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Spontaneous C'P violation in the supersymmetric Higgs sector
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Spontaneous CP violation in the minimal supersymmetric standard model with a gauge singlet
and a cubic superpotential is examined. Although the tree-level Higgs potential conserves CP, it
is shown that with the inclusion of the one-loop top-quark radiative efFects CP may be broken
spontaneously. The CP-violating miniinum requires two neutral (hz, hs) and one charged (H+)
Higgs boson to be relatively light with mug + mug 100 GeV and m~+ 110 GeV. The electric
dipole moment of the electron is in the observable range of ( —to 3) x 10 ecm.

PACS number(s): 11.30.Er, 11.30.Pb, 11.30.gc, 12.60.Jv

There are a number of reasons why it is interesting to
study CP violation arising from the Higgs sector. Such
CP violation could lead to large and soon-observable
electric dipole moments for the electron and the neutron
[1].It may have a role to play in baryogenesis in the early
Universe [2]. It is even possible that this may be the ori-
gin of the CP violation observed in the kaon system [3].
And such Higgs sector eKects may be readily studied at
present and future colliders.

In this Rapid Communication we explore CP violation
phenomenology in the Higgs sector of low-energy super-
symmetry, in the simplest model where such effects can
appear [4]. That model is the minimal supersymmetric
standard model (MSSM) to which a gauge-singlet Higgs
superfield N has been added with the requirement that
the superpotential contain only cubic terms [5]. There is
no significant CP violation in the parameters of the Higgs
effective potential (see below), so that any CP violation
in the Higgs sector of the model must be spontaneous.

It has been shown by Romao [6] that the potential of
this model, both at the tree-level and with certain ra-
diative eHects included, has no CP-violating minimum.
He proved that at the CP-violating extremum there is
always a mode with negative mass-squared. Our main
result is that for much of the parameter space the top-
quark loop contribution to the efFective potential [7] turns
the CP-violating saddle point into a minimum, and in

I

fact the absolute minimum [8]. At this CP-violating
true minimum some of the Higgs Selds are necessarily
very light (these being the modes that have negative
mass-squared when the top-effect is turned off), in fact
too light generally, ruling out much of parameter space.
We argue, however, that if the top-loop efFect is large
enough a viable CP-violating minimum can result. In
such a minimum the sum of the masses of the lightest two
neutral scalars is not much above Mz and the charged
Higgs boson mass is less than about 110 GeV. In this
scenario the prospects for detecting these Higgs parti-
cles at the CERN e+e collider LEP and LEP-200 are
very good indeed. Moreover, since two of the neutral
Higgs fields are light, the electron electric dipole moment
(EDM) comes out in the experimentally accessible range
of (10 2s to 3 x 10 27) e cm (typically).

Only the radiative effects of the top-quark will be sig-
nificant, so that the relevant terms in the superpotential
are

~ = &HiH2N + skN + htQH2T'

(H ' i (H~+'t
Here Hi ——

I

'
I, H2 —

I ~', I, so that HiH2

e sHi H2s = (Hie'H2o + Hi H2+). The scalar potential for
the fields Hi, H2, and N is then given by V Vo + Vt~p&

where

V. = —s'(9i + 92) (IHil' —IH21')'+ —,92(IHil IH21 —IHiH2l')

+ &' IHiH21'+ INI'(IHil'+ IH2I') + &'INI'+ &&(HiH2N" + H c.)
+ &Ai(HiH2N+ H c ) + s&As(N'+ H c ) + ~ilHil'+ ~2IH2I'+ ~MINI' (2)

Vg p
—— [(h, lH2I +M,') ln((h, lH2I'+M. ')/Q') —(h,'IH2I ln(h, lH2I'/Q )}]

Here IHil—:HiHi, etc. Vq~z denotes the leading-
log top-quark one-loop radiative correction. We have
assumed degenerate squarks: M- = M- = Mgi gR SQ

(174 GeV)s.
It is easy to see that all the parameters in Eq. (2)

can be made real by field redefinitions, except the ratio
r = Ai/Ak. We assume that parameter, too, is real. (It
would be approximately so in most realistic scenarios [9].)

I

To examine the CP-violating minimum, let us define

E = &A~/INI = r&A/INI

E = skAINI/IHiH2I.
(4)

Here and throughout A = Ag. Let us further define the
phases of the fields Hy H2 and N as
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arg(Hi H2N) = rl, arg(N ) = (
There are three terms in Eq. (2) that depend on q and

(. Extremizing the potential with respect to these phases
gives the CP-violating solution to be

1 &DF D F)
cosq = —

]

2 gE2 F D)'
1(DE D E'I

cos (6)2(F2 E D)'
1 (EF E F)

cos(g —() = —
i2 iD' F Ey'

Esinrl = —Fsin(.

