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Dispersion of Newton’s constant: A transfer matrix formulation of quantum gravity
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A transfer matrix formalism applicable to certain reparametrization-invariant theories, including
quantum gravity, is proposed. In this formulation it is found that every stationary state in quantum
gravity satisfies a Wheeler-DeWitt equation, but each with a different value of the Planck mass; the value
M},.0c turns out to be proportional to the eigenvalue of the evolution operator. As a consequence, the
fact that the Universe is nonstationary implies that it is not in an eigenstate of Newton’s constant.

PACS number(s): 04.60.Kz, 04.60.Ds

I. INTRODUCTION

In nonparametrized Hamiltonian mechanics, there is a
set of conjugate variables {q',p,;} and a time parameter ¢.
Classical trajectories are fixed by specifying initial {g{}
and final {g}} coordinates, and also a time lapse Az. In
parametrized mechanics there is also a set of conjugate
variables {g",p,} and an evolution parameter 7. The
difference is that in parametrized theories, a classical tra-
jectory is fixed by the initial {gf } and final {g}} coordi-
nates alone; the values of 7 that happen to be associated
with those coordinates are irrelevant. An example is the
case of a free relativistic particle, where specifying {x*}
at the initial and final points determines the trajectory. A
field-theory example is general relativity, where the initial
and final three-manifold is sufficient, together with
Einstein’s equations, to determine the four-manifold be-
tween them. Since the {g*} of parametrized theories
contain time information, applying standard quantization
prescriptions is, in effect, ‘‘quantizing time.” This poses
no problem when the Hamiltonian of the parametrized
theory is parabolic, as in parametrized nonrelativistic
mechanics, or parametrized relativistic scalar field
theory. But for parametrized theories with hyperbolic
Hamiltonians, such as the free relativistic particle, or
quantum gravity, standard quantization procedures can
lead to serious difficulties in identifying an appropriate
evolution parameter, and a conserved non-negative norm
[1]. In some cases, e.g., a free relativistic particle in flat
space, these problems can be easily overcome; in others,
such as a free relativistic particle moving in an arbitrary
curved background, they are much more problematic. In
quantum gravity, these difficulties are known as the
‘“‘problem of time.”

In this paper I will propose a transfer matrix formalism
for quantum gravity, and certain other parametrized
theories of the type described above. Since a transfer ma-
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trix, by definition, is an evolution operator, this proposal
is intended as a possible resolution of the time problem in
quantum gravity. The method treats all dynamical de-
grees of freedom of parametrized theories on an equal
footing: all are operators, none in particular is an evolu-
tion parameter. This method will first be illustrated for a
one-dimensional “universe,” whose action is that of a free
relativistic particle. The formalism will then be extended
to minisuperspace-type actions, typical of quantum
cosmology, and finally (with caveats regarding operator
ordering and regularization) to full quantum gravity.

II. A ONE-DIMENSIONAL UNIVERSE

A free relativistic particle is the simplest example of a
system with a reparametrization invariant Lagrangian;
for this reason it is often used as a ‘“warmup” exercise
[1,2] for higher-dimensional reparametrization-invariant
theories, such as strings and quantum gravity. To briefly
recall some of the familiar analogies: The action of a rel-
ativistic particle!

1/2

_ dx* dxV
Mwar dr

S=*m0fd7 (1)

is invariant under reparametrizations 7— f(7); the
Einstein-Hilbert action is invariant under general coordi-
nate transformations x*—x'#(x). In phase space one
can also write, for the particle theory,

dx*
Py —d'r —NH

>

Szfd'r

1
H:m(p‘upu+m%) ,

and this leads to the Hamiltonian constraint H =0, which
is just the mass-shell constraint. The analogous steps, in
the Arnowitt-Deser-Misner (ADM) decomposition for
gravity, lead to the super-Hamiltonian and supermomen-
tum constraints. Upon quantization, the Hamiltonian

ISignature convention n=diag[ —1,1,1,1].
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constraint becomes a constraint on physical states
Hy=0, which is the Klein-Gordon equation in the case
of a particle, and the Wheeler-DeWitt equation for quan-
tum gravity.

