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Fermion back reaction and the sphaleron
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Using a simple model, a new sphaleron solution which incorporates finite fermionic density effects is
obtained. The main result is that the height of the potential barrier (sphaleron energy) decreases as the
fermion density increases. This suggests that the rate of sphaleron-induced transitions increases when
the fermionic density increases. However the rate increase is not expected to change significantly the
predictions from the standard sphaleron-induced baryogenesis scenarios.
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Nonconservation of baryon number in the standard
model through quantum effects (anomalies) is well known
[1]. While instanton-mediated baryon decays are negligi-
ble, the same cannot be said for transitions occurring be-
cause of monopole catalysis [2], high temperature [3,4],
high densities [5,6], or in the presence of a heavy particle
[7] (for an excellent review of these four mechanisms, see
Ref. [8]).

The basis for all these transitions is the level crossing
phenomenon [9] which is usually illustrated by looking at
adiabatic changes in the gauge field configuration and at
the accompanying variation in the energy levels for the
fermions resulting in a change in the fermion number.
This description neglects the effect of the fermion back
reaction: a change in the fermion density can introduce a
change in the gauge field configuration, just as a change
of gauge field configuration can change the fermion densi-
ty. This is most easily seen in the Schwinger model
where this back reaction of the fermions is responsible for
oscillation in the fermion number [10]. The fermion back
reaction is a purely quantum mechanical effect being a
direct consequence of the anomaly equation. Since the
focus of fermion number violation has been in the study
of solutions to the classical equation of motion (e.g., in-
stantons and sphalerons), it is, therefore, not surprising
that little attention has been paid to this back reaction.
Further, it might be very difficult to properly take into
account the fermion back reaction in realistic (3+1)-
dimensional theories since the resolution of even seeming-
ly straightforward related issues, such as the gauge in-
variance of the free energy at finite temperature and fer-
mionic density [11], require a careful treatment of non-
perturbative effects to be properly resolved [12].

Fortunately, the situation is simpler in (1+1)-
dimensional models where one can, through bosonization
[13], take into account the fermion back reaction at the
classical level. The present work illustrates some of the
nontrivial effects of this fermion back reaction using a
simple model which has been extensively studied in the
past, namely, the Abelian Higgs model axially coupled to
fermions (see for example [6,14-18]).
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The Lagrangian density describing this model is
L=1iy"3,—iey’ 4, )p—LF, F*
+(D,$)(D#$)* —A(|$|>—c?)?, (1)

where D,=d,—ied, and the space coordinate extends
from —L to L. This model is to be regulated such that
the gauged current ¥y*y>y is conserved while the vector

current obeys the anomaly equation
T o _ e
o ¥y*y=9,Jt=— Ee‘“’Fw . (2)
Instead of working directly with the fermionic La-

grangian, it is preferable to use the Bose-equivalent form
[10,13,16]
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where the mass term for the photon has to be included in
order to give the bosonized Lagrangian the correct sym-
metry. The properly regularized vector current is then
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which obeys the anomaly equation (2).

The main reason for using the Bose-equivalent formu-
lation is that the anomaly equation of the fermionic
theory is present at the classical level, provided the La-
grangian is properly regularized. This ensures that the
level-crossing effects connected to the anomaly are in-
cluded in the classical equations of motion. This is
preferable to the usual analyses (e.g., see [17—19]) where
fermions are essentially ignored except for the fact that,
through the anomaly equation, a change in the Chern-
Simons number of a given gauge field configuration is
known to be accompanied by a corresponding change in
the fermion number.

The static energy density is easily obtained in the
X = A,=0 gauge [16]:
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As a result of this gauge choice, the fermion number and
the Chern-Simons number are identical.

