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Finite-temperature scalar field theory in static de Sitter space
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The finite-temperature one-loop effective potential for a scalar field in static de Sitter space-time
is obtained by using the (-function method. Near the zero and Hawking temperatures, the de Sitter-
invariant state, the effective potential is represented as a power-series expansion of the temperature,
and its behavior is studied. The analysis shows the important role played by the curvature on the
absolute minima of the potential. The effects of conical singularities of the space, appearing in the
functional integral formalism for the thermal averages, are also discussed in connection with the
scaling properties of the theory.
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I. INTRODUCTION

The hypothesis that the early Universe might have un-

dergone an exponential expansion might explain a num-
ber of essential questions. Why, for example, the ob-
served space is homogeneous and isotropic and the en-

ergy density in it is so close to the critical value [1]. In
the exponentially expanding epoch the Universe has the
de Sitter geometry with a fixed radius. If the radius is
suKciently small, there may be interesting efFects aris-
ing ft. om the behavior of quantum field theories in such
curved space. In this way gravitation can influence the
properties of the efFective potential and can change the
symmetry-breaking pattern in gauge models.

In the one-loop approximation and assuming a de Sit-
ter space-time this problem has been studied for scalar
electrodynamics [2, 3] and for the more realistic SU(5)
gauge theory [4, 5]. These papers show that gravita-
tional eÃects change the phase structure of the theory,
but analysis there was restricted to a particular choice
for the quantum state of the system, i.e., to the state
which is invariant under transformations of the de Sitter
group [6]. All observers moving freely register it equally
as a thermal equilibrium state at the same temperature
(2ma) (Hawking temperature), with a the radius of the
space [7].

Note that the thermal equilibrium state in de Sitter
space-time is always possible in static coordinates where
the external gravitational field does not depend on time.
Thus, a natural question arises: how does symmetry
breaking occur in the de Sitter universe if a given quan-
tum Geld is in an arbitrary thermal equilibrium state dif-
ferent from the invariant one7 For this purpose, the study
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of Gnite-temperature quantum field theory in a static de
Sitter space-time is necessary.

This subject is also interesting by itself. Iet us re-
call that a freely moving observer in this space has an
event horizon separating &om the whole space-time the
region he can never see. The presence of horizons can
have interesting consequences. It is known, for instance,
that there is a close connection between event horizons
and thermodynamics [7]. However, although the ther-
mal properties of Green functions in Rindler, de Sit-
ter, and Schwarzschild spaces were considered [8], finite-
temperature effective potentials and symmetry breaking
in the static spaces with horizons were not investigated.

The present paper studies the quantum theory of a
scalar Geld in the static de Sitter space-time at an arbi-
trary temperature denoted by P i. The analysis of the
scalar case turns out to be rather simple, and can help
us to understand the specific features of more realistic
gauge theories.

The paper is organized as follows. Section II is de-
voted to the quantization of a scalar field P in the static
de Sitter space. The energy operator in that space can
be introduced and divided into two commuting parts, de-
fined in causally disconnected regions. This enables one
to formulate the functional integration formalism for the
thermal averages in each region. It turns out that the in-
tegration here goes over the field configurations placed on
the compact four-dimensional space 8& with a Euclidean
signature. This space is infinitely sheeted along the imag-
inary time 7 hypersphere 8 of the radius a where points
(r, x') and (r+P, z*) are identified. At the Hawking tem-
perature, when P = 2m'a = P~, the space S& becomes a
four-sphere 8 . In the general case it has conical singular-
ities where the Kilbng vector field generating translations
along ~ is null.

In Sec. III the finite-temperature efFective potential
V(P, P) is introduced in the framework of the functional
integration formalism for averages. Studying the spec-

0556-2821/94/49(2)/987(12)/$06. 00 49 987 1994 The American Physical Society



988 D. V. FURSAEV AND G. MIELE

trum of the Laplace operator on S& we are able to find
the expression of the one-loop effective potential as an
expansion in P . We use here (-function regulariza-
tion [9, 10]. The suitable forms of V(P, P) and of the
average energy E(r/i, P) are given for the ground and de
Sitter invariant states. It is shown that, in the limit of
asymptotically small space-time curvature, they both co-
incide with the vacuum efFective potential computed in
Minkowski space.

The differences of the symmetry breaking pattern in
the ground and in the de Sitter invariant states are shown
in Sec. IV for a real self-interacting scalar Beld. It is
pointed out that in the ground state a discrete symmetry
of the classical theory is always spontaneously broken,
whereas at the Hawking temperature it can be restored
at a certain value of the space radius a,„.

Finally, in Sec. V the value of the (-function ((0,P)
and scaling properties of the theory are discussed, paying
attention to the effects of the conical singularities that
appear on the space S&. Conclusions and remarks are
then presented.

The technical details needed for the explicit evaluation
of the ( function near P = PH and in the ground state
are reported in Appendixes A and B, respectively. The
results of Appendix A can be used to estimate the tem-
perature corrections to the potential near the de Sitter
invariant state.