If one slices spacetime into a series of spacelike hyper-
surfaces 2, with a parameter T =T(x) (the time coordi-
nate) labeling each hypersurface, the following norm is
preserved by the Klein-Gordon equation:

i

<lﬁltﬁ)T:mde‘}(lll'aﬂtﬁ—dja#l/J') : 3)

This norm is not positive definite, in general (although in
flat spacetime one can restrict to positive states, in which
case the norm is positive definite?). A similar construc-
tion can be made in quantum gravity. It is possible to
slice superspace into hypersurfaces such that a norm
analogous to (3) is independent of the hypersurface, pro-
viding W satisfies the Wheeler-DeWitt equation. It is not
clear how to make such a norm non-negative. Neverthe-
less, the analogy to the relativistic particle case suggests
(and the idea goes back to the classic paper of DeWitt [3])
that some coordinate in superspace can be interpreted as
a time evolution parameter in quantum gravity. There
have been many subsequent variations and extensions of
this idea; a recent comprehensive review is found in [4].

On the other hand, there is one aspect of the relativis-
tic particle example which seems quite different from the
situation in four-dimensional (4D) gravity. In the case of
the relativistic particle, the observer is obviously external
to the particle. The information contained in the Klein-
Gordon wave function refers to measurements that can
be made by such external observers, who are free to mea-
sure the particle position on any spacelike hypersurface.
In contrast, observers in 4D gravity (at least, human ob-
servers) are internal to the system in question (the
Universe), since we live in spacetime rather than super-
space. It is possible to find and quantize a one-
dimensional model which reflects also this aspect of the
4D case?

Such a model is obtained by simply reinterpreting the
action of Eq. (1). Consider an observer living in a one-
dimensional universe parametrized by a single coordinate
7, who is able to make observations on a four-component
“field” x*(7) in that one-dimensional spacetime. The
reparametrization invariant action of this field is taken to
be that of Eq. (1). The Hilbert space consists of a wave
functions ¢(x*) with the norm

(glo)= [d*x p(x)g*(x*)p(x*) @)

where p(x) is a measure to be determined. Note that
since all components x* are observable, the integral is
taken over the full four-dimensional “field” space. The
fact that all components {x*} are observable and all are
integrated over in the norm (4) is the main (and crucial)

2More generally, it is possible to identify a conserved non-
negative norm in spacetimes with a timelike Killing vector field.

difference between the ‘“one-dimensional universe,” in
which none of the observables is to be interpreted as an
evolution parameter, and the relativistic particle.

In classical relativistic mechanics, the dynamics of a
particle moving in curved space, or in some external po-
tential, can be described covariantly by a parametrized
trajectory x*(7). In quantum physics the configuration
space is Hilbert space, and dynamics can be presumably
also be described as a parametrized trajectory ¥(x*,7) in
Hilbert space. Let us postulate a corresponding
Schrodinger equation

ifid Y(x,7)=Hi(x,7), (5)

where H is an operator, Hermitian in the measure u(x)
and invariant with respect to Lorentz transformations,
such that

xk (1) = (Px,r)|xHP(x,7)) (6)

is a parametrized solution of the classical equations of
motion. In this way, the parameter 7 running along a
trajectory of Hilbert space can be identified with the vari-
able 7 parametrizing a certain classical trajectory, corre-
sponding to the motion of the center of the wave packet.
Of course reparametrizations of 7 have no physical
significance, and the Schrodinger equation above can be
made to look covariant with respect to reparametriza-
tions of 7 by introducing an “einbein” for the trajectory

ifid Y(x,7)=e(T)Hi(x,7) . ()

However, assuming that H is 7 independent, the trajecto-
ry through Hilbert space depends only on an initial state,
and not on e(7), which can always be set to e=1 by a
reparametrization. From here on we set e =1.

