 J
a+_a_

in terms of which the metric (4) becomes

=2
L—M]de-sz”da

2 _
ds* = 12

1
dr2+72dg? (7)

and ¢ is periodic in 27. The rotating solution possesses
both an outer and inner horizon at F=a_Il/27 (r=I)
and F=a_ /27 (r =0) corresponding, respectively, to the
boundaries between regions I and II and between II from
III in AdS;. In addition, the region a /27 <F<VM]I
defines an ergosphere, in which the asymptotic Killing
field 0/07 is spacelike. Finally, one should note that in
contrast with the static J =0 black hole, the rotating
solution is geodesically complete.

The points identified in the rotating black hole are re-
lated by an element of SO(2,2) which as a matrix acting
on the embedding space coordinates x*=(T,X,T,,X,)
takes the form

cosha, sinha, 0 0
sinha, cosha 0 0
A= 0 0 cosha_ —sinha_ (8)
0 0 —sinha_  cosha_

For J =0 (a_=0), A reduces to a boost in the M, space,
or equivalently a translation in ¢, and has fixed points
coinciding with the singular surface » =0. For J#0, A
has no fixed points accounting for the nonsingular nature
of the rotating solution.

We now introduce a propagating quantum field in the
black hole background and calculate its Green’s function.
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Consider a conformally coupled massless scalar field ¢
governed by the action

S=— [[LV$?+ LR Vg d*x )

with R the scalar curvature. We first review the con-
struction of the Green’s function in AdS;, the covering
space of the black hole [11]. AdS; is a static spacetime
with a globally defined timelike Killing field correspond-
ing to the generator of rotations in the (T;,T,) plane in
the embedding space. There is therefore a natural vacu-
um state defined by modes which are positive frequency
with respect to this time parameter. Since anti—de Sitter
space is not globablly hyperbolic, it is important to ad-
dress the issue of boundary conditions at infinity. AdS,
can be conformally mapped to half of the Einstein static
universe with infinity mapped to the equator [10]. There-
fore, solutions to the equations of motion in one space
can be mapped to solutions in the other, and similarly,
boundary conditions at infinity correspond to conditions
on the fields at the equator. As discussed in [11], there
are three natural choices of boundary conditions. The
first, which is known as ‘“‘transparent,” simply corre-
sponds to quantizing the field using modes which are
smooth on the entire Einstein static universe. The other
two boundary conditions are obtained by imposing Diri-
chlet or Neumann conditions on the field at the equator
in the Einstein static universe. The Green’s function is
given by

(—}k(x,x')=—l———1-—+—k— 1 (10)

with A=0,1,—1 for transparent, Neumann, and Diri-
chlet boundary conditions, respectively. Observe that
|x —x'|=[(x—x")%x—x"),]""? is the chordal distance
between x and x’' in the four-dimensional embedding
space and not the distance in AdS;. The second term in
(10) is obtained from the first by the antipodal transfor-
mation x'— —x’, a discrete isometry of AdS;. In this
paper, we will be considering only the A=0 Green’s func-
tion corresponding to transparent boundary conditions

NI
Glx,x") A7 |x—x'| °

(11
Note that the Green’s function coincides with its form in
three-dimensional Minkowski space. This is expected as
¢ is conformally coupled and AdS; is conformally flat.
We now verify that the Green’s function satisfies the ¢
equation of motion as derived from (9):

3/4

VYt G(x,x")=0, x#x'. (12)

This is most easily checked by expressing the wave opera-
tor V¥V, in AdS; in terms of derivatives d, in the embed-
ding space. P®=7%+x%"/I? satisfies P*®x, =0 and is
a projection operator for AdS;. Applying it to the wave
operator 38°d,, one obtains

V£V, =P%9,(P£d,)
=P“baaa,,+3’l‘—2a,, . (13)
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Using this one verifies that (11) satisfies (12). Since the
black hole solution corresponds to AdS; with discrete
identifications, the Green’s function G(x,x’') for the
black hole can be obtained from the Green’s function (11)
for its covering space by the method of images [12].
Since the images of x’ are A"x’ with A given in (8), the
Green’s function is

G(x,x')= i G(x,Ax")=— 3

n=-—o

The contributions from the nth and —nth terms ensure
that (14) is symmetric in x and x’.

