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Pair production of Reissner-Nordstrom black holes in a magnetic field can be described by a Euclide-

an instanton. It is shown that the instanton amplitude contains an explicit factor ofe, where A is the

area of the event horizon. This is consistent with the hypothesis that e "i measures the number of black
hole states.
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I. INTRODUCTION

The elegant laws of black hole thermodynamics [1,2]
have yet to find a microscopic explanation in an underly-
ing statistical mechanics of black hole states. Particular-
ly interesting is the interpretation of the Bekenstein-
Hawking entropy. In most cases this entropy is given by
the simple formula

S~H= 2 /4,

where A is the area of the black hole horizon in Planck
units. Up to an additive constant, this formula can be de-
rived by insertion of the semiclassical black hole mass-
temperature relation [3] into the thermodynamic formula
1/T=r)S/r)E followed by integration. Additional as-

sumptions are required to fix the constant part of the en-

tropy. A widely utilized, but mysterious, procedure is to
fix the constant by relating it to the black hole instanton
in the Euclidean path integral [4].

The relation (1.1) acquires additional meaning in light
of Bekenstein's conjectured generalized second law [1],
which states that the sum of the usual entropy plus S~H
always increases. Although there is no complete proof of
this conjecture, evidence is provided by the many ingeni-
ous gedanken attempts [2] to violate the generalized
second law which have been foiled by the subtle dynamics
of quantum-mechanical black holes.

If the traditional connection between thermodynamics
and statistical mechanics were to extend to black holes,
then the number of quantum states of the black hole
would be finite and given by

the black hole or "horizon states" somehow associated
with degrees of freedom of (or near) the black hole hor-
izon, or both.

The issue of whether (1.2) can be taken literally has

bearing on the vexing question of what happens to infor-
mation cast into a black hole. ' If one assumes that (1.2)
counts all the black hole states, and that information is

preserved, then one is forced to conclude that informa-
tion escapes from a black hole at a rapid rate (proportion-
al to the rate of area decrease) during the Hawking pro-
cess. %e do not think this is likely because it seems to re-

quire a breakdown of semiclassical methods for arbitrari-

ly large black holes and at arbitrarily weak curvatures, al-

though this point is certainly the subject of heated de-
bates. On the other hand, one might try to account for
the decrease in (1.2) during black hole evaporation by as-

suming that information is truly lost in the black hole in-

terior, perhaps being absorbed by the singularity. A

problem with this is that, for large neutral black holes,
the spacelike slice on which the quantum Hilbert space is

defined can be extended through the interior of the black
hole in a manner which avoids the singularity and all

strong-curvature regions. Dynamics on such a slice is

weakly coupled, and it is therefore hard to see how infor-
mation could be lost.

An alternate interpretation of (1.2) is that it counts
only the horizon states. One is then not pushed into the
conclusion that information either rapidly escapes or is
absorbed at weak coupling. Indeed if one assumes that
there are e' states per Planck area of the horizon, one

SBH (1.2)

These microstates might be either "internal states" inside

Electronic addresses:
giddings@denali. physics. ucsb. edu, steve voodoo. bitnet.

iFor recent reviews see Refs. [5—8].
2Although perhaps (1.2) makes sense only with respect to a

specific slicing of spacetime, which differs from the one de-

scribed here.
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precisely recovers (1.2). Certainly a derivation of this
strange factor would be of great interest. Of course even
if such a derivation were found, it would still remain to
understand why, if (1.2) counts only horizon states, the
generalized second law appears to be valid.

Yet a third microphysical explanation of (1.1) is sug-
gested by recent work [9], in which the entropy of the
free scalar field vacuum outside a ball of surface area A
was computed by tracing over states inside the ball. The
result was found to leading order in A to be

S~H —A A (1.3)

where A is an ultraviolet cutoff. Equation (1.3) has a mi-
crophysical explanation by construction, but it is not in
terms of states at or inside the surface of the ball. Rather
the entropy arises from correlations between the quan-
tum state inside and outside the ball. It is tempting to try
to relate this observation to (1.1), but this would require
explaining why A is precisely —,

' in Planck units. Fur-
thermore, such an interpretation (1.1) would not appear
to readily explain the validity of the generalized second
law. Certainly no such law is valid in the free field exam-
ple of Ref. [9].