Suppose one ignores the explicit mass term for the pho-
ton, which is equivalent to ignoring the contribution
from the fermions. One then finds that & has an infinite
number of local minima such that

_ 7TNCS

! eL
where N, an integer, is the Chern-Simons number. Fol-
lowing [17,18], one can construct a noncontractible path

interpolating between two vacuum states [23] using the
parametrization

, ¢=cexplied x), (6)

=
AI(T)_ eL (N +T) ’

o))
¢(x;7)=c explie A | x)[ cosmr+isinrrd(z)] ,

where z =V'Ac?sin(77)x. As explained by Manton [23]
and Carson [18], the sphaleron configuration is obtained
through a minimax procedure as follows: the set of path
{#(x;7),4,(7)} is the finite-energy field configurations
that interpolate between two vacuum states as 7 runs
from O to 1. Therefore, as a function of 7, there must ex-
ist a point along the path where the energy reaches a
maximum E_, . By considering the set of all such paths,
one can find a function ®(z) for which the energy E_,,, is
minimal. This configuration is the desired sphaleron
which is a solution to the static equations of motion that
corresponds to a saddle point of the energy functional for
this system. The importance of these sphaleron
configurations is that they are the main contributor to
baryon-number-violating processes occurring at finite
temperature [3].

It is straightforward to show that the sphaleron
configuration for the Abelian Higgs model without fer-
mions is given by ®(z)=tanh(z) and 7= in the limit as
L — . The energy along the corresponding path is then

_ 8V Ac3

E(7) 3

[sin77| . (8)

This results in a periodic effective potential as function of
the fermionic density (Chern-Simons number) as shown
by the dashed line in Fig. 1.

In order to consider the effects of including the fer-
mions in the system, one may reintroduce the mass term
for the photon. Naively, the corresponding effective po-
tential is then as illustrated by the solid line in Fig. 1
[20-22], where the periodic potential obtained before is
simply added to a pure fermionic contribution. This re-
sults in potential barriers of varying height separating the
various distinct local minima up to a maximum value for
the fermion density. The computation of transition rates
between a state having N fermions to a state having N +1
fermions is now more complicated since the transition is
between two states having different energies rather than a
true vacuum-to-vacuum transition.

Rather than computing the transition rate as a func-
tion of the fermionic density, suppose one simply wants
to compute the critical density. Since the relevant states
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FIG. 1. Schematic representation of the naive effective po-
tential as a function of the fermion density. The dashed line
represents the Abelian Higgs contribution which has an infinite
number of local minima. The dotted line is the pure fermion
contribution. The solid line, obtained by adding the Abelian
Higgs sphaleron contribution to the pure fermion contribution
is not the true effective potential.

have a nonvanishing energy, it is useful, at finite density
and in the L — oo limit, to subtract an infinite constant
from the energy and consider instead

E(n=[" dx[6(N,1)—E(N,7=0)] . ©

Because the new effective potential was obtained by as-
suming that one could simply add two contributions, it
may seem reasonable to assume that the same function
®(z)=tanh(z) found before still corresponds to the
sphaleron configuration. Thus, one finds
3 .3
E(r)=2nmrn +8‘/%|sin31r‘rl , (10)

where n =N /L is the finite fermion density taken to be
finite even in the L — oo limit. This result shows that it is
possible to find a local extremum of E(7) only if 4, does
not exceed a critical value given by 327Ac3/3e V3.

However, this result indicates that such a naive way of
deriving an effective potential at finite density is not
correct since, as has been previously found [6,15,16], no
local minima of the energy exists when A4, exceeds
2V 2 7Ac®/3e V3. Furthermore, this derivation does not
take into account the fermion back reaction and the func-
tion ®(z) is not a static solution to the complete set of
equations of motion of the original Lagrangian [Eq. (3)].
Writing ¢ = ® exp(ip), the static equations of motion are

ed,—2m®¥d . p—ed,)=0, (1
3, [P%d,p—ed,)]=0, (12)
2P —D(3,p—ed )’ —2AD(DP>—c?)=0 . (13)

Any solution to these equations has to be such that A4, is
spatially constant and that