[&,~(*)d~"(*) &,-(g)«" (g)] = o (2.3)

(2.4)

H = ~/ —g d'z T, ' .
t=const

(2.5)

It is split into two parts Hq and H2 depending on the
field variables and acting in the regions ]y~ & z/2 and

~y] ) vr/2, respectively (g is the determinant of the metric
(2.1)). For the model of the real self-interacting scalar
field with the action and the energy momentum tensor
given, respectively, by

S= d x —g ~B„O" —V (2 6)

where the points z and y belong to a spacelike hypersur-
face Z, such that the Cauchy data on Z define uniquely a
solution of the classical equation in the whole space-time.
For the static spaces we can introduce the energy opera-
tor H which is associated with a generator of the unitary
transformations of the field P under translations along
the time coordinate t In t. he static de Sitter space (2.1)
H depends on the time component Tt ' of the energy-
momentum tensor:

II. STATIC DE SITTER SPACE-TIME
AT NONZERO TEMPERATURES &~- =2(-g) "~ „„ (2.7)

A. Quantization in the static de Sitter space from (2.2)—(2.4) it follows that

de Sitter space-time is a solution of the Einstein equa-
tions with a positive cosmological constant. In the static
coordinates the line element can be written in the form

[&(*) &(g)] = o (2.2)

ds = cos ddt —a (dy + sin yd8 + sin y sin ed( )
= g, ddt —g;~dz'dx' (i,j = 1, 2, 3), (2 1)

and —oo & t & +oo, —7r & y & 7r, 0 & 0, ( & z, a is the
radius of space. The properties of the static coordinates
are discussed in [11].One has to mention here that they
cover only part of the space-time and that the regions

~y~ & 7r/2 and ~yi ) ir/2 are separated by the surface
8 = S and are causally disconnected.

We can always choose in de Sitter space a Killing vec-
tor field generating one-parameter group of isometrics, a
subgroup of SO(1,4). The coordinates (2.1) correspond
to the time-like part of a Killing vector field associated
with translations along the time t. These coordinates are
restricted by the bifurcate Killing horizon [12] on which
the Killing vector field is null. It coincides with the event
horizons of observers with trajectories being completely
inside the static frame (2.1). The two-surface 8 is the bi-
furcation surface that is left unchanged under the action
of the given one-parameter group.

The quantization procedure for a real scalar field in the
curved space-time is given in terms of the commutation
relations for the field variables [6]:

[H„Hz] = — dogggi(Der. /i8 P+ 0 /Big) = 0,
2 g

(2.8)

where der is the surface element of 8; the operators Hq
and H2 commute because the time component of the met-
ric tensor gtt vanishes on the bifurcation surface. In par-
ticular, the last equality shows explicitly that there is no

energy exchange between the two causally disconnected
regions.

B. Functional integration formalism for the averages

(~), = Z T (ere-r" ), (2.9)

where Zp is the partition function determined by the

eigenvalues E of the operator Hi.

We can choose now (in an oscillator approximation)
the creation and annihilation operators of particles asso-
ciated with the Hamiltonian (2.5), this allows us to con-
struct the representation of the commutation relations
(2.2)—(2.4) given on the corresponding Fock space.

Let us consider, for instance, a canonical ensemble of
particles at temperature P i, placed in the causally con-
nected region characterized by ~y~ & vr/2. The thermally

averaged value of a physical variable Q measured in this
region reads
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Zp = T (e PH') = ) e P~- . (2.10)

The parameter P coincides with the local temperature
measured by the observer being at the origin of the static
coordinates at y = 0, and the average (2.9) does not

I

depend on the behavior of the system in the rest of space.
To obtain the functional integral representation for the

average values (2.9), let us make the coordinates z' dis-
crete (with intervals Az') on the surface t =const. Then,
in the region 1y1 & vr/2, the transition amplitude &oxn the
state !gV) to the state 1P) for the infinitesimal imaginary
time e turns out to be

~
~

U.(4»4') =(ale ' '14') = lim,

X/2
g-g(z) g"(*)Szx Sx'az')

2%6
~

—s, (4)',p') (2.11)

where

V
—(*)+*'+*'+*' "(*)! ! + g**(*)! ! + V( (2.12)

According to this definition the functional iI)'(e, P) = 1' d(t)'U, (P, P') 4(gV) has the following properties:

~(,4)l.=. = ~(4) (2.13)

—o),@(e,4)1, o
——Hx@'(P) . (2.i4)

Hi is the Hamiltonian in the region 1y1 & vr/2

Hg
——

Ixl& /'2
Q—g d z 2II + 2g'*(B,p) + V(p) (2.15)

connected with the stress tensor via the formula (2.5). On the surface t =const (that is on Ss) II = (giq)
x) 2(9ig is

the quantity proportional to the canonical momentum in the coordinate representation

1ilx =.
i(detg;, )

x)'2 bp(z)

The transition amplitude for the final imaginary-tixne interval P is given by the integral

(( y y') —f Dy ~
—&o(At(')

where

(2.i6)

(2.17)

(i/' —g g b,z Az 6z )3
DP = lim !!h7- hz-+0 ~ .-. 2vrL~ r0&7-; &p

dP(z, 7.;), (2.is)