For these reasons it is clearly of interest to seek a
deeper understanding of the meaning of the black hole
entropy. One promising avenue of exploration is the
phenomenon of pair production of charged black holes.
In Schwinger production of charged particles in a back-
ground field, the total production rate grows as the num-
ber of particle species produced. If this is extrapolated to
black hole production in a background field [10,11] then
one would likewise expect the rate to be proportional to
the number of independent black hole states produced.
In this paper we show that the factor (1.2) indeed multi-
plies the pair production amplitude, consistent with its
interpretation as somehow counting black hole micro-
states. %hile the nature of these supposed states is still
very mysterious, we do hope that our result will constrain
future interpretations.

The desired factor (1.2) is isolated from the rest of the
pair-production amplitude by consideration of the family
of stable solutions discussed in Ref. [13]corresponding to
gravitationally corrected 't Hooft-Polyakov monopoles
of charge q. For qM«~ «M», „,k, these closely
resemble the 't Hooft —Polyakov solutions. For
qMGUy & Mp& k the monopole drops inside an event
horizon and the solutions are identical to extremal
Reissner-Nordstrom monopole black holes. Pair produc-
tion of these monopoles can be analyzed using instanton
methods. For fixed magnetic field 8, consider a one-
parameter family of instantons labeled by MGU&. For
qM«~«Mp~ g the instanton resembles the one de-
scribed by Afileck, Alvarez, and Manton [14,15] as a
't Hooft —Polyakov monopole in a circular orbit in Eu-
clidean space. For qM&~ & Mp~ k the instanton is pre-
cisely the one found in Ref. [11] describing Reissner-

Nordstrom monopole pair production. At the critical
value of MoU~ near Mp„„,„/q, where the monopole

drops inside a horizon, one finds that the action discon-
tinuously changes by precisely —SzH.

Of course, even our well-funded gedanken experimen-
talist cannot observe this threshold because coupling con-
stants such as M«z cannot be varied in the laboratory.
Fortunately, it will be seen from a precise description of
the production process that the same threshold can be
observed by varying the magnetic field B while keeping
M«z fixed. Our gedanken experimentalist who discov-
ers that the production rate suddenly jumps up at pre-
cisely the critical B field which produces rnonopoles with
horizons, will likely conclude that he has crossed a

SBHthreshold for production of e " new states. This assigns
a new, physical significance to the relation (1.2).

In Sec. II we briefiy review Ref. [11]and present an ex-
act formula for the pair production rate. It is, however,
somewhat difBcult to extract from this the contribution
of the entropy because structure-dependent Coulomb
terms give contributions of similar magnitude. To cir-
cumvent this difBculty, Sec. III compares this amplitude
to the pair-production of a GUT monopole (with parame-
ters tuned so that its surface is barely outside the would-
be horizon) and thereby extracts the entropy factor. Fi-
nally, in Sec. IV we perform the same comparison in the
two-dimensional reduced theory that arises in the weak-
field limit. Although this yields exactly the same result,
it provides a simplified description of the process. Sec-
tion V closes with discussion. The Appendix contains a
derivation of the exact action of the black-hole pair-
production instanton, which is valid even for black holes
of size (or charge) comparable to 1/B. This extends the
leading-order-in-B expression given in Ref. [11].