I will now show how an evolution operator H and mea-
sure u(x ), with the required properties, may be obtained
from a transfer matrix formalism. The starting point is
the Euclidean action corresponding to Eq. (1), obtained
rotating the field space metric (7,,) from Lorentzian to
Euclidean signature, and extracting an overall factor of i;
ie.,

iSLorentz(gpv::nyv)—" _SEuclid(gyv=5/.w) . 8)

Then, generalizing from D =4 to arbitrary D, the
transfer matrix 7, is defined by

Wy, 7+e)=TP(y,7)=exp(—H /ANy, T)
=dex u(x)exp(—S[y,x]/‘/z%)tlJ(X,T) ,
9)

where S[y,x ] is the Euclidean action of the classical tra-
jectory connecting (and terminating at) points x* and y*.
Since S[x,y]=S[y,x ], and S[y,x ] is real, it follows that
H, is Hermitian in the measure u. Note that by the usual
trick of integration by parts we have
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1 9S[{x}J] 3 —
o= [ ']’Id x p(x,) lva ox " Ing(x, ) [exp[ —S[{x;}1/VeA]
1 oS[{x}] 3
=(... i — 1 )
< Ver  oxp | axp W) > 10
r
where H in (5) is obtained by the €é—0 limit,
oS[{x;}] _ H= |lim H, (14)
axt‘ ax# ES Xn+1X ] €-0 51
8S[x(7)] followed by a rotation back to the Lorentzian signature
—> (11) (8—m).
SxH(7")

and where S[x(7)] is the continuum action of the path
x#(r). Formally then, in the e—0 limit, we obtain the
quantum version of the Euclidean equations of motion

(---88/6x---)=0. (12)

The measure is given by

w ) =(Veh)? hmf Sly,x1/Veh) .

lim ) 5 €Xp(—

(13)

This expression is motivated by requiring that (i) the
transfer matrix is the identity operator in the e—0 limit,
and (ii) symmetries of the action become symmetries of
the integration measure. Finally, the evolution operator
j

myilz
¢(y,7'+6)=dezpexp - ‘/0.6;' _‘w_ay” ZH
1+ei2 Lena 8, +0(e) [wiy, ) .
2myg

Identifying H,, and taking the limit and signature rota-
tion prescribed in (14) we obtain

D+1
2m}

2 v
H=—# 73,3, (17

and it is easy to see that the eigenstates of H,
bglxt, ry=e T16T/Rg (xH) |

are all solutions of the Klein-Gordon equation

2

PENTAY 2m
#i*n*9,0,+
D+1

6:=0, (19)

where the mass-shell parameter

2mié
mz:_D—'ﬁl (20)

is proportional to the eigenvalue of the evolution opera-
tor H.

This defines the quantization procedure. Next I will
compute the operator H and obtain the classical limit of
(5), first with a flat space metric g,,=m,,, then with a
curved space metric.

Let z#=x#—y#. Since a rotation to Euclidean signa-
ture has been performed we can easily evaluate the in-
tegral of Eq. (13),

S[yrx]:mo‘/spvz'uz‘/:mo‘zl ’
mylz|
“ly)=[dP o= (15)
p )= [dPzexp o
P Ve
== — 1)
I‘(D/2)(D b m ’
and Eq. (9),
2
S T, Y
28y“8y

The important point to notice, in this very simple ex-
ample, is that the transfer matrix formalism has not des-
troyed the constraint, since each stationary state satisfies
the usual Klein-Gordon equation. What is unusual is
that the dimensionful parameter in the constraint, in this
case m?, is different for each stationary state. In effect,
m? has become a dynamical quantity, such as energy,
rather than a fixed parameter.

The classical equations of motion can be obtained by
WKB methods, or more simply by just making the re-
placement

H[x'uy_iha‘u,]_’H[x#rp,u] s 21
H.[x,p]=lim H{x,p],
and applying the classical equations
» JdH, d oH.
H=6 X _""c Pu_ ) (22)
dr  dp, dr ox#
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where & is fixed from the initial conditions. This gives us

dx* D++1
—_ MMV,
dr m3 p, , (23)

pp,=—M?,

where M*=—2m}&/(D+1). This is equivalent, of
course, to the usual classical equation of motion for a free
relativistic particle moving in flat space, which is ob-
tained by the rescaling

J

+1

mg

i

¢(x“,7‘)=fdm fdpf(m,p)exp

where t=x°/c. For simplicity, suppose that (i) f (m,p)
factorizes into f(m,p)=g(m)h(p), (i) g(m) is very
sharply peaked around some value M, and (iii) A(p) is
negligible unless |p| <<Mec. In that case, again rescaling

mjc?