Sp(P, P')~ a ~0 —— Qgti detg;i d~d z 2g"(Btg) + 2g"(8;P) + V(P)
0&z&P

(2.i9)

with the boundary condition P(x, v = P) = P(x),
4)(z, r = 0) = P'(z). The representation for the aver-

age value of an operator 0 follows &om (2.9) and (2.10):

(D)g = Zp
'
J Dg 0)(() e (2.20)

gp D ~
—s&(4) (2.2i)

where DP = dPDQ and Sp(P) = Sp(P, (t(). From the
definition (2.19), the integration in (2.20) goes over the
field variables placed on the compact space S& with line
element

ds =cos yd7 +a (dy +sin ydg

+ sin csin tI)d( ), (2.22)

which is the Euclidean form of the line element (2.1), and
the periodic parameter 7 ranging &om 0 to (9.

When P = Pxl the space Sp is the four-dimensional

hypersphere S . The two-point thermal Green function,
defined in agreement with (2.20), for P = Pxr coincides
with the Green function of the de Sitter-invariant quan-
tum state, that in static coordinates also turns out to be
a periodic and analytic function of the imaginary time
[7], with period 2vra. This state is the vacuum, but its
field excitations, which are defined in an observer inde-
pendent way [6], cannot be interpreted as particles of a
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certain energy. All observers moving freely register this
state as a thermal equilibrium at the same temperature

Pxx ——(2xra) [7]. Let us point out that thermal equi-
librium at the Hawking temperature only in the given
part of static &arne ([y~ ( x/2) does not mean the de
Sitter-invariant vacuum because the quantum state of the
system in the other casually independent part of space

(~y~ ) ~/2) can be quite arbitrary.
If P = n PH (n = 1, 2, . . .), the integration in the

representation (2.20) for the averages goes over the fields
on the hypersphere S on which the points (r, z') and
(w+ P, z') are identified. Such space is an orbifold [13].
At zero temperature S&

——S4 and is an infinitely sheeted

sphere S . For the arbitrary temperatures S& is the fac-

tor space of S over the cyclic rotation group with period

P leaving the two-surface 8 unchanged. In all the points
out of 8 it has the geometry of an hypersphere, but in the
domain of 8, when ~y~ ~ 7r/2, it looks like the product
space cone S . The volume of S& is PV where V is the

volume of the spatial part of space-time (V = 4z.as/3).

III. THE EFFECTIVE POTENTIAL

A. Basic formalism

Phase transitions in curved spaces at arbitrary tem-
peratures can be investigated as in the fIat one apply-
ing the effective potential method. The effective poten-
tial V(&p, P) in our case can be introduced via the path
integral representation for the partition function (2.21).
For this purpose, let us consider in (2.21) the static partp:—(PV) f&4 ~g d4zg(z) of the field variables on S&4

[g is the determinant of the metric (2.22)]:

Z = D e SP(P) D ~+ I e
—SP(g+P')

into account the condition (3.3), and to approximate it
by the expression

S~(~+ &') = (&&)V(~)

+-,' v g d'* 4'(z) Q(V )0'(z),
st

(3.4)

where Q(y)—:— + V"(y) ( is the Laplace operator
defined on S&4). The integration in (3.2) can be performed
as usual if we use the completeness of the eigenfunctions
g„(z) of G, so that the field P(z) can be expanded as

(3.5)

where the eigenfunctions are normalized as

(3.7)

According to (3.3), we eliminate &om V(p, P) the con-
tribution of zero mode of the Laplace operator. The last
term is important for analytical properties of the effective
potential when the space-tixne curvature is large [15].

If all field configurations are stable, the one-loop par-
tition function can be derived &om (3.1) considering the
minima with the zero imaginary part Im V(p;, P) = 0.
In the given approximation it turns out to be

(3.8)

~g d'z g„(z)g (z) = b„
Op

and change the measure (2.18) by the measure DP =
Q„(2') x~2pdg„with p a normalization constant . In-
tegrating over P„we get, &om (3.2),

( ~) = (w)+ ("[ t( Q)1 [ ( )]) .

=N (3.1)

where N is a normalization constant. The potential V is
defined by the integral

Taking into account the normalization of the zero mode

p in (3.1), (3.5), (3.6), and (3.7) we can substitute K
with p(PV)x~2 and represent Zp in the form

e
—Pvv(~, P) D i e

—s~(~+4') (3.2) (3.9)

over the fields obeying the condition

~gd zP'(z) =0. (3.3)

where

V(p, P) = V(rp) + ln det(p Q) (3.10)

If V(y, P) is a known function of y, the partition func-
tion can be found from (3.1) by the method of station-
ary phase. The points y, of xninima of V(y, P) corre-
spond to various field configurations with the average
field strength in the considered volume V equal to p; in
the one-loop approximation. The real part of V(p, P)
is a sum of the classical potential energy V(p) and of
the quantum corrections to it. If a field configuration y;
is unstable, then V(y;, P) has a nonvanishing imaginary
part determining its decay rate [14].