II. REISSNER-NORDSTROM PAIR PRODUCTION

The amplitude for production of magnetically charged
black holes in a magnetic field can be calculated in the
semiclassical approximation by finding an analogue of the
Schwinger instanton in gravity coupled to electromagne-
tism, with the Euclidean action

Bpdp Ad/
( 1+ 1B2p2)2

(2.2)

S= Jd xv'g ( —R+F „F~") Jd'xv'&+- ,16m. 8~

(2.1)

where we have included the surface term written in terms
of the extrinsic curvature K and boundary metric h.
First, consider the solution corresponding to the back-
ground field. Because of the magnetic energy this solu-
tion is not flat, but rather for a magnetic field in the z
direction is given by the Euclidean Melvin universe [16]:

2
ds =(1+,'B p ) (dt +dz +d—p )+

(1+ 1B2 2)2
4

3See also Ref. [12].
where —~ &t,z & 0D, 0&p& ao, and 0 P &2m&. This
solution corresponds to a flux tube with total flux
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4'
(2.3)

through a transverse hypersurface.
The instanton describes circular motion of an extremal

Reissner-Nordstrom black hole in the Euclidean contin-
uation of the Melvin universe. It is given by the Ernst
solution [17)

By comparing the asymptotic form of the metric to the
Melvin metric, the value of the asymptotic magnetic field
can be identified:

8 =8(1+ ,'q—(3) 3V 1 —4/A (2. 10)

The value of the charge is found by computing the in-
tegral of F over the two-sphere parametrized by x and z
that encircles the horizon of the black hole; this gives

(2.4)

F=dz P dE .

[
—G(y )dt G—'(y )dy +6 '(x )dx ]

A (x —y)
6 (x)

AA(x —y) 1+—,'qk(3

1+—,'gag,
(2.11)

Here

6(x)=1—x (1+qAx) (2.5)

For production of point particles of charge q and mass m
the radius of the circle on which the particles travel is
given by

2E= „1+—qBx
AB 2

(2.6) I-m/qB . (2. 12)

2

A = 1+—qBx +
4A (x —y)

and A, g, and 8 are parameters obeying

qB& —,
' .

(2.7)

(2.8)

1+4qA
1 —4qA

1+ ,'qBg3—
1+ ,'qB(4— (2.9)

This solution has topology S XS —[p} where p corre-
sponds to x=(3=y. The Melvin metric is recovered
asymptotically as x,y~(3. A schematic picture of the
solution is shown in Fig 1.

mouth worldin

The function of G then has four zeros, g&, . . . , g4; y is
taken to run between (2 and g3 and x runs between g3 and

g4. As these zeros are approached the metric becomes
singular unless periodic identifications are made on t and
z. This also forces a relation between A, g, and 8:

8

In the case of extremal black holes this radius should be
bigger than that of the black hole horizon, which is en-
forced by (2.8). The analogue of the point particle limit is
given by qB (&1. We also want q & 1 so that the black
holes are larger than the Planck radius.

To interpret the instanton's contribution to the pro-
duction process it must be cut in half along the moment
of time symmetry surface given by t =const. The three-
geometry of this surface is that of a wormhole, with a
trapped magnetic Aux. The opposite ends of the
wormhole correspond to the pair of black holes. Subse-
quent evolution arises from continuation to Lorentzian
signature; tke pair of mouths run away to opposite ends
of the magnetic fields.

To evaluate the semiclassical production rate we need
the instanton action. The action is computed by calculat-
ing its change

(2. 1 3)

under an infinitesimal variation of the charge of the black
hole. This can then be integrated from zero to q to give
the total action, as described in the Appendix. The result
1s

4 2 q(1 8)—
1 —(1—Bq)

Expanding in the small parameter qB we find

(2.14)

horizon

S= ——
q +O(q B) .8 2

The semiclassical production rate is thus

(2. 1 5)

FIG. 1. Shown is a schematic representation of the Ernst
solution. The topology of the solution is that of R asymptoti-
cally, but internally has a circulating wormhole mouth. Any
given point in the "cup" region corresponds to a two-sphere.

