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Quark correlation functions in deep-inelastic semi-inclusive processes
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We investigate one-particle semi-inclusive processes in lepton-hadron scattering. In unpolarized
scattering order Q corrections appear only when transverse moments are detected. We consider
the twist-two and -three matrix elements and calculate the semi-inclusive structure functions in terms
of quark correlation functions. We Gnd that at the twist-three level not only the standard quark
distribution and fragmentation function contribute, but also toro neer transverse "profile functions. "
We discuss the gauge invariance of the hadronic tensor at the tourist-three level. The results of our
approach are used to calculate expressions for some cross sections for semi-inclusive processes.

PACS number(s): 13.60.Hb, 12.38.Lg, 13.87.Fh

I. INTRODUCTION

In this paper we will investigate unpolarized one-
particle semi-inclusive lepton-hadron scattering in the
deep-inelastic scattering (DIS) limit. We will present the
analysis in terms of quark correlation functions. These
objects encode the nonperturbative parts of the process,
which we as yet are not able to calculate other than us-

ing models. We will present an analysis which is com-
plete up to and including O(Q i) where Q2 is the neg-
ative square of the virtual photon momentum. In this
order we will need to introduce four different projections
of the quark correlation functions, called "profile func-
tions. " The Fourier transform of two of these are, re-
spectively, the quark distribution function and the quark
fragmentation function which are known from the naive
quark parton model at leading order. The two new func-
tions arise in O(Q ) and do not have simple parton
model interpretations. The treatment of an (intrinsic)
transverse momentum in this process will turn out to be
essential for these new profile functions.

As in all lepton scattering experiments in the one-
photon-exchange approximation the semi-inclusive cross
section will be essentially given by a contraction between
a leptonic tensor and a hadronic tensor. All the interest-
ing physics resides in the hadronic tensor. For the one-
particle semi-inclusive cross section the hadronic tensor
is given by (see Sec. II for exact definitions and conven-
tions)

cleon and observed hadron momentum and Px is short-
hand for the ensemble of unobserved hadrons in the final
state. Also the phase space integral over Px should be
understood to be a summation over all n-particle states
of all types. We denote this tensor by the diagram in
Fig. 1(a). In terms of quarks and gluons we know the
photon current, which only couples to quarks. This gives
us an expression for the hadronic tensor in terms of quark
fields
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depicted by the diagram in Fig. 1(b). Flavor degrees of
freedom are suppressed throughout. Because of the color
and electromagnetic gauge invariance of these quark cur-
rents the hadronic tensor is gauge invariant and q„W"
0. We will make a diagrammatic expansion of which the
first term is the "Born" diagram, i.e. , the naive parton
model, and the following diagrams have successively more
gluons or quarks participating. After a specific choice
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Here q is the virtual photon momentum, P and p~ are nu-
p„~ ~p
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FIG. 1. The general hadronic tensor (a) and the hadronic
tensor with quark currents (b).
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of gauge this diagrammatic expansion will be the same
as an expansion in Q . The relationship between dia-

grams with successively more gluons or quarks partici-
pating and their order in Q or "twist" is discussed at
great length by Jaffe and Ji in [1]. The separation of
a diagram in a hard scattering part and soft correlation
functions is discussed by Ellis, Furmanski, and Petronzio
(EFP) [2] and by Collins et al. in [3]. Qiu [4] and Ji
[5] among others discuss this approach for inclusive scat-
terings. Several authors have used these methods for
polarized lepton-hadron and polarized Drell- Yan scatter-
ing [1,6]. In the same spirit we will use this method for
semi-inclusive lepton-hadron scattering. The Born term,
shown in Fig. 2, is given by

BI"v 1
d xe'~*p,". .p"

(27r) 4 'j Il

(PI@;(*)&(0)IPttol& (*) '
@ (0)ltIt

+ (Pl&~(~)@~(0)IPt81&*(&)aI«4'~(0)IA .

(3)

Several comments are in order here. We now have two
separate, unobserved final states which are integrated
over using completeness, represented by the top and bot-
tom parts of the diagram in Fig. 2. In the top part of the
diagram the additional hadron in the final state appears.
In Appendix A it is shown how to handle this when inte-
grating over the final state. The result is that we are left
with a hadron number operator. In the diagram we see
the separation in quark correlation functions represent-
ing the soft part and the two p matrices that denote the
hard photon-quark scattering. Furthermore we note that
Eq. (3) contains contributions of quarks and antiquarks.
In the rest of this paper we will not explicitly account for
the antiquarks since they behave exactly like the quarks
in a distinct sector. Of course the numerical values of
quark and antiquark correlation functions can be quite
different. Finally we note that we will be concerned with
hadrons produced from the struck quark, i.e. , belonging
to the (isolated) current jet. This will pose restrictions
on the scaling variables z~ and z, as will become clear
later in the discussion of kinematics and factorization.

Evaluating Eq. (3) we will find the contributions

where q"w+~ = 0 but q"w „g 0 so we explicitly lose

electromagnetic gauge invariance in O(Q ~). This prob-
lem arises because at order Q

~ there are other contri-
butions involving soft parts that correspond with quark-
gluon correlation functions. These are given by the four
diagrams of Fig. 3. They have one fermion propagator in
the hard scattering part and their leading contribution is

O(Q ~). Generically

Added together we find that for

L(z, z') = Pexp~ eg j d"y ( (z —y', z' —y)d (y) ~,

P Pi

vt tv
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one has q"W„„=O(Q 2), restoring the conservation of
the currents.

After explicit evaluation of these five diagrams we want
to express the various correlation functions in terms of
scalar functions, which we refer to as profile functions.
These are Fourier transforms of specific projections of
the quark correlation functions.

An important issue is color gauge invariance. The
quark correlation functions obtained after factorization
of the Born term as in (3) contain quark fields taken at
different space-time points, so these matrix elements will
not be invariant under local color gauge transformations.
For a gauge-invariant definition of the profile functions
one needs in the nonlocal matrix elements link operators
of the form
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FIG. 2. The Born term in the expansion of the hadronic
tensor.

FIG. 3. One-gluon contributions in the expansion of the
hadronic tensor. Only quark contributions are shown.
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where A is the appropriate gauge field [7]. Gauge invari-
ance is restored when ( satisfies

(x —y, x' —y) = 8 (x' —y) —8 (x —y).~a

The path ordering P is then defined along the flow lines
of the "velocity" field ( . A special choice of ( leads to
the well-known line integral

then we will define the basic objects of which our dia-
grams are composed and show how they relate to the four
profile functions which characterize the process. Then in
Sec. IV we will present the actual calculation of the
hadronic tensor and demonstrate gauge invariance. Fi-
nally in Sec. V we present our results as expressions for
various cross sections using these four scalar functions.