To calculate the one-loop efFective potential, one has
to expand the functional Sp(y+ P') in (3.2) on P', taking

(P(z))p = ) P, (P) p;, (3.11)

where the eoeKcients
—pyv(~;, p)

(3.12)

It is obvious that in the fIat-space limit, when the radius
and volume of space tend to infinity, both the quantities
V(y, P) and V(rp, P) coincide.

The field average (P(z))p in the one-loop approxima-
tion can be found &om (2.20) in a similar way, and is
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(H)p ——— 1nZp = ) P;(P) VE((p;, P),
|9

(3.13)

where the quantities

E((p;, P) = /9V((p;, P)
19

(3.14)

are the energies of the configurations y; per unite volume.

in the equilibrium state are the probabilities for a given
field configuration (p, t.o appear. From (3.9) we can also
obtain the average energy as the sum

In the trivial case of a free scalar field the effective
potential V((p, )9) has only one minimum at (p = 0, as
in the classical theory, because the determinant in (3.7)
does not depend on the field (p.

B. ( function

To regularize the determinant in Eq. (3.7), the (
function method [9] can be used because the eigenvalues
A„of the operator —CI+ V"(p) on S&4 can be found ex-
actly. 'They are characterized by two non-negative num-
bers n and m and depend on the temperature P

A„(P) = a [n —m + (P~/P)m] [n —m + (P~/P)m+ 3] + V"((p),
I

(3.15)

n=0, 1, 2, . . . ; m=0, 1, . . . , n.
The multiplicity g„of the eigenvalue A„, is (n —m+ 1)(n —m+ 2) if m g 0, and (n+ 1)(n+ 2)/2 for m = 0.
In the case of the Hawking temperature P~ this operator turns into the operator on the hypersphere 94 with
A„= a 2n(n+ 3) + V"((p) and the multiplicity

g„= ) g„= (n+ 1)(n—+ 2)(2n+ 3) .1

m, =O

(3.i6)

The renormalized lndet(Q)(k ), the effective potential V((p, p) and the average energy E((p, p) expressed in terms
of the generalized ( function

q(z, P) —= ) ) g„(a'X„)
n=O m=O

now read

I 0 +l»2, 2 0

(3.17)

(3.is)

V(wp, p) = V(P) —
2

('(0, /9) + in(&' )((0,p) + ln(V" ((p)p ) (3.i9)

E(p /3) = V(~) —
2y g

&'(0 &) +»(I"a')&(0 P) (3.20)

where ('(z, P)—:q ((z, P) .
Let us find a more suitable form for the ( function (3.17). If we express (a2A„) ' as an expansion with parameter

6, = 9/4 —azV//((p) and point out that P„og" 0 f(m, n) = P„oP 0 f(m, n+m), we can immediately perform
the summation on the n index in (3.17) obtaining

((z, P) = ) Cx(z)6" ) [(z(2z + 2k —2, (P&/P)m+ 3/2) —2(PH/P)m(z(2z + 2k —1, (P~/P)m + 3/2)
k=o

+ ((~/)H//)) — )(z(2*+2k, (/)zr/P)m+ 8/k)) i(kB(km+ 2k —2, 3/2) —', ja(2k+ 2z, k/k))I-,

where the coefficients C&(z) are defined by

r(z+ k)
I)i( )

With the following integral representation for the Riemannian (R function,

(3.21)

(3.22)
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1 s —1 —ay

CR(sa) =
&

y e
dy,I s o 1 —e

we are able to sum up over m. For instance, one can get

oo s —] 1) I,"R(s, (pH/p)m + 3/2) = e 2" dy,
en =0

for Re(s) & 2. Thus, inserting (3.24) in (3.21) we have

(3.23)

(3.24)

OO

I,'(z, P) = ) Ci(z) 6" dy e
2 —z z I'(2z+ 22 —2)k=O

sinh "~ "~ coth "~ sinh "~ —~ coth

I'(2z + 2k —1) I'(2z + 2k)
(3.25)

Note that from (3.25), if the variable z is close to zero, ((z, P) is determined by the behavior of the integrand only in
the vicinity of the lower limit of integration. In this case one can use in (3.25) the definition of the Bernoulli numbers
Bn,

e —1 n=o
(3.26)

(valid for IxI ( ir), to get a representation for ((z, P) as an odd-power-series expansion of the temperature:

i2=0 22=0

I'(2z + 2k + 2n —1)
X

I'(2z + 2k)
[(R(2z + 2k + 2n —3, 3/2) —

4 (R (2z + 2k + 2n —1, 3/2)] . (3.27)

This representation holds for z close to zero and can be applied to compute ((0,P) = lim, ~o((z, P) and its first
derivative, obtaining for ((0, I9) the exact simple expression

p 51 —60(/3H//3)' —8(pH/p)' 2(/3H//3)' —3 1

2880 24 12
(3.28)

At the Hawking temperature this result coincides with the expression obtained by other authors [3]. To compute the
first derivative of (3.27) we observe that

d—(z(R(z+ n+ 1,a))
CLZ z=O

( 1)
+122d22

d
„&(a) (3.29)

with n integer & 0. Unfortunately, as far as ( (0, T) is concerned, it can only be expressed in terms of an expansion:

3l 1 ( 3l 2 , ( 3l 1, ( 3l
4'(0 0) = —— CR

I

—3 —
I

— CR I

—1 —
I

———41 —3 —
I

—-41 —1 —
I'2) 4 i '2) T E '2) 4 & 2).