~For more details, see the Appendix.

e s-exp — +—q'+0(q'8 )B 2
(2.16)

up to factors arising from loops. The leading term corre-
sponds precisely to the Schwinger rate, exp( nmlqE)— .

for pair production in an electric field.
The subleading term in (2.16) is of the correct order of

magnitude to correspond to the black hole entropy,
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SaH= 3 /4=mq . However, things are not so simple as
various loop corrections enter at the same order. In par-
ticular, there are Coulomb corrections that arise from the
exchange of a photon line from one point on the trajecto-
ry to another. In the case of pair production of magnetic
monopoles, considered in Refs. [14,15], these give a con-
tribution exp(nq ). In the present case one likewise ex-
pects a gravitational Coulomb correction of the same
size. However, in contrast to the monopole, in the
present case there is not a well-defined four-dimensional
effective field theory in which excitations around the
black hole can be ignored. Therefore, there can be
structure-dependent corrections to these results. This
makes it difficult to compete the expected production rate
and compare it to the rate (2.16) to extract factors corre-
sponding to the number of states.

A second problem is that the approach of this section
requires integrating the action up from q =0. One might
worry that there could be a surface term, perhaps even
infinite, arising from the end point of the integration. In
the following section we will perform a different calcula-
tion that addresses both of these problems.

III. COMPARISON TO MONOPOLE PRODUCTION

In view of the various contributions to the semiclassi-
cal rate one needs a better standard of comparison to ex-
tract the state-counting factor. Such a standard can be
had by reconsidering the pair production of magnetic
monopoles in a grand unified theory with gravity includ-
ed. The mass and size of such a monopole are of order
q MoUr and I/MoUr, respectively, where MoUr is the
grand unified theory (GUT) mass scale. If we consider
tuning the parameters so the MGUT approaches
Mpl g /q, then the surface of the monopole barely
hovers outside the mould-be horizon. Thus the solution
is essentially Reissner-Nordstrom until very close to the
horizon. Pair production of these objects is described by
an instanton such as that of the preceding section, except
the geometry near the bottom of the "cup" of Fig. 1 is
cut off and replaced by the monopole circulating around
the loop, as shown in Fig. 2. All structure-dependent
corrections are therefore the same in two solutions and
we can compute the structure-independent difference be-
tween black hole production and monopole production
rates.

As one increases the magnetic field, the radius of the
Euclidean orbit decreases. Both the radius of the cup,
and of the hole at the bottom of the cup in Fig. 2 will de-
crease. At a critical value of the 8 field, the hole closes

5There is presumably an elective field theory which contains
two-dimensional regions corresponding to the long throat out-
side the black hole. Such efFective field theories were derived
for dilatonic black holes in Refs. [18,19] and used to analyze
pair production in Refs. [20,21]. It will be partially described
for the Reissner-Nordstrom case in Sec. V.

mouth worldin

~ ~

~ ~ ~
'~ I ~

s s

up, because sufficient acceleration of a monopole with

MGUT just below Mp&,„k results in a horizon. Thus the
difference of the actions above and below the critical
value can be interpreted as the threshold factor measured
by a gedanken experimentalist who varies 8.

To proceed we must calculate the difference between
the classical actions for the respective processes. The
difference solely from the difference between the actions
of the monopole core and of the section of the bottom of
the cup that it replaces. The latter tends to zero as the
core is tuned to the horizon, so all we need is the rnono-
pole action.

The latter is given by

(3.1)

where the integral is over the monopole core and X is
the Lagrangian for gauge fields minimally coupled to
Higgs fields that break the GUT group to U(1) (we do not
need the explicit form of this action). The full solution
has Killing vector k" that generates r translations, i.e.,
rotations about the cup's axis. Using k" we will rewrite
(3.1) as a surface term.

