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+CD and the chiral critical point
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As an extension of +CD, consider a theory with "2+ 1" Savors, where the current quark masses
are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature
and baryon density it is expected that in the chiral limit the chiral phase transition is of first order.
Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can
end in a chiral critical point. We show that the only massless field at the chiral critical point is a cr

meson, with the universality class that of the Ising model. Present day lattice simulations indicate
that /CD is (relatively) near to the chiral critical point.

PACS number(s): 12.38.Aw, 05.70.Fh, 11.30.Rd

Understanding the collisions of heavy ions at ultrarela-
tivistic energies requires a detailed knowledge of the equi-
libriiirn phase diagram for /CD at nonzero temperature
and baryon density. We generalize /CD to a non-Abelian
gauge theory with three colors and "2+1"Savors by hold-
ing the current quark masses in a fixed ratio as the over-

~ = ~up —~down —~ ~strange y

with r a constant of order 1/20. (For our purposes
the difference between the up and down quark masses
is inconsequential. ) Currently, numerical simulations of
lattice gauge theory [1] find that while there are lines of
first order transitions coming up fl..om m = 0 and down
from m = oo, these lines do not meet —there is a gap,
with /CD somewhere in between. This is illustrated in
Fig. 1, following a similar diagram ft.om the results of
Brown et al. [2].

Lines of first order transitions typically end in critical
points, so it is natural to ask about the two critical points,
labeled "C" and "'V" in Fig. 1. As m decreases &om m =
oo, the line of deconfining first order phase transitions [3]
can end in a deconfining critical point, "B" in Fig. 1.
Correlation functions between Polyakov lines are infinite
ranged at the deconfining critical point; by an analysis
similar to that given below, one can show that B lies in
the universality class of the Ising model, or a Z(2) spin
system, in three dimensions.

The opposite limit is to work up &om zero quark mass.
For three Havors the chiral phase transition is expected
to be of first order at m = 0 [4, 5], so as m increases,
the line of first order transitions can end in a chiral crit-
ical point, "C" in Fig. l. In this Rapid Communication
we show that for 2+ 1 Havors there is only one massless
field at the chiral critical point, a o meson (J+ = 0+,
predominantly isosinglet); the universality class is again
that of the Ising model. Notice, however, that very dif-
ferent fields go critical at the two critical points C and
17.

%e start at zero temperature by fitting the scalar and
pseudoscalar mass spectr»rn in /CD to that found in
a linear o model [4—6]. For three quark flavors we in-
troduce the field 4 ( qi,& q»sia), as a complex valued,
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three by three matrix, O' = P o(a' +i n' )t; ti, ...,s
are the generators of the SU(3) algebra in the funda-
mental representation, and to is proportional to the immit

matrix. Normalizing the generators as tr(t ts) = b /2,
to ——lL/~6.

The fields o are components of a scalar (J = 0+)
nonet, those of m a pseudoscalar (JP = 0 ) nonet. The
latter are familiar, as s j 2 3 are the three pions, denoted
as x without subscript, and the x4 5 6 7 are the four kaons,
the K's. The ms and pro mix to form the mass eigen-
states of the g and g' mesons, with mixing angle 8„„
[10]. For notational ease we define the components of
the scalar nonet analogously: we refer to 0$ 23 as the
0 s to 04 5 s 7 as the crit''s, while os and tro mix to form
the o„and o„~. This multiplicity of eighteen fields is to
be contrasted with the usual cr model with two Bavors,
which only has three x's and one u meson.

The efFective Lagrangian for the 4 field is taken to be
[4-6]

8 = tr IB„@I —tr[H(O+ 4t)] + p tr (4 t4')

—v 6 c[det(C) + det(ot)]

+(gi —g2) (tre 4) +3g2 tr (4' 4)

The parameters of the linear cr model are the background

QeDV

FIG. 1. Proposed phase diagram for 2+1 Savors, following
Ref. [2]: C is the chiral critical point, 'D the deconSnmg
critical point.
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Beld H, a mass parameter p2, an "instanton" coupling
constant c, and two quartic couplings, gq and g2. Ne-
glecting effects from m„~ g ms, for the background
field II we take II = ho to —~2hsts .The current
quark masses are then related to the background field
as m„p = mao~n ~p —hs and ms~range ~0+ 2~8 ~

Throughout this paper we work exclusively at the sim-
plest level of mean 6eld theory. Up to difFerences in nor-
malization our intermediate results agree with those of
Chan and Haymaker [6]; recent analyses were also car-
ried out by Parwani [7], Meyer-Ortmanns, Pirner, and
Patkos [8] and by Metzger, Meyer-Ortmanns, and Pirner
[9]. Because we attempt to fit to current experimental re-
sults [10],our fit in (2) differs &om Chan and Haymaker,
but is similar to that of Refs. [7—9]. Details are given
elsewhere [11].