T'~ ( 3) 1 (3l 1 (a' a aT'
+—

I
&+

I
CR I

—1 —I+ -41 —
I

+ T I 36
+

4
+

T q 6) q '2) 4 q2) T (36 4

B8,„+AT' "+ + 2T4 2n+4

T 12 (2n+ 2)(2n+ 1) (2n+ 4)(2n+ 3)(2n+ 2)(2n+ 1)

(2~+ 2)(2~+ 1)0'"'
I

—
I

——0""+"
I

—
I

T2n (3) 1,„+, (3b
2nt E2) 4 E2)

A;=3 n=O

(3.30)

where T = PH/P. The last equations (3.28) and (3.30), once inserted into (3.19), define explicitly the efFective
potential as an expansion in the temperature P . This expansion is especially useful to investigate the potential
V(p, P) at the low temperatures. Another expansion of V(rp, P) around the Hawking temperature can be found in
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Appendix A. However, in the most interesting cases we are going to consider, the potential can be written in a more
suitable integral form.

C. Vanishing temperature and Hawking temperature

The effective potential for the space of radius a at the Hawking temperature P~ can be found &om (3.19) substi-
tuting in it the expressions of ( (0, PIr) obtained in [3], and of ((0,P~) from (3.28). It reads

3
V(V, P~) = V(V) —

( )z 4

—;+m~
u(u —ii) (u —1)g(u) du

3
I

1 j
1 q 1 2 2 (6 b 17

+—b, + —b, +in(y, a ) l

———
l
+ln(V"((p)p ) +const,

12 72 k 12 24 2880 j (3.31)

where g(u) is the psi function. We can also derive the average energy (3.14) in this state by using the expression for

((z, P) as a power-series expansion of parameter (P~ —P)/P (Appendix A):

3 1, 41 973
E(~ &~) = V(V)+

(4z') 2a4 8 144 5760
+

1 (9 ) (1
+—

l

——&
l l

——&
l Q(3/2+ v&) +g(3/2 —VA) —1n(p'a')

12 E4 ) g4
(3.32)

From (3.19), (3.20), and (3.27) the effective potential at zero temperature coincides with the vacuum energy.
connection between zeta-functions at p = oo and p = p~, described in Appendix B, implies

+—6 + —6+in(pa)l + const .
36 24 ( 12 8 960)

(3.33)

At the points of minima the imaginary part 1m[V(rp, oo)]
gives the decay probability I' of metastable vacuum con-
figurations calculated in the quasiclassical approximation
I' = —21m[V(y, oo)]. When ~A & 3/2 or if V"(p)
& 0, the integrand in (3.33) has the simple poles due to
the psi function and integration contour should be chosen
so that 1m[V(p, oo)] & 0. This can be achieved simply
by changing V"(rp) with V"(y) —ie/2 (e & 0), which cor-
responds to go around the poles in the lower part of the
complex plane.

A similar way to regularize the integral part of V(y, P)
can be taken at P = P~, but here the situation is
difFerent. The vacuum energy (3.33) is singular when
V"(rp) = 0 where both E(rp, P~) and V(&p, P~) are finite.
The singularity and imaginary part coming &om the inte-
gral in (3.31) when 3/2 & ~b, & 5/2 are totally canceled
by the last term ln[V" (rp) p 2]. Consequently, in the vac-
uum state one has instability when V"(y) & 0; whereas
at the Hawking temperature, when V"(y) & —4a (or
~a & 5/2).

Asymptotic expressions for V (rp, oo), V(y, PIr), and
E(p, PII) at the large radius a are written in the Ap-
pendixes. One can thus show that all three quantities
in the limit a m oo coincide with the vacuum e8'ective
potential in Minkowski space:

IV. THE MODEL

We study here, as an example, the model of a real
quantum scalar 6eld with symmetrical potential

V(4) = —-o 4
& 4

2 4
(4.1)

(o2, A ) 0) and compute the effective potential in the
ground and de Sitter-invariant quantum states.

VM (y)

= V(v)+ [V"(v)]
l
»[V"(v)u '] ——

I
.

(3.34)

This property can be easily explained observing that the
Hawking temperature (2z'a) ~ vanishes in the fiat-space
limit. On the other hand, the effective potential calcu-
lated at P = P~ coincides with the one in a de Sitter in-
variant state and can be turned, when a m oo, only into
the potential in the Poincare-invariant vacuum state.

To complete the calculation of the renormalized
V(rp, P) we have to add to it finite counterterms and ex-
press the parameters through the measured quantities.
It will be done for a particular model in next section.
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The discrete symmetry P ~ —P inherent in the classi-
cal model (4.1) is known to be broken in the ground state
in Hat space-time: in this case the zero-field configura-
tions are unstable. The symmetrical phases correspond
to the configurations with zero field strength and their
relevance at nonzero space-time curvature may be found
from the results derived in Sec. III.