1(z, z') = 7 expI ig dy A (y)
II. SEMI-INCLUSIVE DEEP-INELASTIC

LEPTON-HADRON SCATTERING

In the case of hard processes when one integrates over
all the transverse momenta, one is left with correlation
functions in which the space-time arguments are sepa-
rated along the light cone [z+ —z'+ = z~ —zz ——0,
where z+ = (z + z )/v 2I. A proper gauge-invariant
correlation function can be obtained by including for the
definition of the profile functions a straight link connect-
ing x and z'. The additional matrix elements of the form
g(z)A+(yi) A+(y„)@(x'), that appear and correspond
to diagrams with multiple gluons, need not be considered
in the gauge A+ = 0. As soon as we consider the depen-
dence on transverse momenta, however, a color link needs
to be included explicitly for a gauge-invariant treatment.
Because the arguments of the quark fields are separated
in the transverse direction, the fields A& (n =1,2) will ap-
pear. Making an expansion of g(x)L(x, 0)g(0) in orders
of g, which for the part of the link operator containing
the transverse fields Az(y) is also an expansion in orders
of Q, one needs in addition to Q(z)@(0) to consider
the term

igM(z) d'y ( (z —y —y)A-(y)@(0) (10)

As we will show it is actually possible to cast the results
of the diagrams in Fig. 3 in the form of (10) with a specific
form of ( (x —y, —y). This shows that the full result up
to O(Q ) can be expressed in a form as in Eq. (3) with
correlation functions containing a specific color link. Be-
cause of the complex form of the link function ( and the
fact that the profile functions depend on (™,we will not
use this color link for a manifestly (color) gauge-invariant
treatment. Rather we choose a special gauge in which
A+ = 0 and A& are physical gluon fields and present
the result of the calculation in terms of the correlation
functions (f(z)@(0)) and gr(x)A~(y)@(0)). We consider
this an important and useful result for phenomenologi-
cal applications, which will be reported elsewhere. The
inclusion of other diagrams with extra gluons related to
the construction of manifestly gauge-invariant definitions
of our profile functions, mass factorization, and Sudakov
e8'ects have not been addressed in this paper.

The rest of the paper is structured as follows. In Sec. II
we discuss the generalities of the semi-inclusive cross sec-
tion, kinematics, structure functions, and inclusive reduc-
tions. In Sec. III we will first look at the kinematics of the
relevant diagrams and discuss what kind of assumptions
are made related to the factorization into hard scatter-
ing and. correlation functions and make a twist analysis,

We will consider semi-inclusive processes of the type
eH ~ e'hX, where H is a hadronic target with mass
M, 6 is a hadron with mass mg detected in coincidence
with the scattered electron, and X is the rest of the final
state. The momenta are defined in Fig. 1, the angles in
the target rest frame (TRF) are defined in Fig. 4. In a
one-hadron semi-inclusive process we can form four in-
dependent invariants q2, P q, P ph, and pg . q. This
includes the invariants that one is familiar with in inclu-
sive scattering:

and the ratios

q TRF

M

O' Pg
2Mv P-k

(12)

For semi-inclusive scattering one or more particles (=mo-
menta) in the final state are measured. The additional
invariants are fixed by the energy Eh and the compo-
nent of ph along q, indicated by ph ~~,

or equivalently by
Eh and p&&. In the TRF they do not depend on the
azimuthal angle Pg. Note that if more than one momen-
tum in the final state is measured the relative azimuthal
angle appears in the invariant pq p2. In particular in the
TRF one has ail p23 I+ij I l&2J I

cos(&i —&2) &n D&s
processes the ratio

Ph TRF +h
P q v

(14)

FIG. 4. Definition of scattering plane and momenta in
IH —+ t'hX.

will be useful. We will consider in this paper the limit of
deep-inelastic scattering, in which Q m oo and v m oo,
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keeping the ratio z~ fixed. In this limit (defining z
along —q), q -+ oo. One then immediately sees that for
a particle produced in the current jet the other invariant
involving ph and q with ph on mass shell is

As in the inclusive case, it is convenient to introduce
photon polarizations. The structure functions can be ex-
pressed in terms of

2ph q ph q ph
q2 q q+ q— (is)

WL ——~L - W- ~L ———Wg+ 2 W2,
g

2

WT = —(e~ W . e~ + e„ W . Ey) = Wl + 2 W4,
The cross section for the semi-inclusive process is given
by

2Eh der a E'
dsphdOdE' Q4 E

or

WL, T' cos(ph) = —(6~ ' W 61, + El, ' W e~)

cos(4h) W3
q mh

2Ehdo'

d Phdz~dy

~n22My
q4 Pv t

where L„„is the spin-averaged lepton tensor

(i7) 1
WT'T' cos(2fh) = —(e~ W e~ —eii ' W . Ep)

2

~hJ"2 cos(2$h) W4.
2mh

L„„=2k„k„'+ 2k„k„' —Q g„„ (is)

and the hadronic tensor is the product of nonelementary
hadronic currents:

The e's here are the standard transversal and longitudi-
nal photon polarization vectors. The tensors multiplying
these structure functions in

d3P

x(ph PXI J~(o)IR(2~) h (P+ q —ph —Px)
(19) are

W„„(P,ph) q) = P„WI, + P„„WT — P„„Wr,T—
2

+P„„WTT (2s)

The integral over Px indicates a complete summation
over all multiparticle states of all hadron types. We
have split oH' the invariant phase space for the detected
hadron, which can also be written

d ph dEhdph~dph 1 v " "Phx" h.
4Ph/[ 4 Ph [/

(2o)

f q„q„ t T„T„
Ww (»ph q) =

I
"," —g~ I

Wi+Eq' )
PhJ pTV + TpPhJ v+ 3

Mmh
PhJ yphJ v q~I

mh
(21)

where

The most general gauge-invariant, Lore ntz covariant
hadronic tensor for the electromagnetic process (parity
and time reversal invariant) can be decomposed in four
structure functions W; (x, Q2, z, p2h&) [8]:

TP„„

PLT
PV

PTT
PV

They can

T~Tv
T2

pqv Tp Tv= —g" +, +
q

PhJ pTV + TpPhJ v

Tlphil
qpq TpT ph J mph J v

T2 +'
q ~hJ

be used to project out the structure functions

(26)

WIT =

WTT =

PL Wpv
PV

PT Wgl v
p, v

PLTWpv
PV

PTTWpv
p, v

as they are orthogonal to each other.
In DIS it is convenient to use the combinations 'R,. =

'R, (x) Q, z, ph~).

(P q)
q2

and

TRF
Phj (O~PhJ ~ O).

'q' = ~(q'+q').

(22)

(23)

(2s)
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2mh

f p2 Q2 ) ggq2
2zR2 ——v

I
W2+ " W4

I

= (WL, + WT),
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For later purposes it is also useful to introduce

2~A& ——MW&

( Q' 'R2= 2z —'R, +~1+
v 2xg

DIS
Z 1+

2Z +
(29)

where

('der l 4o'E", (01
I I

= cos
kd~) M Q k2)

= 1+2 tan
Q2 q2

(31)

The cross sections are easily obtained from the contrac-
tion of leptonic and hadronic tensors. Without any ap-
proximations one obtains

2Ehdo.

d3PhdOdE'

2
— ~T + e ~L + e WTT cos(2$g)

(do) Q'1
&d") M &' '

e(e + 1)
2

~LT cos(gh)

(30)

It is also possible to observe a second particle in the fi-
nal state. One then finds by a similar analysis two ex-
tra structure functions associated with the extra particle,
WLT and WT» which enter the cross section in the same
way as the one-particle structure functions, (see [9]).