We assuxne that there are nonzero vacuum expectation
values for ao and 0's, 0'0 ~ ZQ + O'Q 0's m —~2Zs +

Expanding the Lagrangian in powers of u and x,
expansion to linear order 6xes the values of Zp and Zs,
while expansion to quadratic order gives the masses of all
the fields: the mass of the pion, m, etc. We also need
the pion decay constant f = /2/3(ZO —Zs) and the
kaon decay constant f~ = g2 /3(ZO + Zs/2).

There is one unexpected feature of the results [6, 7].
For the two equations of motion, the masses of the entire
pseudoscalar nonet (for m, m~, m„, and m„i), and the
masses of half the scalar nonet (for m~ and m «), the
two quantities p2 and gq only enter in tandexn, through
the new parameter M2 = y2+gi (Z02+ 2 Z2s). This means
that we can 6t to the pseudoscalar spectrum, and so fix
Mz, and yet still be free to vary gi. the only change is
to alter the masses of the oz and the u„~. This technical
detail plays an important role in what follows; although
there must be some simple group theoretic reason for it,
as of yet we do not know what it is.

There is some &eedom in deciding how to 6t the pa-
rameters of the linear u xnodel. Various kinds of 6ts are
given by Meyer-Ortmanns, Pirner, and Patkos [8] and by
Metzger, Meyer-Ortmanns, and Pirner [9]. Following the
experience of Chan and Haymaker [6, 7] we do not fit to
the entire pseudoscalar mass spectr»m for the x, K, g,
and g' xnesons, since it turns out that the kaon mass is
fairly insensitive to the ratio of vacuum expectation val-
ues, Zs/Zo. On the other hand, both the kaon decay
constant, fa, and the mixing angle between the rI and
the g', 8„„~,are very sensitive to this ratio. Because of
this, we leave the ratio Zs/Zo as a free parameter, and
fit just to the pion decay constant f and to the masses
for the m, q, and q' mesons. Taking the values m = 137
MeV, mz ——547 MeV, mz~ ——958 MeV, and f = 93
MeV, we choose the parameters

Zp ——127 MeV, Zs ——13 MeV,

hp = (290 MeV) hs = (281 MeV)
M =+(642 MeV), c = 1920 MeV, g2 ——30,

for which Zs/Zo O.l. The kaon mass comes out a
bit high, maioli

——516MeV instead of the (average) ex-
perimental value of 497MeV; the fit gives a kaon decay
constant of f~~' ——l.09MeV, which is close to the exper-

l'. = —hpZp + —p Z ——Z + —Zp-
1 2 2 C 3 g1 4

3 ' 4 (3)
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FIG. 2. Plot of the masses of the cr„and the cr„i versus
the coupling g~ for the 6t of 2.

ixnental value of 113MeV; lastly, the result for the g-g'
mixing angle, 8zi, = —10.4', is reasonable. (The value

obtained from radiative decays [12], 8„'„~ = —20', fa-

vors even smaller values of Zs/Zo. ) Because Zs g 0,
the ratio of the strange to up (= down) quark masses is

~s /rii p = (&o + 2&s)/(Iio —Iis) = 32, and not the
often quoted value of 20.

The fit of (2) makes unique predictions for two xnasses
in the scalar nonet, m „=1177 MeV and m ~ = 1322
MeV. There are observed states [10] with these quantum
numbers, the ao(980) and the Ko (1430), respectively; the
values for the o and the o~ are not too far ofF, although
the splitting between them is too small. We note that the
identification of the Go with the o is problematic (VII.21
of Ref. [10]): the as(980) may not be the 0 [13], but a
KK molecule [14].