The quantum stress tensor can now be obtained from
G(x,x'). Varying the action (9) with respect to g,,, yields

_ 2_
T,uv - %Vu¢vv¢ - %g;w( V¢ ) %¢vav¢
+1g,,8V'V,9+1G ¢ (15)

with G,,,, the Einstein tensor for the background space-
time. It follows from the equation of motion for ¢ that
T,, is traceless and conserved. The quantum stress ten-
sor (T,,) is obtained by point splitting (15) and then
taking its expectation value. Using the ¢ equation of
motion in the fourth term, and substituting in

G,,=1"%g,, for AdS,, one obtains
(T,.)=1lim |>V*V*G—Lg g®Byryzg
w! T O G v T T BB T Valp

1
1612

- %V,’jV’;G ——L .G (16)

in terms of the Green’s function (14). The renormaliza-
tion of the stress tensor, ordinarily a difficult procedure in
3+1 dimensions [13], is achieved here by simply sub-
tracting off the coincident n =0 term in the image sum

(14) [14]. Substituting (14) into (16) and using
V.V, x=g,x/I 2, one eventually finds
=3 n
(T[LV>_ 1677' éo(spv_%gpvgkp‘gxp) ?
Sr,=9a x99 xb S
o ’ an
L (A"
b x — A3
3(A")acxc(A—")bdxd—(A")acxc(A")bdxd

|x —A"x|?

S . is the pull back to AdS; of Sj;,.

The stress tensor (17) can be evaluated in a particular
set of coordinates y# in AdS; by substituting in the corre-
sponding embedding x°=x“%y*). For the static J =0
(a_=0) black hole in coordinates (t,7,¢) (4), (17) takes
the form
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(1) =AM i05(1,1,-2),
(18)
AM)= V2 cosh2nmV'M +3

327 2| (cosh2nwVM —1)3/2

where M is the black hole mass. Since the series con-
verges exponentially for all real M, the stress tensor is
finite everywhere except near the singularity where it
diverges as r 3. The divergence there arises from the
fact that since r =0 remains invariant under the action of
A, the denominator in the Green’s function (14) vanishes.
Even though the coordinates (¢,r,¢) break down near the
event horizon, it is clear that the scalar (T,,){T*") is
smooth there. For M >>1, the first term in the series
gives the leading order behavior 4 (M)~e ~™M_ Recall
that as M — o, ¢ becomes unidentified and AdS; is
recovered. Smce <Tuv> was renormalized with respect
to AdS;, it vanishes in this limit. For small M, the series
can be approximated by an integral yielding
A(M)~M 3%, From the invariance of the vacuum un-
der the anti-de Sitter group, one would expect
(T} )~8&;. However, the identification in ¢ breaks the
underlying symmetry picking out ¢ as a preferred direc-
tion. (T}, ) is traceless and conserved. One should note,
however, that in analogy to the Casimir effect the energy
density is negative.

For the rotating black hole, the stress tensor (17) be-
comes

o

(T,’)=ﬁ 3 [(coshna, +2coshna_—3)r?
n=1
2, Sn
—2(coshna_—1)I ]W ,
(T,’)=L S [(coshna, —coshna_)r?
4r <=,
c,
-Hcoshna_—l)l ld |5/2 R
(T ‘—‘Lﬂ 3 [—(2coshna, +coshna_—3)r?
=
c,
+(coshna_—1)l |T|5—/2 s
2 . 2/12—
(T,‘”)=% §1s1nhna+smhna_r|fd/|—§ﬁl—l , (19

(1))=(T?)=0,
¢, =coshna +coshna_+2,
d,=|x—A"x|?