From these results we draw immediately the conclusion
that there cannot be stable symmetrical phases in the
ground state at any curvature because V"(0) = —o ( 0
and the effective potential has a nonzero imaginary part
at P = 0. On the other hand, symmetry can be restored
at the Hawking temperature PH at a certain value of a
if the following conditions hold:

V'(0, pH) = 0, V"(0, pH) ) 0, V"(0) ) —4a (4.2)

The first condition is always true for this model as far as
V(P) depends only on the square of the field. To inves-
tigate the second one we have to fix the meaning of the
constants o and A in terms of the measurable quantities,
obtained for instance in Hat space.

Following the standard renormalization procedure we
can eliminate the scale parameter p, from V(&p, PH), Eq.
(3.31), by absorbing it into the definition of the finite
counterterms that should be added to the effective poten-
tial. These counterterms have the same structure as the
initial potential (4.1). Thus, the renormalized V(&p, PH)
turns out to be

3
V(&, pH) = V(V)—

+~
+

'- -v&
u(u —

—,') (u —1)Q(u) du

+ ~'~b. + In(V"((p)a ) —2ho (p + 4bAy + const . (4.3)

In the limit of asymptotically small curvature (a ~ oo) (4.3) takes the form

VM(p) = V(p) + (V"((p)) ln{V"(p)a ) —— —-'bo p + -'hAp + const, (4.4)

and the renormalization conditions for it can be chosen as

VM(p) ~tp2 02/p —0—
1

. VM('p) ~lp2 —~2 jp —2cr = m'. (4.5)

They just define the positions of minima of the asymptotically Hat V(p, PH) and the physical mass m of the field as
in the classical theory (4.1). Moreover, they fix the values for the constants ho'2 and bA:

Ao.2 9A'
ho = — (3 ln(20 a ) + 6), bA = — ln(20 a ).

16m2 16vr2

The Hat-space potential (4.4) so obtained recovers the already known result reported in [1]:

(4.6)

1, , A 4 (3Ay' —0') t'3Ap' —0' ) 21AO'y'
V(~ PH)l. = ~'V'+ -W'+ 6, ln

~ 2, I+
27A2p4

+ const .
128vr2

(4.7)

6Ao2
+ (4.8)

The same renormalization conditions (4.5) and con-
stants (4.6) can be chosen at zero temperature because
V(p, oo) and V(y, PH) have the same Hat-space limit.

We can now investigate the second derivative
V"(0,P~) that follows from (4.3) and (4.6) and takes
a particularly simple form at suKciently large curvature,
when a2 (& 0.

V"(0, pH) = —o' +, , (1+6~)

The third condition (4.2) holds if m2a,„(8, which is
true for not very large values of A.

As a conclusion, we have shown in this paragraph that,
while in the ground state the symmetry is always spon-
taneously broken, the stable symmetrical phases can ap-
pear at the Hawking temperature at some finite values of
the space-time curvature. The nature of the given phase
transition can be understood by considering the global
structure of the e8ective potential with the help of ex-
pressions (4.3) and (4.6).

(1+6') A

8~2 m2 (4.9)

where p = 0, 577, . . . , is the Euler constant. As one can
see V"(0, PJr) changes sign and becomes positive at some
critical value of' the radius a = a„. It can be found ne-
glecting the last term in (4.8) with respect to the second
one and reads

V. SCALING AND THE TRACE ANOMALY

A remark concerning expression (3.28) for ((0,P) is
worth being made. It is known that the generalized zeta
function ((z) of an elliptic operator & is related with the
trace of its heat kernel Tr(e '

) by the Mellin transform
[9]. By using this, the value of ((0) can be represented
in terms of the first coeKcients of the asymptotic heat
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kernel expansion in powers of the proper time s [9]. For
smooth manifolds it turns out to be a geometrical quan-
tity that is expressed through the Riemann tensor and
its covariant derivatives. If a space, like S&, has conical
singularities, the expansion of the trace of the heat ker-
nel is modified [16,18] and g(0, P) acquires an additional
contribution coming &om the singular points. This gives
rise to an explicit dependence on P and it is the reason
for the difference &om the ( function computed on the
hypersphere S4. A more complete analysis of ((Q, I9) in
the space S&2, a two-dimensional analogue of S&4, can be
found in [16].

The value of ((Q, P) is also interesting since it deter-
mines the scaling properties of the theory. To demon-
strate this let us consider the conformally invariant scalar
field theory with the potential V(P) = (R/12) P, where
R is the scalar curvature, B = 12a 2 for de Sitter space-
time. The energy operators H of conformally related
static metrics g„„(z)= a2(z)g„„(z) have the same eigen-
values [19]and, in this case, the scale invariance of the un-
renormalized partition function Zp follows immediately
from the definitions (2.18) and (2.19) of the measure DP
and the Euclidean action Sp(P) in (2.21).