Up until here all expressions have been completely gen-
eral. Now we want to specialize to DIS events. Our
attention will be the current jet, considering particles
produced with bounded transverse momenta, i.e. ,

2 2 2 2~h + I h J. ~~ Ph
~~

— h '

The cross section may be written as (still exact)

de
dxsdzdydp~&&dgq

4~n2ME EI, 2 (
x&y 'R1 + 1 —y—Q' ph/

Mx y& lpgil 2
1 —y — 2*a"

I
+2 + (2 y) cos(Pg)'R

+ "' .M' '"('&~)+42M+~
yQ

(34)

which becomes, in the DIS limit, H2(x~, Q, z) = H2(x» z) = ) eq xs fq]~(xs)DI, ]q(z)

do DIS 47rO'. ME
+f,(~(x )Dh~q (z-), (38)-

(2 —y) g(1 —y) cos(Pq) 'Rs

2

(1 —y) cos(2gh) R4 (35)

H; (x» Q, z) = — dp&&dgh '8, (x» Q, z, ph&)

Integrating over the azimuthal angle only leaves the first
two terms. Often one is only interested in the z behavior
of the structure functions, so defining

2xBA1(xB,I Z) phd) %2( Bx,I Z, phd),
2 2 (39)

as 'RL, m 0 in the DIS limit.
Finally some remarks on the connection to inclusive

scattering must be made. The hadronic tensor for in-
clusive scattering W~ (P, q) is given by (see Appendix

where q indicates quarks of different flavors. In this paper
we show the validity of this factorization in leading order
in Q, and its extension to O(Q ), and secondly we derive
an expression for the fragmentation function in terms of
quark correlation functions. Furthermore one obtains

2 2 2
dph, J +i (xB & Q 1 Z,

ping

), (36) A)

we are left with

Ix~y H1 + (1 —y)Hz] . (37)

In the analysis of experimental data, factorization of
the structure functions is taken to mean that one can
write the structure function H2 as a flavor sum over prod-
ucts of quark distribution functions and quark fragmen-
tation functions [10]:

(nh(x ))F1(x ) = dzH1(x, z),

(nh(x ))Ez(x ) = dzH2(x, z), (41)

d3
(nh(P, q)) W& (P, q) = W~„(P, q, ph), (40)

2Eh
where (nh(P, q)) is the average number of particles pro-
duced of type h for given P and q. Combining the defi-

nitions we then have
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where I", are the standard dimensionless scaling structure
functions in inclusive lH.

III. FACTORIZATION AND CORRELATION
FUNCTIONS

A. Kinematical factorization and twist analysis

In this section we will discuss the diagrammatic expan-
sion. We start by considering the kinematics. It is conve-
nient to use light cone coordinates for this. With the four
vector notation p = [p, p+, pz] with p+ = (po +ps) /y 2
we denote the momenta of the target hadron (P), virtual
photon (q), and final-state hadron (p&) as

P= xBM2 A

Q2 A
, 0~

zQ A(pi, ~ + mi, )
A~2' zq'~2 (42)

T"T" Q A

A~2'Q~2' ' '

Q A

Q~2'

(4S)

(44)

and the two light cone null vectors

n~+ =
~

—
~

(T" —q"),

n" =
~

——
~

(T"+q"),( q+l

& Qr

(45)

(46)

with n+ .n = 1. Note that in our results the invariants
xB and z are used as the ratios of light cone coordinates.
Thus the replacements

q+
p+

2ZB

Here A is a free parameter fixing the frame among those
that are connected by boosts along the photon-quark
direction. For instance A = xBM corresponds to the
target rest &arne (TRF), while for ph& ——0 the choice
A = (zQ )/ms corresponds to the outgoing hadron rest
&arne. A convenient infinite momentum frame (IMF) is
found by choosing A = Q. Using the momenta P and
q, and the momentum T—:P —(P q/q ) q, one can
construct the momenta

Q appear. We consistently neglect terms of order trans-
verse momentum divided by Q . Also x~ and z should
not be too close to zero. To be precise, x~ Q and zQ must
be at least larger than some hadronic scale.

Diagrams contributing to the process will be separated
into soft hadronic matrix elements and a hard scattering
part. The forward matrix elements involving the external
particles (momenta P, pi, ) are given by untruncated (ex-
cept for external lines) Green's functions. Given a renor-
malization scale for these Green's functions, they are cal-
culated as two-particle irreducible in the quark-antiquark
channel. The evolution between different renormalization
scales is then provided by the logarithmic corrections dis-
cussed below. It is assumed that for all of the Green's
functions the parton virtualities are restricted to some
hadronic scale; i.e., they vanish with some inverse power
of the virtualities. The relevant diagrams that are consid-
ered in this paper have been given in Figs. 2 and 3. There
are other diagrams with one gluon such as those of the
type in Fig. 3 with the photon-quark-quark vertex and
the gluon-quark-quark vertex interchanged. Those can
be absorbed in the soft parts and will not be considered
explicitly in our analysis. Diagrams with one gluon which
are important are those shown in Fig. 5. They contain in
the hard part partons in the final state and will produce
logarithmic corrections from the collinear divergencies. 2

Their absorption into Q2-dependent functions completes
the factorization. This leads to the evolution of the pro-
file functions f+,D, also known as the Gribov-Lipatov-
Altarelli-Parisi equations, as has been proven explicitly
by Ellis, Georgi, Machacek, Politzer, and Ross [ll]. The
nonlogarithmic terms in their calculation are the gluon
jet events which appear in order o;, and which have been
calculated in a naive parton model by Konig and Kroll
in Ref. [12]. We expect that &om diagrams like those in
Fig. 3 which have in addition gluons in the final state one
will obtain Q ilnQ2 contributions. In this paper how-
ever, we will not discuss the logarithmic contributions
any further. We do note that in the leading order we
can calculate the logarithmic corrections in our approach
and that the evolution equations are not altered by the
observation of transverse momenta. Finally there are di-
agrams which have a gluon across between the hadronic
parts. With the above assumption on the parton virtual-
ities one immediately sees that they will vanish as some
power of Q 2. The general behavior of the contributions
of diagrams with any number of partons emerging f'rom

the hadronic matrix elements is discussed below.
It is illustrative to first consider the kinematics of the

diagrams in Figs. 2 and 3. We assign the four-momenta

t!(p'+ pi)

~hz
q

z

4M2x21+ 1+
(47)

would provide the necessary so-called hadron mass cor-
rections. Furthermore we assume that for the current jet
events we consider, no transverse momenta growing like

The quark self-energy and the photon-quark-quark ver-
tex correction provide singular terms needed for the mass
factorization.
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the quark propagators in Fig. 3:

FIG. 5. Gluon contributions giving rise to logarithms.

pl +q
(s»+ q)'

kl —q

(ki —q)
2

1 A —p
(,Ay 2 Q'v 2 (iQ'

1 —A -kl~
A~2 (iQ2 v 2 (iQ2

(49)

pl

(Q2 A(k + ki)
Av 2 (Q'~2

pi + pi~ (1 —(i)A
(1 —(i)Av 2 v 2

(1 —(i)Q A(k, + k,~)
A~2 (1 —( ) Q2 vt 2

(48)
Fig. 6(a):ip...
Fig. 6(b): igp, . ,

(50)

(51)

It is important to note the suppression of the transverse
components relative to the other components.