PzeAlfx

The periodicity requirement on p then implies that the

e
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various local minima of the energy functional are such
that

INL (15)

Nes=
e

1+
27 d?

dx

is no longer an integer. In other words, the minima no
longer coincide with pure gauge configurations. Further-
more, the difference between two adjacent minima of this
quantity is also different from unity. This complicates
the search for a noncontractible path joining two adja-
cent minima since it becomes very difficult to find a pa-
rametrization consistent with the periodic boundary con-
dition. However, a static solution to the equations of
motion resembling the Abelian Higgs sphaleron solution
can still be found. If one combines Egs. (11) and (13) one
gets
» 2 42

&0 _e Al @i—c?) (16)

dx? 73
which, in the L — o limit, has a single nonhomogeneous
solution [24] as well as two homogeneous solutions. To
see this, it is convenient to parametrize 4, in terms of a
new variable ¥ such that
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e
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! 3

A= 3

, 0<y<1. 17

This parametrization is one to one on the defined interval
and such that 4,(y=0)=0 while 4,(y=1) is the criti-
cal density above which no local minima of the energy ex-
ists. With this parametrization, the inhomogeneous solu-
tion (sphaleron) is given by

172
O, =c %l+(1—y)tanh2[x/x(1—y)cx] (18)
and the two homogeneous solutions are
172
o =cl|t-L| ,
1— ¢ 3
(19

¢2=L—6[y+v 3y(4—y)] 2.

The difference in energy between the sphaleron solution
and the lowest energy homogeneous solution (&®;) is
8¢3VAM(1—7y)/3 which correctly reproduces the Abelian
Higgs result when the fermion density is zero (y =0), van-
ishes at the critical density (y =1), and remains finite for
all other values of . The result for the effective potential
is given in Fig. 2. There are three important characteris-
tics of this effective potential; firstly, its overall positive
curvature due to the finite fermionic density; secondly,
the existence of a critical density above which no stable
solution can be found; and lastly, and perhaps most im-
portantly, the decrease of the sphaleron energy (the bar-
rier height) with increasing fermion number. Of course,
the important question is the extrapolation of these re-
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FIG. 2. Schematic representation of the real effective poten-
tial as a function of the fermion density. The main thing to note
is that the height of the potential barrier decreases with increas-
ing fermion density until it vanishes at the critical density.

sults for (3+ 1)-dimensional theories. Firstly, in order to
compute transition rates at finite temperature, the
relevant quantity is the free energy which also has a gen-
erally positive curvature as a function of the fermion den-
sity [4,20-22,25]. Secondly, in (3+ 1)-dimensional mod-
els there also exists a critical density [6,8], just as in the
(1+ 1)-dimensional model discussed above. Hence, it is
probably safe to assume that the height of the barrier be-
tween local minima (the energy of the sphaleron) de-
creases as the fermionic density increases so that it van-
ishes at and above the critical density. From this it fol-
lows that, as the fermionic density increases, sphaleron-
induced transitions would occur even more rapidly than
the rate suggested by conventional calculations, with the
finite density effects becoming the dominant factor when
the fermionic density becomes comparable to or greater
than the critical density. The critical density computed
in the standard model [6,8] is about 12 orders of magni-
tude greater than the nuclear density which is compara-
ble to the total energy density close to the electroweak
phase transition in the standard big bang model [26].
However, the critical density is the net fermionic density
(i.e., fermion minus antifermion) which is likely to be
much smaller than the overall density given the small
baryon to photon ratio obtained from primordial nu-
cleosynthesis. Thus it appears that the rate increase of
sphaleron transitions due to finite density effects would be
negligible. Nonetheless, it might still be desirable to
compute this rate increase precisely and to do so it will be
necessary to know in what way the standard sphaleron
[27] is modified at finite density. It is likely that nonper-
turbative effects would play a crucial role thereby leading
to an impossibly complicated analytical solution. How-
ever, a numerical solution should be attainable.
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