These equations can be represented graphically by the
triangle in Fig. 1.

Denoting the vacuum expectation values (VEV's) of
the neutral fields by (Hi) = vi, (H2) = v2 and (N) = z,
one can expand the 6elds around their minimum:

M44 = r(4r —1)A +36' A viv2/x
+4r (6r —1)A A(vi v2/x) cosrI,

Mss ——3rd + 12@A viv2/x + 12rAA(viv2/z)cosy,

JH4s ——4r AA(vivz/z)sing,

Mi4 = —rAAv2cosrl + 2A zvi —6fA'v2vi/z,

M24 = —rAAvicosg+ 2A zv2 —61 A viv2/z,

M34 ——r AAvsxng,

M ~5 ——3rAAv2sing,

M25 ——3rAAvgsing)

JH35 3r—AAvcosrI —6rA viv2v/z, (9)

where Ai ——
2 (gi + g22) = M&/v, A = Al„and rA = Ap.

Here and henceforth vq, v2, and z stand for the absolute
values of the VEV's. b, in the second line of Eq. (9) is
the top-quark radiative correction for which a reasonable
approximate form is

1 vi . [v2[
Hi ——vi+ ~( (

4i —i @s

1 v2 . [vi[
H2 ——v2+ ~( [

42+ i

1 x
N = z+ —[44+ i@s],

2 z

with v = ~vi~ + ~v2~ . In the absence of CP violation,
4q 2 4 would be scalars and 43 5 pseudoscalars. One pseu-
doscalar gets absorbed by the Z. (We are working in the
unitary gauge. )

It is straightforward to expand the potential in Eqs.
(2) and (3) about the CP-violating extremum to obtain
the mass-squared matrix of 4;, i = 1,2, . . . , 5. In do-
ing this it is convenient to adopt a common approach of
choosing Q in Eq. (3) so that at the minimum of Vo

the relation Vt' = 0 is satisfied. [Then Vt z does not
contribute explicitly to the equations for vq, v2, and z,
it only corrects the (22) entry of the Higgs mass-squared
matrix. ] The mass-squared matrix elements are

A, 4~2 m,2

The parameter p represents certain nonlogarithmic cor-
rections which may be significant if tr, t~ mixing-is not
negligible [10). The physical charged Higgs boson mass
is given by

m~p ——Mii + (Br —1)A v

Since Ai and v = gvi + v2 = 174 GeV are known, our
parameter set is (tanP, z, A, r, A, cosrI, b,}where tanP =
v2/vi. [We have used Eqs. (4) and (6) to eliminate k in
favor of the angle cosrl. ]

Since two of the neutral Higgs bosons (hi and h2)
are relatively light in this model, their masses and mix-
ings are constrained by the LEP data on Higgs boson
searches. In Fig. 2 is displayed a plot of the experi-
mentally allowed region in the A —cosrI plane for fixed
values of the other parameters. The first constraint is
that hq and h2 have not been produced in the decay

M„= A~v, + 3ra v„2 2 2 2

M22 —(1 + b)Alv2 + 3TA Vi,
rp2v2

Aiviv2 + (2 —3r)A viv2,
2 2W,3=M23=0,

0.25

0.20—

-1.0

HIH2
N

FIG. 1. This triangle shows the relation between the ex-
tremal values of the phase angles g and ( and the magnitudes
of the Selds and the parameters of the Higgs boson potential.
If D, E, and I' are not in such a relation that this triangle
can be drawn, then there is no CP-violating extremum.

015 I I I I I I I I I l I I I I I I I I I I

-1.0 -0.5 0.0 0.5 1.0

cosg

FIG. 2. A plot of the allowed region (inside the
closed curves) of the (A —cosrl) plane, for tang = 1, r = 0.8,
A = 3v, x = 3.8v, and 4 = 3.8. The lower boundary of the
region corresponds to mp„+ mp, ~

——Mz. The upper bound-
ary is the constraint from nonobservation of Z —+ 2' + h.
The contours inside the region represent the electron EDM in
units of 10 ecm.
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of a real Z [11]. Since there is no significant suppres-
sion in the Zh1h2 coupling, Z ~ h1 + h2 should be
kinematically forbidden. The bottom (small A) bound-
ary of the allowed region in Fig. 2 corresponds to
mh, , + mp„——Mz. The second constraint is that a
light Higgs particle have not been produced in the decay
Z -+ Z'h. If h = g,. i n;4;, where P,. ~n;~ = 1, then
the cross section for the process is approximately propor-
tional to ~aicosP+ a2sinP~ m& . The condition we have
imposed, that gives the upper (large A) boundary of the
allowed region is [11]mg ) (60 GeV) ~aicosp+ o'2sinp~ .
In addition, the "pseudoscalar" should be heavier than
20 GeV [12], which is always satisfied in the fit of Fig. 2