There is no comique prediction for two other members
of the scalar nonet, the o.„and the o„~. As remarked,
the masses of all other fields only depend upon the pa-
rameter M . In Fig. 2 we illustrate how m „and m

change as gi is varied at fixed Mz = +(642 MeV)2. We
identify the cr„and the n„with the observed states [10]
with the same quantum numbers: the fs(975) and the
fo(1400), respectively. With the parameters of (2), if
we require that m, = 975 MeV, Fig. 2 predicts that
m „=1476 MeV instead of 1400 MeV. Also, gq ——40,
p2 = —(492 MeV)2, and the mixing angle between the
o„and the o„ is +28'. As before the identi6cation of
the o„i with the fo(975) is open to question (VII.192 of
Ref. [10]):the fs(975) may be not the cr„[15],but a KK
molecule [14]. For the analysis of how far /CD is from
the chiral critical point, all that is ixnportant is that the
0'„i is not light [16], so at zero temperature the quartic
coupling gq is large.

The details of the spectrum at zero temperature are
not needed to understand how a chiral critical point can
arise. In mean field theory the effects of nonzero tem-
perature or baryon density are incorporated simply by
varying the mass parameter p2. This is valid in the limit
of very high temperature, but should be qualitatively cor-
rect at all temperatures.

We begin with the SU(3) symmetric case, hs ——0. For a
constant field Zp the Lagrangian reduces to the potential
for Zp..



QCD AND THE CHIRAL CRITICAL POINT R308I

This model has precisely the same phase diagram as that
for the phase transition between a liquid and a gas. For
zero background field, hp ——0, the instanton interaction
det(4) Zp is cubic and so drives the transition first or-
der. As hp increases the transition becomes more weakly
6rst order, until at hp ——hp" the line of first order tran-
sitions ends in a critical point. For hp ) hp" there is no
true phase transition, just a smooth crossover.

The critical point occurs when hp"t = cs/(27gi),
Zp"' = c/(2gi), and y2„~ = c2/(3gi). At this point
the potential in Zp —Zp" is purely quartic, C = gi(Zp-
Zp"i)4/4, so mz, = 0. The other fields are all mas-

sive: m = mls = m = c /(9gi), m„= 10m,
mz = m2 = m2 = (7 + 18g2/gi) m . Since only
the u„ is massless at the chiral critical point, the sim-
ilarity to the liquid gas phase transition extends to the
universality class, which is that of the Ising model.

This conclusion remains true away &om the case of
SU(3) symmetry, hs g 0. Numerical analysis [11] shows
that there is a single, massless 6eld at the chiral critical
point, the o'„, with the universality class that of the Ising
model. Of course for hs g 0 the a'„~ field does not remain
a pure SU(3) singlet, but mixes to become part octet.

The possibility of a chiral critical point can even be
seen &om the calculation of the zero temperature spec-
trum in Fig. 2. Although we did not remark upon it
before, when the coupling gq 3.8, m, = 0. There it
appears as mere curiosity; after all, in Fig. 2 p2 has the
value appropriate to zero temperature, while the value
of p2 at nonzero temperature (or baryon density) must
be larger. Even so, Fig. 2 does illustrate how a single
field, the o.„,can become massless at a special point in
the phase diagram.

We can further explain the nature of the entire phase
diagram as a function of m„p ——mg „versus m, t, „g„as
proposed in Fig. 1 of Ref. [2]. The basic idea is along the
entire line of chiral critical points, only the u„ is mass-
less, but that the singlet/octet ratio in the o'„~ changes.
At the SU(3) symmetric point, m„& ——mdQ~~ m, t,~„s„
the o„i is an SU(3) singlet. Decreasing m, q, s, to the
critical point where m, ~ i,n——s0 and m„~ = ms~~„g 0,
the cr„becomes entirely strange, cr„88.

The opposite limit of SU(2) chiral symmetry, m„~ =
mg = 0, is more familiar. Assume, as in Ref. [2],
that the chiral phase transition with two massless Ha-

vors is of second order, with the universality class that
of an O(4) critical point. There is then a special value of
m, t,, „s,——m,'i",~ „with a line of O(4) critical points for

m, t, „~, ) m', t", „„and a line of 6rst order transitions
when m, t, s, ( m,'~", , Wilczek [17] observed that
exactly at m, t, „z, ——m', t", „the chiral transition is in
the universality class of an O(4) tricritical point. In our
view, at the critical points along m, t, z )m,'t",t„,the

o„ is a pure SU(2) state, with o.„uu+ dd, while the
pions are massless because m„p = md „——0. Whether
the universality class is O(4) critical or O(4) tricritical
depends upon the relevant quartic couplings.

The analysis can be extended to the case where the
chiral transition is of first order for two, massless Sa-
vors, but the gap between chiral and deconfining regions

remains. Then Fig. 1 of Ref. [2] would have to be modi-
fied, with a band of 6rst order transitions about the axis
m„p = mg ——0. These 6rst order transitions would
end in chiral critical points, in the Ising universality class
&om the presence of massless cr„t fields.