The objects that enter the diagrams in Figs. 2 and 3 are
depicted in Fig. 6. They are partly given by untruncated
(except for external particle lines) Green's functions for
the blobs and partly by ordinary QCD Feynman rules.
Suppressing Qavor and color indices we have in the hard
part the rules

Now we apply four-momentum conservation p+ q = k
to derive ( = ( = 1 in the limit Q i oo, which is
equivalent to p+ = —q+ = x~P+ and k = q = zp&.
For later use we also give expressions for the momenta in

z
Fig.6(c): —,

while the correlation functions are given by

(52)

d'* '"*(01& ( )
' @,(0)lo

d xd y e ' *e' "' '"(Pl/, (x)A (y)g, (0)le,

d xd y e'" *e ' " '"'
"/lpga(x)A (y)a~&ah/, (0)l0).

1
»g 6(d): T*i(I)=, d'* e "*(P14,(x)@*(0)IP,

Fig. 6(e): D, , (k) = 1

4z 2~4
1

Fig 6(f):+,', (S»p ) =
22ir s

1
Fig. 6(g): M, , (k, ki) =

4z 2it s

(53)

(54)

(55)

(56)

pt
T;; (p)

(a)

D..(k)

(b)

1g '(.

j Q

tg P-P,

I Pl Cil P i
Fi1 (P.Pl)

We note that time ordering is not relevant. Using
the QCD equations. of motion [13] all correlation func-
tions can ultimately be related to functions contain-
ing g+ —— (p p+/2)g and A, which have c-number

O(P, q, pi, ) = ) O„(P,q, pi, ),
0 i m

(57)

(anti)commutators at equal light cone time x+ [14].
We will now discuss the Q dependence and give the

general classification of all possible diagrams with more
than one parton emerging from the hadronic matrix ele-

ment according to the powers of Q. We use an extension
of the method developed by EFP for inclusive scatter-
ing. They have proven that for inclusive scattering this
Inethod is equivalent to the operator product expansion
(OPE). Because of the hadron in the final state we do not
have an OPE for semi-inclusive processes. %e can, how-

ever, follow the method of EFP for semi-inclusive pro-
cesses.

Consider an observable, say one of the structure func-
tions '8; in the expansion of W& . Separating the hard
scattering from the soft pieces we have schematically

(c)

~a&
gk-k,

G 3

(g)

M, (k,k,)

FIG. 6. Rules for the calculation of the diagrams.

where

O„(P,q, pi, ) =
n m

~ $ P

I 4 h, h s ~

'i 2

xD(ph, k, ). (5S)

dp;dk~ T(P, p;)I'(q, p, , k, )
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I ( k ) qc —dT —d~

where c is a constant depending on the specific observ-
able. The behavior of T is determined by its Lorentz
structure and the specific component that one considers.
As in the matrix element every Lorentz index contributes
as P" one finds after collecting the powers of Q in the
frmaeA=qwhereP + Q, P M /QandP+ M:

T MdT —hT qhT (60)

After determining hT in this way, the twist of the (nonlo-

cal) operator in T is defined as tl = dT —hT . Similarly,
the behavior of D, where ph Q, ph+ m2h/Q, and

phJ mh, is given by

d~ —h~ qh~
h

Omitting the diagrams with partons in the final state, a
general term 0„,with n+ m partons participating in
the hard scattering is depicted in Fig. 7. To investigate
the behavior of the diagrams for high Q2 it is conve-
nient to work in the particular infinite momentum kame
A = Q. Under the assumption that all parton virtualities
must be restricted to some hadronic scale we can show as
seen explicitly for the momenta appearing in Figs. 2 and
3, that k. and p+ Q while k+ and p,. Q i. The
transverse momenta are all of order unity. For the trun-
cated piece I' one can convince oneself that in the limit
Q ~ oo, the Q dependence is determined by dimensional
arguments. Ass»me that the canonical dimensions of the
(in general nonlocal) product of operators appearing in
T and D are dT and dD. The dominant hard scattering
part multiplying T and D then must behave as

D
h Q

P
Zj

xn.eJ
q

I

)YRJ V
I

p,
+= x,.P+- Q

FIG. 7. A general rnultiparton contribution.

the "twist" as used in the OPE approach for inclusive
DIS. The name twist is still used in our context as the
above leads for 0 to the behavior

~
tT+t~ —c

o(P, e, ph) -
I

—
I

(62)

The leading Born diagram starts off with bilocal twist-
two operators in T and D, but also contains twist-three
and twist-four pieces. Diagrams with, for instance, an
extra pair of quark fields in T or D are suppressed by a
factor Q as tT or tn is increased by 2. For gluons the
situation is more complicated, since addition of a gluon
does not change the twist. By choosing the gauge A+ = 0
for the lower and A = 0 for the upper blob we force the
gluon contribution to add at least one unit of twist. Let it
be clear however that one can add in general an arbitrary
number of longitudinal gluons to every diagram. Only
after a suitable choice of gauge these contributions will
vanish.

and the twist is defined as tD ——dD —hD. Note that
we (following Jaffe) discuss twist for an operator which
is in general nonlocal. Moreover, different components
(defining different profile functions) will have different
twist. For example, g(x)p+Q(0) will have t = 2, but
g(z)p Q(0) has t = 4. The twist for the ++ .+ com-
ponent of a symmetric traceless operator is identical to

B. Correlation functions and profile functions

The profile functions will be defined as Fourier trans-
forms of projections of T and D. Explicit definitions of
the profile functions are given in Appendix B.With these
definitions we find

f q 2Mz~T [T(p)],.=..~. = — e(* ») (63)

T [T(p)~"l„+=..~+ = (T" —&")& (&»)+ & (&~ »)+Ol2xgpg (II
(64)

q+ 2mhdk+ Tr [D(k)]„-(,———— E(z, ph~ —zk~),

dk TI' [ f D(k)] h
—] = ——T + g D (z)Phg —zkl ) + D (z)Ph~ zkg)

2(ki —ph~/z)
z

~hJ D (z, phd —zkL) + 0
z & ')
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d'pl +,', (p, pl) = ip &*/-(p) —ig d 'pl +;;(p,pl)

d k, ~, (k, k, ) = —ik D;,.(k)

—ig d ki M,, (k, ki). (67)

where f+ and D are twist-two profile functions and e,f, E, and D are twist-three profile functions. These
are all scalar functions. The functions f+ and e are the
same as defined by Jaffe and Ji in [1]. The function D
is the same as defined by Collins and Soper in [15]. The
functions f and D are new. Note, however, that we
consider the functions without a color gauge link, i.e. ,

there is no manifest color gauge invariance for these func-
tions.