(see Table I).
The allowed region in Fig. 2 corresponds to the fixed

parameters having the values tanP = l, r = 0.8, A =
3v, z = 3.8v, and 4 = 3.8. This is a relatively large value
for 4, but is realized if the top Yukawa coupling is large,
near its renormalization-group fixed point. For example,
if M,~ = 3 TeV, hq ——1.05 [at Q = (3 TeV)2] and p = 1
in Eq. (10), we obtain b, = 3.8 at Q2 = m~~. [This in-
volves a further running &om Q2 = M, to m~2 assuming
nonsupersymmetric (non-SUSY) two-doublet spectrum. ]
A larger value of hq will be inconsistent with perturbative
unification (in the desert scenario), so a larger 6 seems
to be unlikely, unless the squark masses are heavier than
3 TeV. If b, is taken to be smaller (with the other pa-
rameters fixed at the above values), the allowed region
rapidly shrinks and vanishes at 4 3.1 corresponding
to M,~ 1.5 TeV (with the same hq). Similarly, if tanP
is increased above 1, the allowed region shrinks and dis-
appears at tanP 1.3. In this scenario of CP violation,
then, the parameters A(M, ~, hq) and tanP are tightly
constrained. The same is seen from Fig. 2 to be true of
the parameter A which must lie in a rather narrow range
(around 0.2 for r = 0.8). Numerically it is found that as r
decreases the allowed range of A shifts upward, and vice
versa. On the other hand, the parameters r, A, x, and

cosy can vary over a rather wide range. For example,
we find solutions for 0.5 & r & 2.7. Much of the above
behavior can be understood fairly well analytically.

Consider certain subdeterminants of the 5 x 5 mass-
squared matrix given in Eq. (9). If the CP-violating ex-
tremum is to be a local minimum, this matrix must have
no negative eigenvalues and its subdeterminants must be
all non-negative:

deti2ss ——9A r A sin 2Psin tv
x (2Ai[2Aib, —2(3r —1)A ]

—A (3r —1) ),
(12)

dets4s ——3A r A z (3r —1)sin q(9A sin 2Pv

+4A x v + 12AAsin2Pcosrlxv ), (13)

where det, ~...I, is the determinant of the submatrix corre-

sponding to the ij - kth rows and columns. Since r & 0
&om JH2~ss, Eq. (13) implies that (3r —1) & 0. If one
sets b, = 0, then the right-hand side of Eq. (12) with

(3r —1) ) 0 is negative. This is the result of Romao

[6], that at tree level spontaneous CP violation does not
occur in the model.

Equations (12) and (13) allow us to place bounds on
A2 if CP is spontaneously broken in the Higgs sector:

0 & (3r —1)A & lAq (v'1+ 6 —1) (14)

One also sees &om Eqs. (12) and (13) that the light

Higgs boson masses are made largest by making sin2P
large, that is, tanP 1 is preferred. As a consequence of
Eq. (14), the charged Higgs boson mass is predicted to
be less than about 110 GeV [see Eq. (11)].

More insight can be obtained by considering the small
A limit, which is justified by eq. (14) and by our nu-

merical results. As A ~ 0, the mixing between the 41 2 3
block and 44 5 block goes away. If one block diagonalizes
to obtain the 3 x 3 block to order A2 one finds

M (4i, @2,4's) =

+ CA1

1V1
—viv2[Ai + 2(3r—

0
v22cos rl

V1V2COS 2

( —vv2sinilcosrl

V1V2COS 2

V1COS
—v v1slngcos'g

—vvqsinrlcosrl )—vv1 slngcosg
v'sin'rl )

-»»[A. +2(3r-1)A'] 0~
1)A ] Aiv2(1 y 6) 0

0 0)

where C = [4r(3r —1)/(4r —1)] (A /Ai). From the
eigenvalues of M (4'i, @2,4s) a nontrivial lower bound
on A can be derived as follows. Label the eigenvalues to
be MI & Mgg &

Mangy It is possible by considering the
eigenvalues as a function of C (defined above) to show
that M&~ & CM&~ ——CAiv2. (This can be done by plot-
ting the eigenvalues of M2(C) /M&~ versus C and consid-
ering how often they cross the line y = C which can be de-
termined from the equation det(M (C)/M& —CI) = 0.
This is easily seen to be quadratic (not cubic) in C and
to have two real roots, one of which is C = 0.) From
Eq. (15) one sees that for sinall A2 and b, & cot2P —1
the largest entry of M2 is greater than (1+ A)Aiv2 =