In the conformally invariant scalar 6eld theory, the log-
arithm of the renormalized partition function is de6ned
by (3.9) and (3.18) and reads

ln Zp —
—,
' ('(0, P) + 1n(p'a')((0, P) . (5.1)

2 bE(P)
PV(P) ) g $ V( )

(5 3)

(z' are three spatial coordinates) Thus, on.e can write for
the integral of its trace [T„"(P)]over the spatial vobime
V the equation

2 3 b lnSp
d z Q—g T (P, z) = — d z g""(z)

v
'

P v bg""(z)

= —P ' lnZp(a'g„„, y)

Finally, Eqs. (5.1) and (5.2) give

a=1
(5 4)

f d'* V'-g T- (P, z) = O'C(Q, P) . -
V

(5.5)

Substituting here the derived expression (3.28) for ((0,P)

For the constant scale transformations of the metric
g„„(x) = a2g„„(z) we have A„, = cx 2A„,((z, P) =
cP't,'(z, P) and therefore the following equality for the
partition function, as a function of g„„and the renor-
malization parameter p, holds:

(5.2)

where ((0,P) appears as an anomalous dimension of Zp.
Equation (5.2) can be used to define an integral quan-

tity of the trace anomaly of thermally averaged energy
momentum tensor. The latter in static space-times does
not depend on time and can be determined by function-
ally differentiating the free energy F(P) = —P ilnZp
[19]:

in the conformal case (6 = 1/4) we get the integral of
the trace anomaly at the temperature P

d'* V' g—T- (P, z) = 3+(PHiP)'
720+a

(5.6)

Remarkably, it is a function of P i compatible at the
Hawking temperature P& ——(2za) i with the correct
trace anomaly and energy-momentum tensor of the de
Sitter-invariant state:

T„„(P&,x) = (960~'a')-'g„„(z) .

Our analysis includes in particular the zero-
temperature limit that corresponds to the static confor-
mal de Sitter vacuum where the renormalized stress ten-
sor was calculated exactly [2Q]. Its anomaly turns out to
be the same as anomaly at P = P~, whereas the integral
quantity (5.6) depends on the temperature. So far as
the (-function method employed here agrees with other
methods in Euclidean theories [21],both results must be
reconciled. For this aim the efFects of conical singularities
on the two-surface 8 of the space S&4 have to be taken into
account since they produce delta-function-like contribu-
tions on 8. These contributions do not affect the local
renormalized quantities, such as the expectation value of
the energy xnomentum tensor, but appear in the integral
ones, such as (5.6) or the effective action, that include
the singular points [16]. However a detailed analysis of
this problem is outside the aim of the present work.

We confine this discussion to remark that a similar sit-
uation occurs in quantum theory on the cosmic string
space-time where the additional terms appear on the
string world sheet in the one-loop effective action [16—18].
However, as distinct &om this case, the conical singular-
ities in the considered problem are not caused by a real
distribution of the matter. For this reason their effect
on the physical quantities may be an artifact of the Eu-
clidean formulation of the theory in the path integral
representation (2.21) for the partition function. There-
fore this issue should be further examined, if the analy-
sis of the 6nite-temperature theory in de Sitter space at
P g P~ is based on the (-function method presented in
the previous sections.

Finally, it is worthwhile to make some comments about
the calculation of the average energy, defined in Eq.
(3.13), and expressed in terms of the renormalized func-
tion E(y, PJI) (3.32). In the conformal case, which we
are studying here, it is simply equal to VE(Q, PH), with
E = 1/4 and the average value of the field y = 0, and
does not depend on the scale parameter p. Further-
more, the so-obtained energy is different from the quan-
tity (H)p = Jd z g—g Tt, (P~, z) defined through the
anomalous energy momentum tensor (5.7). This differ-
ence can be explained by the known fact that the path
integral and thermodynamic definitions of the partition
function, from which the quantities E(O, PH) and (H)p
can be derived using (3.13), are not quite equivalent [22].
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VI. CONCLUSIONS AND REMARKS

We have evaluated the finite-temperature effective po-
tential for a scalar Geld theory in de Sitter space-time.
The expression found enables one to study the symmetry
breaking in two of the most interesting cases: at low tern-
perature and at a temperature close to the Hawking one.
The analysis is explicitly performed for the bare scalar
potential reported in (4.1) and shows how strongly the
presence of the temperature affects the phase transition
of the system.

It is well known that in Minkowski space-time the clas-
sical symmetry of a scalar potential under the discrete
transformation P -+ —P is spontaneously broken by the
quantum effects. Remarkably, at low temperatures the
symmetrical phase under this transformation is unstable
for every value of the radius a, whereas at the Hawking
temperature, this symmetry can be recovered for some
finite value of a. Thus, the tendency can be outlined as
follows: the instability of the symmetrical phase increases
at low temperatures and for the small space curvatures.