In order to handle the three-parton correlations M and
F we define the functions ~ and T, completely analo-
gous to M and F but with the replacement A ~ D
t9 —igA . With partial integration we prove the rela-
tions

ciated leading profile function is in fact expressible in
the twist-three profile functions appearing in Eqs. (64)
and (66). For this we use the QCD equations of motion
[1,2,13]. We define gy = P+g where P+ = p+p+/2.
It is then straightforward to show that g+ and A are
dynamically independent fields in the gauge A+ = 0 [17].
This means that parts of the three-parton correlation
functions corresponding to g and A can be written
as correlation functions involving more than three par-
tons and are thereby guaranteed to contribute at twist) 3. From this simple argument we know beforehand,
that if we are interested in twist-three contributions (and
we are) then we only have to consider Tr[p+F (p, pi)],
with o. = 1, 2. For the M functions we find twist three
for Tr[p M (k, ki)] in the gauge A = 0. One draws
the same conclusion from the twist analysis of the previ-
ous section. As gp+g = v 2Q+g+ we conclude that the

leading contribution (in twist two) comes from @+A fr+.
When choosing A+ = 0 the leading contribution is then
at twist three and given by g+tA

In the A+ = 0 gauge we deduce the equations of motion

D (x)~'4(x) = ~'~ &(x) (68)

As argued before, the three-parton correlation functions
F and M or T and M will be twist three in a suit-
ably chosen gauge. We will now show that the asso-

This is only true when applied between unpolarized nu-
cleon states. Applying these equations we find, for the
relevant transverse components (n = 1, 2),

1

2(2')4 dp d x e '"*(P~g(x)p+iD (0)Q(0)~P) = x,p~f

dk+d x e'" '*Tr P~g(x)iD (0)alai, g(0)p
4z(27r) 4 +hi

@J DJ (7o)

Here k' is the quark momentum k obtained after a Lorentz transformation to the frame where p&& ——0, k&
k~ —p&&/z as explained in Appendix B. We have to transform back to the original frame with p&& g 0. Note that
because of this transformation

dk+d x e'" '*Tr E0~$(x)iD (0)alai, @(0)p ~Q
= k D

4z(2vr) 4 +hi

will contribute to the transverse twist-three parton piece. This gives us, as the result in leading order which we will
use in the next section,

dp d'pi T [i& ~"] .=,+ =
I

—
I

(&" —q")R x~f +o
IP = 9 ( )

dk+ d'k, T [i~.&~]„, =
~

'
~

P'+q") k'; -D + "'D- +Oi
z z ( )

(73)

IV. CALCULATION OF THE HADRONIC TENSOR AND GAUGE INVARIANCE

We present the calculation of the hadronic tensor W from the diagrams of Figs. 2 and 3. It consists of three parts,
W = W~ + Wz + WM, where Wii is given by the Born diagram of Fig. 2, W~ by the one-gluon diagrams, Figs. 3(a)
and 3(b), and W~ by Figs. 3(c) and 3(d):

Wg = — d pd k b (p+ q —k)Tr [p"T(p)p D(k)],
(74)

d pd k h (p+q —k) d pi Tr p 2p"gF~(p, pi)p D(k)
M pi+q '

+T ~" ', ~-D(k)~"gE-(p, p)
(pi + q)'

(75)
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WM"" —— d pd kb p+q —k d k» Tr p" p T pp"gM k, k»
ki —

q
2

+Tr p p"gM (ki, k)p"T(p)
ki —q2

(76)

It is not necessary to consider the color charge operators at this point, as they will disappear again when the gluon
fields are eliminated using the QCD equations of motion. As discussed in the Introduction we will show that ~~ and
WM generate the first order of an expansion in g of the linking exponential. Note that this expansion in g will not
be a perturbative QCD expansion, since we have no hard momenta in the soft part, but an expansion in the number
of gluon Gelds. We will discuss only the I" part as the M part is completely analogous. The required term for a gauge
link is

lank, P ki 2 2

x d y, z A&. . x —y, —yA y ~0 p,". d ze''
~ zahc& &, 0 (77)

where we have the condition on (

(78)

By comparing Wg" with WP"& & we identify

*(- )w, "» ~ ' ~ *'(-~)(-w)4 i„„(& —» &) = ~~~'-(2 )4 I &
~ ] I

e ' + ~i i (~„)4 I

~ 22'
(79)

We calculate the derivative of ( and use the identities

1 1

1 1
(p —Ji) ~-]

(so)

(81)

which are essentially Ward-Takahashi identities for the
hard scattering vertex. In leading order we use the kine-
matics of Eqs. (48) and (49) to find

+0/—(Il (s2)

Since for the D correlation function the leading parts are
given by g = P g fields in the matrix elements and

(P ) = P, we see that in leading order our ( satisfies
condition (78). From this and the analogous reasoning
for the other two diagrams we conclude that the four di-
agrams of Fig. 4 are enough to render our calculation

g 4'i,gg'(* » &) = ~ii'Pi. r, ~ (g) ~i"&+,, ~ (* &)

gauge invariant up to O(q 2). Note that both in our
derivation of the linking operator in the Introduction as
in our determination of the leading diagrams we have
not considered the contributions of multiple longitudinal
gluons. However, we have proven gauge invariance for
the O(g) term which in the gauge A+ = 0, A = 0, re-

spectively, will be the leading term, since the remaining
gluon Gelds will add at least one unit of twist. In our cal-
culations we will also not need to consider these diagrams
as we will choose these gauges.

Now that we have convinced ourselves that our start-
ing expression is gauge invariant we return to the calcu-
lation of the diagrams, choosing the gauge where A+ = 0
and A& are physical gluon GeMs. We will expand the
correlation functions in the standard basis of Dirac ma-
trices and express thexn in the profile functions (63)—(66).
Because of time reversal and parity invariance together
with Hermiticity, only 1 and p" can contribute in un-

polarized electromagnetic scattering. Furthermore we
can prove with time reversal invariance and Hermitic-
ity that Tr [p"F (p, pi)]=Tr [p"F~(pi, p)] and the same
for M (k, ki). The tensors reduce to

d'I d'k 8'~+~ —k —T ~.T T. ~,D s~",
16

d pd k b (p+ q —k) d4p, '
I

—Tr[p F (p, pi)]Tr[ppD] (S " ""+S" (84)

d pd k b (p+q —k) d ki
~

—Tr[p T]Tr [ppM (k, ki)] (S" " + S """ ) ~, (85)
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where

s" ""=v [&~& ~ ~'],
gapggar»A rfr

[
a p pr a v

AI

(86)

(87)

for WM . Because p+p+ = p p = 0 and (p+, p+ j = 0
this means that p = —in the first case and p = + in the
second. This in turn implies that the fermion propagators
are in fact constants in leading order as can be read oK
from Eq. (49) in the frame A = Q

Contributions of the Dirac unit matrix either give rise to
an odd number of p matrices or are suppressed by Q
Since the fermion propagator in the frame A = Q goes
as Q

~ we only have to pick out the order 1 contribution
of the rest of the integrand. The leading contribution is
given by

(pi + q)'
(pi+ q)'
(kg —q) P

(k) —q)2

' (T+q)'.