Cosg
-0.5
0.0
0.0
0.5
0.5
0.5
0.67

mg, mg, RgI. Rg2
0.235 34.3 56.9 -0.78 -0.29
0.17 49.5 41.6 -0.92 -0.29
0.21 42.5 53.3 0.88 0.31
0.195 59.2 32.0 -0.82 -0.24
0.225 63.2 30.6 -0.73 -0.21
0.253 68.5 26.2 -0.67 -0.19
0.223 66.7 24.5 -0.81 -0.23

Rg3 Rgg
0.55 0.53
0.25 0.24
0.35 -0.33
0.52 0.49
0.65 0.61
0.74 0.68
0.55 0.51

0.17
0.08
-0.11
0.18
0.23
0.27
0.20

R23
0.83
0.97
0.94
0.85
0.76
0.68
0.84

-10.0
1.75
3.0
11.5
15.2
21.5
19.8

TABLE I. Some selected points in the (A —cos))I) plane for
the same parameter values as in Fig. 2. mq, and mh, are
the masses (in GeV) of the lightest two neutral Higgs bosons
hz and hz. The R,~ are defined by h, = g. R;~4~ The.
electron EDM d, is in units of 10 ecm.
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(1+ b, )Mz2sin p. Therefore M12&1 & (1+ 6)Mz2sin p.
The trace of M2 implies that M + M1 + M&&

Mz2(1+ 3,sin p+C). Thus M + M11 & Mz(C+cos p).
This together with M&2 (CMz imply that if C ( cos2P,
then (M& + M&1)/Mz & v C + cosp, while if C & cos2p,
then (M1 + M11)/Mz & y 2C + 2cos2p. In order to have
Mg + M11 & Mz it then must be that C & (1 —cosP)2.
Using the definition of C one gets a lower bound on A,
which combining with Eq. (14) gives

4r —1 2 2 1

4r
Aq(1 —cosP) & (3r —1)A & —Aq(v 1+6 —1) .2

(16)

For the values of r = 0.8, b, = 3.8, tanP = 1 that are
used in Fig. 2 one has 0.13 & A & 0.41 which is seen
to be satisfied well by the numerical results. One can
also derive from Eq. (16) a better lower limit on r than
r & 1/3.

A remark about the small A limit is in order. From Eq.
(4) and Fig. 1 it can be seen that as A ~ 0, z/A -+ r/k
(k in Fig. 2 is about 0.63, the fixed point value. ) Terms
have been dropped in deriving Eq. (15) that are down

by O(Ax/A). For large r, these terms become important,
which tend to decrease the light eigenvalues of M2. This
is why no realistic solution exists for large r (r 2.7).

In Fig. 2 we have also plotted contours of the electric
dipole moment of the electron. These have been com-
puted using the results of Leigh, Paban, and Xu (LPX)
[1]. Only the graphs with the same topology as the top
quark graphs (Figs. 1 and 2 of LPX), and only the contri-
butions &om the lightest two neutral Higgs bosons have
been included. This should be good to about 20%%up. The
typical values of d, are in the range (10 zs to 3 x 10 27)

ecm, interesting for future atomic experiments. In Ta-
ble I are presented the masses and mixings of the light-

est Higgs bosons for various A and cosy in Fig. 2 &om
which we have computed d, . The neutron EDM (d„)
arising &om the two-loop Higgs exchange graphs [1] is
d„~ 10 ecm. The contribution to d~ coming from
the one-loop gluino graph is suppressed both by powers
of the squark mass [which has to be big, see Eq. (11)]and
by small phases. (The gluino phase is itself a loop effect
while the squark mass phase ends up being suppressed
by Ax/A 1/5. ) Thus there is no conflict with present
limits on d„[10].

It is interesting to ask if the Higgs sector CP violation
alone can account for e and e' in the K meson system.
Pomarol [3] has shown that this may indeed be possible
in a more generalized version of the SUSY singlet model.
Since the effects of spontaneous CP violation felt in the
fermion sector in our model is identical, we expect the
results of Ref. [3] to hold in our case as well.

So far we have said nothing about whether the CP-
violating minimum that we have been studying is also the
absolute minimum. For fixed ]Hq], ]H2], and ]N] it is easy
to see that V at the CP-violating extremal angles [Eq.
(6)] is lower than at the CP-conserving values q, ( = 0, z.
Of course the true CP-violating and CP-conserving rain-
ima will not be at the same values of Hq, H2, and ¹

However, it can be shown analytically that for small A

at least the CP-violating minimum is the lowest [10].
We have verified this result numerically for some reason-
able values of the parameters. It should be emphasized
that the existence of this deeper CP-violating minimum
should rule out much of the parameter space because of
the tendency of the lightest neutral Higgs boson to be
too light.
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