Double contraction of Einstein's equations with this
vector gives

(3.2)

where k = k "k„. The term involving the stress tensor is

k"k T =2
PV

k"k" —k X—
Qg PV

(3.3)

In this expression the first term vanishes. To see this,
note that for the static monopole configuration all time
derivatives vanish, and furthermore a gauge may be
chosen so that only spatial components of the gauge field
are nonvanishing. This means that the Lagrangian can-
not depend on g" as there are no indices for this to con-

6Note that this suggests an argument for the inclusion of to-
pology change in quantum gravity, so that one matches to a
pair-production instanton above the critical value of 8.

monopole

FIG. 2. Shown in the instanton of Fig. 1, but with the lower
portion of the cup truncated. The resulting boundary corre-
sponds to the S surface of the monopole, moving on a circular
trajectory. This instanton thus describes pair production of
gravitationally corrected 't Hooft-Polyakov monopoles.
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R 1+X =—,k"k "R„, .
16m g~k

(3.4)

The latter expression can be written as a total derivatives:
the identity

V' V' k„=—k R„
for Killing vectors gives

(3.5)

tract with. Combining (3.2) and (3.3) therefore gives the
Lagrangian

IV. PRODUCTION IN THE TWO-DIMENSIONAI.
EFFECTIVE THEORY

For weak magnetic field the above instanton and the
contribution of the black hole entropy can be approxi-
mately described in a two-dimensional reduced theory.
To see this, recall that the spatial geometry of the ex-
tremal Reissner-Nordstrom solution near the horizon is

that of an infinitely long throat. The latter statement fol-
lows from making the redefinition

—k)"k R„=kj"V,V'k„.
Then the hypersurface orthogonality of k" implies

V„k,, = —kt„V,
~
ink

which can be used to show

(3.6)

(3.7)

r —
q =qe

ds = 1 —— dt+q 2 1
dr +r dA

(1—
q lr )

on the Euclidean Reissner-Nordstrom metric
2

(4.1)

(4.2)

1 „1k "V V"k =— ink
k

The action (3.1) now becomes

(3.8)
2 e 2mdt 2+, q 2d~ 2+ q 2d P2 (4.3)

The limit m~ —~ corresponds to the vicinity of the
horizon, and in this limit the metric becomes

S = JdX n "V„ink1

16m
(3.9)

where the integral is over a surface just outside the mono-
pole core. This integral is readily evaluated using the ap-
proximate form

We will work in the approximation where all but the s-
wave excitations are dropped, and thus the angular direc-
tions will be ignored. The corresponding two-
dimensional Euclidean action is found by dimensional
reduction:

S2= —— d crag [e ~R+2e ~(VP) +2 2q e ~—],1

ds =r dH+dr +h; dx'dxj (3.10) (4.4)

of the metric near the horizon; here x' parametrize the
horizon two-sphere. In these coordinates k"=(1,0,0, 0)
and we find

1 2
— 1S = — dx&h= —A,

4 4
(3.1 1)

I BH

r (3.12)

This is exactly as one would expect if in creating black
hole pairs one is allowed to create an extra number of
states given by (1.2).

The surface term (3.11) could equally well be under-
stood by eliminating the monopole core and including the
Gibbons-Hawking [4] surface term in the action. We
have given the above derivation in order to make the ori-
gin of this term more apparent. In the next section we
will reproduce the same result from the latter approach,
but will instead work in the two-dimensional theory
describing the geometry of the cup portion of the instan-
ton at small B.

where A is again the horizon area.
Equation (3.11) is precisely the usual black hole entro-

py. Monopole production is therefore suppressed relative
to black hole production, and the ratio of the black hole
production rate to that for monopoles is given by

where

s2 —q2SIQh~N dt2+q2dN2 (4.6)

where we have defined y —gz=coshw —1. This is readily
seen to give a solution to (4.4).

The effects of monopoles are incorporated in the two-
dimensional theory by adding a boundary corresponding
to the monopole world line. The monopole dynamics are
encoded both in the boundary conditions and by the ad-
dition of operators integrated along the boundary. All
operators consistent with the symmetries are expected to
be present.