(90)

(91)

for WFv and

pp —v+ + gvpL+u

gp pZ —v+ g-L pv+ p, —+

(88)

(89)

Now we can take the propagators outside the kq integra-
tion and use relations (67). Furthermore we decompose
b4(p+ q —k) as b(p++ q+) b(q —k ) b2(p~ —k~). We
finally find

W~" ——

p V»I»r
F 4M

1
dp+dk d p~ —Tr[p T]Tr[ppD]S~"

16

q
P

dp+dk d p~
~

d p) Tr [iP p ] Tr [ppD]

(92)

-z +, ( T —q)P -(
WM" —— dp+dk d p~ ~

Tr [Tp ]
d'k T)r [iM pp]

—Tr]q T] Tr]q»D]gr ](g» " +g "» )). (94)

This is the contribution of the relevant diagrams, expressed in quantities which we have given as tensors in next-to-
leading order on the basis (T, q, p~, kg,p),~) in the previous section. To be precise, we will substitute the relations
(64), (66), (72), (73), (90), and (91). Note that T = 1, q = —1, T q = 0, and that they do not have transverse
components. The calculation is then very well suited for symbolic manipulation with a computer. We have used
FQRM [18] to evaluate the total hadronic tensor as

Pg» (P, qp»pr) = ( q»q" ,—g,
»") ( f—D ) + (T"T")—(—f D )

T"p~+ T p~ ~ f D + f+D — f+D
MQ MQ MQ

+ T"P„~+T Ph~ +D — +D +0
2 )

( 2 + 2 + ~'] /'1 1

where

d p~W" . (96)

sor for the semi-inclusive process where one observes in
addition to a hadron 6 the transverse momentum of the
jet, i.e») the transverse momentum of the ejected quark
in our approach:

Note that the result is color gauge invariant, albeit not
manifestly. One can convince oneself that q„W~
O(Q ). We see that the correct treatment of the color
gauge invariance also restores the electromagnetic gauge
invariance.

The hadronic tensor W" is in fact the hadronic ten-

(,~+H m e'+h+jet) 2 El
dsphd2p dOdE' Q4 E 2E),

L„„W" . (97)

As mentioned in Sec. II this gives then rise to two extra
structure functions. We project out the leading structure
functions (all other structure functions are of order Q ):
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Wr (*.. .p.„p.)
1

Wl.z(x»z phd pz)

2
WLT (xD, z, ph J,pJ )

z /1)
M
—f'(x, pi)D (z phd —zpi) + Oi

& ')
lphgl 4

q M ' (z ' ' )
—f (x pi)l —,D (z phd —z») —D (z»hi —zpi)

I

p~ 4 (—z[f+(x» p~) —xD f (x» p~)]D (z, p« —zp&) —f+(x» p~)D (z, ph~ —zp~) j
(9S)

V. RESULTS Dh/q(z& ph~) —D (zs ph~)

A. The quark distribution and fragmentation
function

In this last part we will present the cross sections
of several processes in lepton-hadron scattering. These
cross sections will be expressed in the previously derived
quark profile functions. First we will examine the prop-
erties of these functions.

The profile function f+ is just the well-known quark
distribution function, see [19]. The function

f,ge(x pi) = f+(x pi)
dx d z e,'(~ *+~

2(2x) s

x (Pl@(x)p'&(0)
I 8 (99)

is interpreted as the probability of 6nding a quark with
light cone momentum fraction x~ = p+/P+ = q+/P+-
and transverse momentum p& in a target with no trans-
verse momentum. This can be seen when one quantizes
the quark fields on the light cone with x+ = 0 (see [1]).
As the Q+ fields are the essentially free fields one can
then substitute a &ee 6eld expansion. The operator in
the matrix element then essentially reduces to a quark
number operator, counting quarks with momentum &ac-
tion z~ and transverse momentum p&. The integral over
xs and p& comes out as 1, so f is a probability distri-
bution. Upon integration over the transverse momentum
one finds the the quark distribution1;+-f (H(x ) = — dx e'q

4'

(Pl~(*)~ ~(0)IP
x+ =x~ —p

(100)

With this form one can easily prove sum rules express-
ing probability and momentum conservation at the quark
level. As a check on the answer one can consider a quark
target. One expects that the probability of finding a
quark in a quark reduces to a b function in x~ and p&.
An explicit calculation, substituting a free quark state
for the target state IP leads to

dx+d'~ e'« "+'":
4z(2~)'.T PI@( ) '"@(0)~-IA

=O,yh~ ——0

(102)

xT Pl&(x) oth«@(0)~ 18
O'phd

(103)
This is the scaling fragmentation function. Both forms
were first defined in [15] and also used in [16]. By inte-
grating over z and using the techniques of Appendix A
we can derive the sum rule

dz Dh~ (z) = (nh), (104)

expressing the fact that D(z) is a multiplicity distribu-
tion. In [15] it was already proven that

) f dz zD(z) = 1, (105)
hadrons

which expresses momentum conservation. Finally we can
also consider here the production of a quark &om a quark.
We substitute &ee quark operators for a&, ap, and find

Dq]q(z, pq~) = b(1 —z)h (pq~). (106)

is interpreted as the multiplicity of hadrons (of a certain
type) found in the hadronization products (jet) of a quark
with transverse momentum zero, hadrons with momen-
tum fraction z = ph /k = ph /q, and transverse mo-
mentum p~&. Analogous to the case of the distribution
function this can be seen by quantizing the quark fields
on the light cone, but now for x = 0. One then 6nds
essentially a hadron number operator acting between two
quark states. The sum rules discussed hereafter then con-
firm that D is a multiplicity distribution. If the origi-
nal quark does have a transverse momentum, one should
make the substitution p&& w p&&

——p&& —zA'~, where

p&& is then the transverse momentum of the hadron with
respect to the quark with momentum Iq~. Upon integra-
tion over p&& one finds

Dh( (z) = — dx+ e'q *
8~

fqyq(x, pi) = ~(1 —x )~'(pi).

The &agmentation function

(101)

The profile functions f+ and D+ do not have an inter-
pretation as a distribution function, since they depend
on interacting quark fields so no free field expansion can
be applied. The antiquark contributions can be derived
completely analogously and lead to
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1f /H(x, s&) =
( ),

1
D~/;(, Sf,i) =

4z 27r 3

(Pl@(x)4(0)q+ I&)

d*+d'*«" * + . '(01@(x)~ os«q(0)1%

(1o7)

(108)

Inclusion of diferent flavors gives rise to a sum over contributing flavours and quark charge factors eq.

B. Semi-inclusive cross sections

Starting with the hadronic tensor derived in Sec. IV, several cross sections for semi-inclusive lepton-hadron scattering
can be expressed in distribution and fragmentation functions. We will present a cross section for the process e+ H —+
e + 6+ jet, i.e. , not only a hadron is detected, but also the axis of the jet it belongs to. Other cross sections will be
determined from this one by integrating over measured variables. With the structure functions (98) and accounting
for antiquarks and flavor we have

(e+H ~e'+ 4+jet)

dx~dydzd ph&d 2p&

87(o( ME 2 (y
Q4 ).e,'

1

—+I —y lxaf, /H(xa, pJ )Dh./, (z, ph, J —zpJ)

+ 2(2 —y) QI —y cos ph,
—f,/~(xD s p~)

ls ~il *
z

fl
x

(

—D )s(z, Ps» z,yl„) —D (; ( sPZ»«—«P» ))z

+ 2(2 —y) gl —y cos p~ I( f,/—H(x—fy, p~)Dh/, (z, phd —zpi )

+ «If yz(z. p») —z f,cz(z .p»)ID«.y;, iz, pl« «pl ))l (109)

Here Ph and P~ are the azimuthal angles of hadron and jet with respect to the virtual photon direction. Note that
ph& is defi. ned with respect to the z axis defined by the virtual photon, but the transverse momentum entering the
fragmentation function ph& ——phd —zpz is defined with respect to the jet axis.