=2(coshna, —coshna_)r’+2(coshna_—1)I?,

with a; given in (5). In the J =0 (a_=0) limit, (19)
reduces to (18). Recall that in (z,7,¢) coordinates, the
outer and inner horizons are located at r =/ and r =0.
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Outside the inner horizon, where d, is positive and the
infinite sums converge exponentially, (T#V> is smooth.
The inner horizon, in terms of the embedding coordi-
nates, is the surface r2=T3 —X? =0 corresponding to the
light cone in the 141 space M,. Inside the horizon,
p=r?=T?—X? becomes negative, and the denominators
d, in (19) vanish on a sequence of timelike surfaces:

coshna_—1

= = — 12 N M>J I .
P=Pu> Pn coshna . —coshna_ /

(20)

As we now demonstrate, the nth surface in (20) consists
of points x° connected to their image A"x by a null geo-
desic and is known as a polarized hypersurface [15].
Since x and A"x are identified in the black hole solution,
the connecting null geodesic is self-intersecting. In AdS;,
geodesics are the analogues of great circles on ordinary
spheres. In other words, they are curves which also lie
on a two-dimensional plane passing through the origin in
the four-dimensional embedding space. Two points x and
y are connected by a spacelike, lightlike, or timelike geo-
desic depending on whether x%, < —1%, x%,=—I?, or
—1?<xC%, <1? respectively [16]. (Points with x%, > I?
lie on different branches of a hyperboloid and, therefore,
are not connected by any geodesic.) Since a point x on
the nth polarized hypersurface satisfies
d,=|x—A"x|?=0 implying x%A"),x°=—1% x and
A"x are connected by a null geodesic. As one approaches
a polarized hypersurface (20) from a geodesic distance s,
( T, ) diverges as s~ Since these surfaces in the
n— oo limit approach the inner horizon, r =0, the stress
tensor will diverge there. (It should be noted that (T, )
is in fact finite at the inner horizon as it is approached
from the outside. This is due to the fact that though each
of the polarized hypersurfaces contains null geodesics,
the inner horizon itself does not and is said to be non-
compactly generated.) One can estimate the back reac-
tion due to the diverging stress tensor by substituting
( T;w> into the field equation. Integrating twice, one
finds that the metric perturbation diverges as
8g,,~s "'/ on each of the polarized hypersurfaces. This
suggests that the inner horizon is quantum mechanically
unstable against formation of a curvature singularity:

For the extremal case (M =J /I), the stress tensor (19)
becomes

(TH=K(3r2—21?),

(T])=KI*,

(T§)=—K@3r*=1?),
2

(T#)=3k %—1 ]1 ,

(T!)=(T?)=0,

- V2 2 coshn7V2M +1
16ml° <, (coshnmV2M —1)32 °

For M =J /I >>1, one has K ~1 ¢ ~™/M7"2,

Note that
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19, 1993, by K. Shiraishi and T. Maki, and MIT Report
No. CTP-2243, 1993, by G. Lifschytz and M. Ortiz, in
which the quantum stress tensor for the nonrotating
black hole is calculated.

in contrast to the nonextremal case, (21) is smooth every-
where but diverges asymptotically.

In this paper, we studied the stress tensor for a propa-
gating quantum field in the 2+ 1 black hole. Considering
the relatively simple geometric structure of the black hole

solution, one would hope that further investigation would
lead to a greater understanding of its quantum properties.

Note added. After completion of this paper, I received
two papers, Akita Junior College Report No. AJC-HEP-

I would like to thank Gary Gibbons, Stephen Hawk-
ing, Miguel Ortiz, and Yoav Peleg for useful discussions.
I am grateful to M. Ortiz for referring me to [11]. I also
wish to acknowledge the financial support of the SERC.
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