Monopole pair production as in Fig. 2 corresponds to
terminating the surface at a circle just outside the hor-
izon. By tuning the parameters this boundary can be tak-
en to be at any value of m near the horizon at m =0. This
can, for example, be explicitly seen from the boundary
term

ds =g &der do-~+e ~dQ

A two-dimensional limit also occurs in the instanton
(2.4). In the limit 8~0 the radius of the black hole tra-
jectory grows as 1/B, and the size of the cup in Fig. 1

goes to infinity while the radius of the horizon is fixed.
Therefore, over the cup region the low-rnomenturn
theory is effectively two dimensional. The vicinity of the
horizon is given by values of y close to g2, and in this vi-

cinity the metric (2.4) takes the form

7A related observation has been made by F. Wilczek (private
communication).

(4.7)

corresponding to the monopole energy. Allowing varia-
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tions of the fields at the boundary mill yield an equation
fixing the boundary radius in terms of C. In general, C
and the coefficients of the boundary operators are hard to
compute. Fortunately, there is only one term which has
a nonvanishing contribution as the boundary circle
shrinks to a point: namely [4,22],

where the latter is a boundary integral with induced
metric h. This boundary integral receives contributions
only from the failure of 5A to match on the equator of
the horizon two-sphere and gives

5S=I5q,

dl e &k,1

2
(4.8)

where

(A3)

where k is the extrinsic curvature of the surface. Its
coefficient must be precisely as in (4.8), otherwise the
variational principle is not well defined due to surface
terms involving the variation of the derivative of the
metric at the boundary.

In comparing the action for monopole production to
that for black hole production, the surface term (4.8}con-
tributes only in the former case. Evaluating the surface
term in that case gives mq, in agreement with (3.11}.

and S is here the "orbital" two-sphere.
First we calculate I. From (2.4}we find

f+

,eF= — dt dy A (A4)

Note that this integral is evaluated on the equator of the
horizon two-sphere, that is, at x=0. Note also that
G(0)=1 and G'(0) =0. It then follows from the formulas
(2.6}and (2.7) for E and A that at x =0 we have

V. DISCUSSION

The above results show that pair production of
Reissner-Nordstrom black holes is enhanced by an extra

SBHfactor of e " over that of pair production of magnetic
monopoles. This is consistent with the black hole entro-

py serving as a measure of the number of internal states.
However, for several reasons it is far from clear why the
black hole entropy is playing this role. Indeed, our calcu-
lations only include the classical action, and not the func-
tional determinant from the functional integral. The
latter is expected to count states corresponding to fluc-
tuations about the semiclassical geometry (for further dis-
cussion see Ref. [21]). We do not understand why contri-
butions from the classical action should provide a factor
appearing to count states, or how these states might be
described. These matters deserve further exploration.

A2BE 0+ -OB'
Bx 4A 2y2

It then follows that

8
A 2y3

yS'I=br f dy g — +
4A 2y3 A 2y3

4A'4(2 2A'(40z)'

The zeros $2 and g3 are explicitly found to be

$23= (
—1++1—4/A ) .

1

2/A

It then follows that

(A5)

(A6)

(A7)
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APPENDIX: CALCULATION
OF EXACT EUCLIDEAN ACTION

In this appendix we will derive the result (2.14) for the
exact action of the instanton. As outlined in the text, this
is computed by first finding its variation under a small

change in the charge of the black hole, then integrating.
As stated in Ref. [11],the variation of the gravitational
part of the action vanishes, and we have

5S= fd x&g F""5F„
8m pv

f d x v'g F""V„5A

d &xhn F" 5A, ,4~

yk'I=6,t+1—4/A
2A 4A

(A8)

The quantity ht must have the value that makes the
metric well behaved at the poles of the orbital two-
sphere. This gives

2'
&1—4 A

(A9)

So we find

1 8I=2m
2A' 4A' (A10)

Unfortunately, our expression for I is in terms of the
"bare" parameters q, A, and k. We need an expression
for I in terms of the physical parameters q (the magnetic
charge) and 8 (the magnetic field of the Melvin metric
that the Ernst metric is asymptotic to). We start by
evaluating B. Define the scalar J to be the value of F on
the axis (that is, at x=$3). In the Melvin universe
J=2cs so in the Ernst metric J far from the black holes*2
will approach 2B .
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Calculating Jwe find