In our approach the transverse momentum of the jet immediately reflects the transverse momentum of the quarks
within the target. To determine the jet cross section from this one has to first integrate over ph&. A direct integration
over ph& yields

(e+H —+ef+h+jet)

dz~dydzd 2p&

which gives, for the jet cross section,

8vra2ME 2 (y2

r
).e,'

I

—+I —y lxsf*/H(x. pL)D~/'(z)

—2(2 —y) S/1 —ye«sf« z, f &»»( „z)Dp»~; (zz)

I
lail 2 i (11o)

(e+H ~e'+h+jet)

dx~ Gpd pg

82rn2ME . 2
/'y2) e,'

1 2
+1 —y lx f;/H(x, u~)

—2(2 —y)«f2 —2 sg f&s(z, p»)I.

Note that we pick up a factor (nf, ) on both sides of the
equation when integrating over z, which cancels. With
this cross section we can calculate an expectation value
for the azimuthal angle (t),,&..

~21' ~ 1
& (2 —y) v'I —y &x f (x s i) i

& @ r 2(1-y)+y' & f(*- ~~) r
'

(112)
where the structure factor given by the ratio of xD f
and f comes as an extension of the result previously de-

d~(e+H —+e'+ h)

dx~ dgdz

87t;a ME
1 —g+Q4 2

x ) e, xfy f,/H(xfy)D. h/, (z).
i=q, q

rived by Cahn in [20] for the case of free quarks. Inte-
grating over p& in Eq. (110) we find the one-particle
semi-inclusive cross section. The z dependence is simply
given by a factor D(z), and the cosine integrates to zero
due to the azimuthal symmetry of f (x,pz),
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If we compare this with Eq. (37) we see that we have re-
covered the factorization and scaling of the semi-inclusive
structure function

H2(x~, Q, z) = H2(xdd, z) = ) eq x~ fq/II(xg)Dg/q(z)

+fa/H (x~)D~/v(z)

and the semi-inclusive Callan-Gross relation

2x Hi (x, z) = H2 (x, z). (115)

We recover the Callan-Gross relation because the cor-
rections coming &om the twist-three diagrams are only
entering in 'H3 and 'R4. Finally we will consider the cross
section (35) from which we started for l +H~l'+ li+ X.
To this end we have to integrate over the jet transverse
momentum. For the functions 'R; occurring in Eq. (35)
we find

Vl z(z, z, g, peg ) = —) e; f d pzf yzz(z, pz)Dez;(epee zpz),
2'=.,—.

VL ( zzz() pfz) = z ) e; J d pzf p(z, pz)De];(z, pfz zpz),
i=q, q

2&a 2 2 Il 'JhJ
Rs(x~ z Q p&&) ) e. d p& 2 ( f /i, (xdd p. z)D /&(z ph& zpg)

z
i=q, q

p'hJ

+ z[f /p, (x»p&) —xddf ~&(x»pz)]D, /h(z, ph J zpJ ))

To find the last expression we used

(I+ f /H(x»pz) ( Di/;(z~p&& zpz) Dp/, (z~p&~ zp&) I

(Z

(116)

(117)

We conclude that these structure functions do not fac-
torize without extra assumptions on their transverse mo-
mentum dependence. However we do read off an exten-
sion of the Callan-Gross relation:

+2(xs, z, pgg) = 2xs Rl(xs, z) pgg). (118)

VI. CONCLUSIONS

In this paper we have analyzed the structure functions
in semi-inclusive deep-inelastic lepton-hadron scattering.
We have considered all four structure functions, two of
which (WL,T and WTT ) can only be measured by con-
sidering explicitly the momentum component of the pro-
duced hadron perpendicular to the virtual photon mo-
mentum, or by considering explicitly the perpendicular
momentum of the produced jet. In all cases we have only
considered the contribution of one (forward or current)
jet being produced and particles therein. In the analysis
we have included the twist-two and twist-three contribu-
tions.

The twist-two pieces in the structure functions can be
expressed in terms of the well-known quark distribution
and &agmentation functions which can be considered as
specific projections of quark-quark correlation functions
(profile functions). The twist-three pieces, which con-
stitute the main contributions in WL, T and WTT, in-
volve two new profile functions that appear as projections
of quark-quark correlation functions. Up to order 1/Q,

however, one must also include quark-quark-gluon corre-
lation functions in order to obtain a gauge-invariant re-
sult. By virtue of the QCD equations of motion the con-
tributing pieces do not introduce new profile functions.
The inclusion of the 1/Q contributions does not affect
the evolution of the twist-two profile functions (the quark
distribution and fragmentation functions). We have not
considered the evolution of the new profile functions, or
the O((2, ) contributions in the process. An extension of
the analysis to O(Q 2) along the same lines as discussed
here seems to be very hard to us. In that situation not
only several new profile functions will appear but one has
also lost the separation between kinematic quantities ap-
pearing in the distribution region &om those appearing
in the fragmentation region.

Results in the on-shell parton model such as those pre-
viously derived by Cahn [20] follow immediately as a spe-
cial case by defining the profile functions with respect to
a free quark target, i.e. , the amplitudes in (B3) are then
Ai ——A2 ——4vr4b4(P —p) and 8 = 8x m~8 (P —p). In
this case the azimuthal asymmetry (cos(td) is of purely
kinematical origin.

The analysis in terms of quark correlation functions
is of interest as it provides a convenient method to re-
late cross sections of hard processes directly to matrix
elements of (nonlocal) quark and gluon operators. The
latter could in principle be calculated when we knew how
to solve QCD, or they can be calculated in a model.
Although some data for semi-inclusive muon scattering
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exist [21] we will not discuss them here. Nor have we

presented any model as this would require extra assump-
tions. In the presented analysis a minimal amount of
assumptions was made, namely those needed for the fac-
torization of the hard scattering part. We also want to
point out that one can do exactly the same analysis for
Drell-Yan processes and e+e annihilation, thereby test-
ing the validity of this approach and extending the exper-
imental possibilities of measuring the profile functions.

ing over the hadronic variables when we want to find an
inclusive result, but also when we isolate a hadronic oper-
ator. In this appendix we discuss how to treat these situ-
ations, based on an example situation with only one type
of scalar particle. Extensions to flavor and spin are obvi-
ous. An n-particle state is denoted as Ipi, . . . , p„) and we

3
abbreviate the phase space integrations as dp =

-~2 ~,2& .

The order of the particles appearing in the states has no
meaning. Therefore the identity in this space looks like

I221

ACKNOWLEDGMENTS

We would like to thank 3. W. Bos, M. Dekker, A. W.
Schreiber, and R. D. Tangerman for stimulating discus-
sions. This work was supported by the foundation for
Fundamental Research of Matter (FOM) and the Na-
tional Organization for Scientific Research (NWO).

APPENDIX A: INTERMEDIATE STATES AND
COMPLETENESS

r= gr„,
n=0

(Al)

where

and

(A3)

1
dpi . . dp„a (pi) a (p„)IOj(0la(pi) a(p„)n!