For a generalization of these results to more realis-
tic gauge theory, one has to find the eigenvalues and
multiplicities of the corresponding wave operators of the
bosonic and fermionic Gelds on the compact space S&,
which appear in the integral representation for thermal
averages.
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APPENDIX A: ( FUNCTION AT P P~

To discuss the expression of the effective potential near
the Hawking temperature, it is useful to represent ((z, P)
as a power-series expansion of parameter (PH —P)/P. In
fact from (3.15) and (3.17), we can write

(t —1)(t —2) (
gt (

—1)'z(~
i
2z+2k+t —3, —

I
(t2' —' (1 2

—
) B,)'2

where we have used the well-known relation

1 . „ I'(z + k) 3) 1 (
((z p) —(z(z, p~) + ) 6 z(uR

~

2z+2k —3, —
I

——z(~
~

2z+2k —1, —
3 „ I'(z+ 1)k! 2) 4 '2)

OO P OO P+ 2'

+):):).~"(-1) 2- i" ii'" 'i
(,r ) ), 8 ) 1 (z + 1)p!k!

(p + )'
r(p + r + 3 —t)!

i 3) ( B
+z(,'R

I

2z + 2k + p + r —2, —
l '2)

& (p+ +1))
l 2Bp+

+z(&
i

2z+ 2k+ p+
l 2) (, (p+r+2))

2) i (p+ r+ 3) 4 (p+ r+1))
P+2 + i). I I(—3)"uu)2z+2k+2 —3, —

)

(22' ' —(3 —2'-')23)I,
(p+r+1) i t ) 2)

n).
nL= i

1
(Bp+i(n+ 1) —Bp+i),p+1 (A2)

('(z &)l)s=/s„=i =—(,H(z &)

1 2k
= —) Cz( )!z/Zk) (((2z+ 2k —3, 3/2) —z((2 + 2k —1, 3/2)]

k=0

Its derivative has the integral representation

( +v&
('(O, A) = ——

3
+

) )
u ——

) (u —l)zk(u)32)
1 ~ 1 2 1 /+—2 '+ —4 + — (,„'(—3, 3/2) ——(„'(—1, 3/2)

12 72 3 4

where B„(x) (B„)are the Bernoulli polynomials (numbers). It is worth pointing out that the expression (3.28) for

((0,P), derived from another expansion (3.27), can be also obtained from (Al).
The ( function at P = PH was found in [3] and is given by the series
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3l
24

+
64

17 +(I-P~/P) I(12C(0, P) = (A5)

From (Al) it is quite easy to obtain the approximate expressions for ((0,P) and ('(0, P) for P = PIr' in fact we have

Q2

12 24

('(0, P) = —— + u(u —z)(u —1)g(u)du
3 1 )

41
+(P~/P 1)—

144 8

973 1
(166, —406 + 9) (y(2 + v b.) + y(- —V 6)) (A6)

(A7)

One can thus obtain

Inserting (A5) and (A6) in (3.19) and (3.20) we obtain the expressions for the one-loop efFective potential and energy
density at a temperature approaching the Hawking value. Next temperature corrections can be also estimated.

The asymptotic behavior of V(&p, P~) and E(y, P~) at large a when —b, a V"(p) && 1 can be found from (3.19)
and (3.20) by the asymptotic form of the psi function [23]. For instance,

R (VP(1/2+
'

))I„=ln —— — u +0( ).

3 17
V(~ ~~) =V(~)+ . . »(I&l(a~) ')

I

——— I-»(V"(v)v ') — + —.
4m za4 ( 12 24 2880) 8 24

(A8)

APPENDIX B: ( FUNCTION IN THE GROUND STATE

The expression for the effective potential in the ground state follows from (3.19):

3
V((p, oo) = V((p) — f'(O, b, ) + ln(p, )f(0, 6)

where f(z, A) = limp~ P i((z, P) . Using (3.27) one can see that

(~)"
f(z 6) ) Cs(z) t,'(2z + 2k 3 3/2) 4((2z + 2k 1 3/2)

Ic=O

(Bl)

(82)

since f(0, b, ) can be found using (3.28) we only need to compute the derivative
& f(z = 0, 6). Remarkably, f(z, b, )

urns out to be connected with the zeta function (H(z, 6) in the de Sitter invariant state. Comparing (82) and (A3)
one can see that

f(z, 6) (vA) = Sk' Qg(z, A),

and consequently

(83)

„~I ~f'(0 &)
I

= / I:3&H(0 &) —»(o &)l .

This equation has the solution

(84)

f'(o &) = ~& —, 3(&' (0 &') —&' (0 o)) —2(f(o &') —f(o o)) —(3&' (0 o) —»(o o)) . (85)

To find f(0, yz) we take into account (3.28) and (A5), so obtaining

( 1+~ 1
f'(OA) = + , u (u ——,

' —u 4
~

(u —t)g(u)du
2

+s's&'+ z'4&+ 4's'0 —2 [Cz(—3 3/2) —44(—1 3/2)j (86)

where in (86) we have integrated by parts to eliminate one integration. This result can be inserted into (Bl) and
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V(&p, oo) takes the form (3.33). The asymptotic form of V(p, oo) can be obtained using (A7). It is

3 f ~2
V((p, oo) = V(y) + ln (]b.!(ap) ) !

17 ) +
8 960' 8 8

where —6 a V"
(&p) » 1.
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