J= lim [2g"g""(F, )'+2g"g~Y(F,~)']
x ~g~

However, we have

( —1++I+4qA ) .
2/A

(A19)

+8(1+ ,'qB$3—) + I —4/A ] (A12)

=2A (g3
—y) lim

aE'
x ~g3 Bx

It then follows using the formula for F. (2.6) (and some
straightforward but tedious algebra) that

J=2[q(1+ ,'qBj—3) A (g3
—y )

The constraint then becomes

)
8

1+4qA
'

I I+l-q84
~

,
1 —4qA,

(

1+—,'q8(4
(A20)

We next find an expression for gA in terms of the phys-
ical parameters. First define the parameter u by

8 = lim v'J/2

=8(1+—,'qB(, ) + I —4/A (A13)

Then the expression for q becomes

1+ ,'$8 (3—
1+ ,'qB g4—

(A22)

Next we need to find q in terms of the "bare" parame-
ters A, 8, and g. We have

q= f,F,1
(A14)

where the integral is over the horizon two-sphere. We
then find

I

q= f dx f dzF„,

The constraint then becomes

1 —4qA

1+4/A

which yields

(A23)

(A24)

We now find an expression for 8/3 in terms of the
physical parameters. We have

[&(gi)—E((4) ] 1+—,
' gB g, = u ( 1+ ,' qB j4) . — (A25)

Az 2

4' B
1+ qB g, — A,1+ $8g—4 (A15) Substituting the expressions for g, and g4 we find

1+ qB g, — (A16)

However, one can show that smoothness of the horizon

two-sphere metric requires
4

1+ (
—I++I —4qA )

8
4A

=u+u (
—1++I+4qA ) .

8
4A

(A26)

So we find Rearranging terms we have

8+1—4qA
1+ qB g, —

3 (1+ ,'qB g,)—
1 ——

(1+ ,' qB g4)— 1+8 u +I+4q A —+ I —4/A
4A 1 —u

1+—,
' qB g3

1+ ,' qBg4— (A17)
' 1/2

1= — 1+ 1+u' u(u +u+1)

Now substituting the expression for qA we find

We now find the constraint on the three bare parame-
ters. Smoothness of the horizon two-sphere metric re-
quires Define the quantity f by

G'(gg)

A (g4)

G'(g3)

A(g, )
~

(A18)
1"'-'

f =:-1+ — —
„ i

u(u "+u+1) .
1-+u" I
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Then we have

(A30)

1I=2m
A 4A2

We now find an expression for 1/A in terms of the
physical parameters. First we have

2~
A 2A

——QA
4 A

=1+f —1+—1 2
1+u'

1/2

u4

1/2

u4=f f 1+——1 2

1+u
' 1/2

1 —u4
Q

1 —Q

2

1+u'

It then follows that

1+—gk(3=1+ ( —1+V 1 —4qp )
1

2 4A

(A31)

2f u(1+u ) 4

3

3
2 1 —u'1

1 ———f 1+u f
u(1+u )

Q4

=8m
u(u'+u'+u —1)
(u +u +u+1)

[f—1] —1—1 —u

1+u

Now we are (finally) ready to evaluate the action:

S= I dq

f—Idu.
B 1 —Bq

The integral is

(A33)

(A34)

1 1BS
4m 2u +u+1
8 u +u +u+1

1 —Bq

1+—qkg
1 1

B 2

' —3

1 1 —u=—2f2u(1+u )B 1 Q

3

(A32)

'
1 —Bq

4m2'+32Q Q

B Q +Q +Q+1 1
'

1 —Bq4' u (1—u)1+B2 1 —u4
1

We are now ready to evaluate the quantity I:
1 —(1 Bq)—

as quoted in (2.14).

(A35)
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