=MD+’ 26)

so that s has units of time, the solution can be written
Y(xHs)=@(s,t ) Pnr(t,X) , 27
where

2.2
m-c 2
s—mc“t

2M

2
—_—7 _Lt._ .
tZM px

]

/ﬁ
/ﬁ

and, of course, Yy is a solution of the nonrelativistic
Schrodinger equation for a free particle of mass M.

Now if g(m) and f(p) are both, e.g., Gaussians, then
the spreading of the wave packet in both ¢ and x is given
by

pls,t)= fdm g(m)exp

’

(28)
Une(t,x)= [dph(plexp

’

A 21172
At(s)= A3+ |5
t(s)= |Aty+ i ] ,
A 21172 29)
A = [Ax2+ ap
x(¢) [xo lMt]} ,
where
#
AmAty~—, Ap Ax,~*#i. (30)

C2

Since T=(t ) =s, we can write At(s)=A¢(7). Finally, it is
consistent with the Am At uncertainty relation to take
both Am and At proportional to 1/c. This means that
the dispersion of the wave packet in the time direction

m2r—V'm zc“-i—p 2czt+p-x

ks
T MD+1)’

where s is the proper time of the particle world line. The
proportionality of 7 to the proper time s has no special
significance since, as noted below Eq. (6), the parametriz-
ation can be modified simply by choosing a different
e(T)#1.

The nonrelativistic limit of this theory is equally trivi-
al, but still instructive. Making factors of ¢ explicit, the
general solution to the evolution equation (5) (with p®>0)
is

(24)

/ 7|, (25)

At(P)= |Ar2+

~1/¢—0 (31)

goes to zero in the nonrelativistic, ¢ — co limit.

The lesson of this simple exercise is that, in the ¢ — o
limit, the one-dimensional universe has acquired a clock.
By a “clock,” I mean a nonstationary observable (or set
of observables) whose dispersion is negligible, and whose
evolution is independent of the other observables in the
system. Measuring such an observable gives a value for
the evolution parameter, which itself is not an observable.
In the one-dimensional universe, the “clock™ is the t com-
ponent of the field x*(7); this is because its dispersion can
be made to vanish, and its value becomes perfectly corre-
lated with 7, in the nonrelativistic limit. Equivalently, we
can just say that the observable ¢ behaves classically in
the ¢ — oo limit.

The extension of the transfer matrix formalism to a
one-dimensional universe with a curved field-space metric
8uv 1s straightforward. The reparametrization invariant
action in this case is

1/2
dx* dx"

T dr dr

(32)

S=—m0fd‘r

Again we rotate from Lorentzian to Euclidean signature,
extract an i, and obtain the action for Riemannian
metrics. To evaluate the integrals in Eqgs. (9) and (13), it
is useful to introduce Riemann normal coordinates &*
around the point y#. The classical action for a trajectory
running from &{=0 to §f=¢ is

AS[0,E]=myV 8, E%E>+0(&%) . (33)

The O(&°) terms will not contribute to H in the €—0 lim-
it, and can be dropped. The measure is then
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p l(y)=(Veh)? hmf—g—e[

exp(—my| &l /V eh)

€—0 V)P ag
D/2 Ve
=2 _poy| X _L___ o (34)
(D /2) m, Vgly) Vigy)
The transfer matrix is computed as in the flat-space case, again with the help of Riemann normal coordinates:
4 ——— jr— —
Yy, 7+e€)= fd—ai\/g(y +z)exp(—mo\/ng"zv/‘/eﬁ);b(y +z,7)
= fiié l_l agBy ... 0(§| lu l_azlw_,um 3)
J 55 1Rt exp | =g | [W0 T L S e S OE)
1+en2 Loy, —en 2T LR +0(e) [piy(6),m) (35)
2myg 6m}

where R is the curvature scalar. Transforming back from
Riemann normal coordinates and taking the limit (14)
gives
H=-2F1p Ly vegwa +n2tlr | e
2m§ Vg ¥ 6m}

where g=]det(gw)l. The appearance of the curvature
scalar term in the evolution operator H is related to the
choice of measure, and, in turn, the ordering of operators
in Eq. (36). There are other, more complicated choices of
measure that could have been made in this problem, but
these would only affect the coefficient of R (cf. Refs.
(5,6].