(A2)

The cross sections we are considering describe the de-
tection of one hadron in correlation with a scattered elec-
tron. In an experiment often many hadrons of the same
type are produced in one event. This means that we have
to pay special attention not only when we are integrat-

We first consider the situation with a multiparticle state
where we integrate over all particles except one, the sit-
uation as we encounter it in our expressions. We denote
with Px this complete system minus one particle:

d'Px 1

2m '2Ex II'x, p~)(px, p~l = lp~) 41+ dpi l», p~) pii p~I + —
~

dpidp21», p2, ph) ki, », p~l +"
+h +h = +h+h

thus we can replace the sum minus one particle by the hadronic number operator. Then we want to integrate over ph
to reconstruct an inclusive formula:

IPx~pd(F'x~pi
I

— dphlpg(phl + dph. "pil»~pt)(p»pt I

1
+ dph, dpi dp2lpi ) p2$ ph) 'Ipl ) p2) pg I

+ '

(A5)

This is the identity operator, but with every term sepa-
rately multiplied with the number of particles. The sum-
mation over all states then yields just the average number
of particles h produced in the processes considered:

(,E, I&x,p~)(px, ph. I

= ) n~. (A6)
dPh d @X

27r s2Eh 2vr s2Ex

Evaluated between particle states and reexpressed as
cross sections this relation reads

AtT do

dO„dE„dO, dE, " ' dO, dE,

(A7)

APPENDIX 8: STRUCTURE OF THE CORRELATION FUNCTIONS

In this appendix we study the projections of the correlation functions defined as

f~(»~ &i) =
2 . d~ d'~«" * '" ' (Pl&(&)l'~&(0)IR



49 QUARK CORRELATION FUNCTIONS IN DEEP-INELASTIC. . .

4zDri(ph, .z, Ie~) =
(2')s

dz+ d z~e' ~ ' l Tr (0IQ(z)a&ah/(0) I'~IQ (B2)

(with q+ = z—~P+ and q = p& /z). Using parity and time reversal invariance as well as Hermiticity one proves that
the most general structure of the matrix elements is

4

(z)@,(0)IPI =
2

", e* * [A, (P, p)8+A, (P,p)p+ 8(P,p)]„
4

QIQ;(z) alas @ (0)IQ = e '"' [Ci(pr„k)g+ C2(pr„k)gh + 17(ph, k)], (B4)

At this point one immediately sees that for unpolarized distributions f and Dp are zero except for I'~ ~ = p or

Consider as the first case I'~ = p" for the f-profile functions. One obtains (choosing a frame where P~ ——0)

—= f (* »i)

J+=—q+

f' '(P;z, si) = dz d'z«*' * '" ' (P14(z)~'&(0)IP2(2z.)'

Tr q+ (A,P+ A, P + 8)
2 27r 3 27r p+ — q+

, t' 1
dp'

I
Ai(P, p) + A2(P—, p) I(2z)' ( ' z~

f' '(P z pi) = dz d'»e" * +" ' 0'14(z)~ &(o)IP
2(27r)s

1 dp T q (Aip+A2p+8)

p+ — q+

dp' I, A, (P,p)+z A, (P, p) I

M2x2~

+), f (z pi)2

f' j(P * p ) = d* d'~«*' * +" *' Pl&(z)&~&(0)IP2(2z.)s

Tr [p&(A,P+ A2P+ 8)]
1 dp

2 27r 3 2' p+ — q+

dp'Ai(»p) —= —,f (z Si).

(B6)

(B7)

Here f+, f and f+ are the profile functions. We as-
sume that the functions A; and 8 have no singularities,
so that the pro61e functions are all of order 1. In the
frame A = Q we also see at which twist these functions
enter the calculations. When f+, i.e., the normal parton
distribution function, enters at order 1, then f enters
at O(Q ) and f at O(Q ), as we expected from the
discussion in Sec. IIIA. It is straightforward to express

~~ ~as

f' '(»* »i) = —(T" —q")f++

+01 (BS)

The function f~ij introduces another profile function
e(z»i)

2 (27r) s z d'z e' "-* + *.(PI&(z)&(0)10

1 dp

2 27r 3 27r
Tr Aig+A, @+8

M z8(Pp) Mz
(27r) 4q+ M (q+)

(B9)
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thus leading to the result

f (»* pi) = — e(* »)q 2Mz~
(B10)

A, and 8 and find

f+(*.pi) = f (&~ pi) = f (*~ »i) = e(*,»i)
= ~(1 —* ) ~'(p~) (Bl1)

Although the profile function e appears to enter at twist
three, it will only give contributions at O(Q z) to the
hadronic tensor. This is because e is always connected
with the analogous DI I function, which is also twist
three.

In the case of a quark target we can explicitly calculate

l

The analysis of the D-profile functions can be per-
formed along similar lines. First again consider I'~ ——

p". In this case we want to consider the profile functions
in the rest system of the produced hadron h. For that
purpose we perform the Lorentz transformation

2hi
Ph» &Phi

~h

k, k+, A:i

D, D+, D

— m'
Ph )

h 0
~h

Phi i ~hi
@

I h
~ A: k k

p„2(p„) p

; D-', D+', Di
~ DD- D+ ~h-L i + ~h-L D- Di

2(p )'
J hi

)

~h

(B12)

(B13)

(B14)

where m&z
——mh + p&z. The profile functions in the primed system (pI„&

——Oi) are then given by (note that the
hadron operators now have as argument pI, )

4.D~
27r 3

1

(2ir) 4

d*+d' '" * " ' T jo[0(*) ' ~4'(0)& loj

dk+ Tr p (Cig'+ Cz»iI„+ &)

2

(2vr) 4
dk' [Ci(p'„, k') + zCz(pI, k')j

k =q
4zD (z, —zki), (B15)

4zD~~ j'(p'„; z, ki ) =
27r 3

1

(2vr) 4

2
mh

dr+ d'~ie" * "i ' T pl0(*) ~&oh W(0)~'ll

dk+ Tr p+(Ci/i'+ Czfg+ &)

k'+ k"

4zD '(pg, z, ki) =

(2~)'(q )'
2m2

D+(z, —zki),
Z Q

d*+ d'vie*' *' " ' Tr lola(*) '„~4'( )0& il
OI

dk+ Tr [&~(Cig + C&6+ +))lA:-=q-

I I

dk'C, (p'„, k') =4 'D (,—ki)
27r q

(B16)

(B17)

From this we can immediately find. the values in the original frame:

D~ i(p;, ki) = D (,p i — k ),
m2 2

D (ph. ', z, ki. ) = " D+(z, ph& —zki) + &" D (z, ph& —zki)
2z q

» ~~ (k~ —
» ~ilz) Di,,

Z~q j
Z, +hi —Z

D (ph. , z, ki) = D (z, phd —z g) + D (z~ ph. i. i).[ j
kg phJ /z +hi

Zq Zq

(B18)

(B19)

(B20)
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In terms of T, q and the transverse momenta one has

q+ - . 2(k" —p" /z) 2p" 1 )Dt& j(ph. z k/) — ~ T&+(I& D + ' h ' 'D + " D +0~

The scalar function D~ j introduces the additional profile function E(z, p&& —zk~),

4zDl)(4te;z 4'4) = f dz+d aze'le + ' l TzS(e4(a)aeae44(O)l()

1 dk+ Tr [Cig+CzIip, + D]2z. 4
k —=q-

2mh dkz 17(pp„k) 4m'
E(

2~ 4q- mg

leading to the result

q+ 2m'
D~'j(ph, z, kg) = —— E(z, y„~ —zk~).

q Q

We find, for the quark~quark profile functions,

D (z, k~) = D+(z, k~) = D (z, k~) = E(z, k~) = b(1 —z) b (k~).

(B22)

(B23)

(B24)
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