Lastly we ask Irons far is QCD from the chiml critical
pointF In Fig. 1 we have grossly exaggerated the case,
putting /CD very close to the chiral critical point. But
the data of Ref. [2] do indicate that as a function of m,
/CD is only about a factor of 2 from the chiral critical
point.

We first assume that the chiral phase transition is of
first order for three massless Savors because of the pres-
ence of the instanton coupling det(C'). To find the
chiral critical point we vary the current quark masses,
or equivalently the background fields ho and h8. We
require that the ratio of strange to up quark masses
equals the value found &om the 6t at zero tempera-
ture, (hp + 2hs)/(hp —hs) = 32. By varying hp, hs,
p, , Zp, and Zs, and otherwise using the values found
in (2), we find that the critical point occurs for hp"~ =
(62 MeV) h"" = (60.4 MeV) p = (183 MeV)
Zp" ——14.5 MeV, and Zs" ——2.7 MeV. We then com-
pute the ratio between the current quark masses at the
chiral critical point to those in /CD:

hcrit J crit
"P = = 0.01. (4)

mup hp —hs

Now we readily confess that this ratio, computed in mean
6eld theory, is at best crude. Even so, numerical sim-
ulations [2] find that the ratio in (4) is not 0.01, but

0.5—mean field theory is off by almost two orders of
magnitude [18].

There is an elementary explanation as to why mean
field theory predicts that /CD is far from the chiral crit-
ical point. In /CD at zero temperature, we have as-
sumed that m, is large, about 1 GeV. In contrast, at
the critical temperature for m = m'„"t, by definition m
vanishes. At the face of it, such a large change in mass
is rather implausible if /CD is near the chiral critical
point. Similarly, the lighter that m~, is at zero temper-
ature, the more natural it is that m„p is near m'„" . For
example, if m, = 600 MeV [16], the ratio in (4) be-
comes 0.06 instead of 0.01, which is still a long way &om

0.5.
Thus our initial assumption must be false. In the chi-

ral limit for three massless Savors, there are two mech-
anisms for generating a 6rst order transition. The first
is the presence of the instanton coupling det(4) [4, 5].
From (4), in mean field theory this gives the wrong phase
diagram, with m'„" much smaller than m„p. Therefore
perhaps the second mechanism is operative, a type of
Coleman-Weinberg transition [19].

In xnean field theory quartic couplings are fixed and
do not change with temperature; a Coleman-Weinberg
transition is one in which the quartic couplings run &om
a stable into an unstable regime, and so thereby generate
a finite correlation length dynamically. This phenomenon
can be demonstrated rigorously in 4 and 4 —e dimensions
[19—22]; extrapolation to three dimensions, e = 1, is open
to question.
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If in the chiral limit the phase transition is of first order
because it is a Coleman-Weinberg transition, it is rea-
sonable to suggest that even for nonzero quark mass the
quartic couplings change significantly with temperature.
Since /CD appears to be in a region of smooth crossover,
presumably the quartic couplings of the cr model do not
run all the way into the unstable regime. This could ex-
plain the apparent discrepancy with mean field theory in
(4). At the very least the quartic couplings do tend to run
in the right direction: in the in&ared limit in less than
four dimensions [21,22], the couplings run most strongly
for large g2, approximately at constant gq &om large to
small values of gq. This type of running is precisely what
is required at the chiral critical point: as illustrated in
Fig. 2, even at zero temperature we can make o.„mass-
less by going &om large to small values of gq, keeping g2
fixed.

Given the limitations inherent in present lattice simu-
lations for 2+ 1 Bavors, we conclude with a conjecture:
as suggested by our illustration in Fig. 2, perhaps /CD
is very close to the chiral critical point. There is no good

reason why it should be; but if we are lucky, then even if
there is no true phase transition in /CD, the o„could
still become very light. As we alluded to previously [23],a
light 0„~ may generate large domains of disoriented chiral
condensates in the collisions of large nuclei at ultrarela-
tivistic energies.

Speculation aside, we have shown how a detailed un-
derstanding of the spectrum of the scalar nonet at zero
temperature, especially knowing exactly where the 0.„
meson lies, has direct and dramatic consequences for
the phase diagram of /CD at nonzero temperature and
baryon density. In this way, one area of hadronic physics
unexpectedly fertilizes another.
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