The classical equations of motion are again obtained ei-
ther from the WKB approximation, or else by the
prescription (21), which gives

D +1

H -
2m(2)

c

8*pup, - (37

Setting H, =&, and M?>=—2m36/(D+1), and also re-
scaling 7 according to (24), we recover the classical equa-
tions of a relativistic particle moving in curved space,
with the identification of the evolution parameter r as the
proper time.

At the quantum level, eigenstates of the mass-shell pa-
rameter are stationary states of the evolution operator H.
The remarks made above for the flat-space case, noting
that all stationary states obey the constraint equation but
with different values of the mass-shell parameter, of
course apply to the curved space example also. Nonsta-
tionarity, in the one-dimensional universe, must be attri-
buted to dispersion in the mass-shell parameter M.

As a final remark we may ask whether, since the evolu-
tion parameter is identified with proper time in the classi-
cal limit [given the choice e(7)=1 in Eq. (7)], the
proper-time could have been used as an evolution param-
eter from the beginning. This might be done by replacing
S[y,x] and € in Eq. (9) with a weight
S[(y,s +As),(x,s)], representing the minimal action be-
tween points x and y of paths constrained to have proper
time As. The problem with this is that the amplitude be-
tween (x,s;) and (y,s,) would not, in general, be dom-

f
inated by the classical path, unless the proper-time
difference s, —s, happened to correspond to the path
length of the geodesic between x and y. The problem can
be fixed, for Green’s functions, by integrating over s, —s,
(see, e.g., [7]), but then the proper time loses its function
as an evolution parameter. In higher dimensions the situ-
ation is further complicated by the fact that a proper-
time slicing of a simply connected Riemannian D-
manifold into (D — 1)-manifolds can introduce spurious
singularities. Under proper-time evolution, a simply con-
nected (D —1)-manifold will in general evolve into a set
of disconnected (D — 1)-manifolds [8]. It seems unlikely
that such an approach would yield a Hermitian evolution
operator, although it may have other applications (cf.

[9)).
III. MINISUPERSPACE MODELS

Next we consider actions of the form

S=|d ———N
f t1Pny, FH

| (38)
H=——G""p,p, tTmoViq),

2m0

where m is some dimensionful parameter, and the super-
metric G,,, has a Lorentzian (—+ + - -+ +) signature.
Actions of this kind typically arise in minisuperspace
models of quantum cosmology. To compute
S[g+Agq,q], begin with the Hamiltonian equation

" 87{ N
dpn mo

g"= =G"mp,. (39)

insert this into the constraint equation,

m
7{=—2N°2 Gomd "g "+ moV =0, (40)
and solve for the lapse,
172
N=|=55Gumd " @1
Then
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At My s nem
Slg.q+Al= [ Tdi—>G,,4 "

=—mq [dtV/ —2VG,,q"q "

=—myV —2VG,,Aq"Aq"™
=—mgV' = 9,,8¢"Aq" , @2)
where we define a modified supermetric
Gm =2VG,,, . (43)

From here, the procedure follows exactly the same steps
as in the curved metric example of the previous section.
Again, rotate the signature of the supermetric G,,, (not
the spacetime metric g,,,) to Euclidean signature and ex-
tract a factor of i to obtain the “Riemannian” action.
Then, introducing Riemann normal coordinates in min-
isuperspace around the point g-+Agq, evaluate the
relevant integrals for the measure and transfer matrix.
The final result for the evolution operator is
D41, 1 3 3

H=—"""# Vg g

3 ﬁ21)+1
2mi V'8 9q" "

R,
6m}

(44)

where, in this case, D is the dimensionality of minisuper-
space, R is the curvature scalar formed from the
modified supermetric (43), and

9=|det(8,,,)| . (45)

It should be noted that H is Hermitian in the measure
ulg)=V'8. This is despite the fact that, in quantum
cosmology models, V(gq) is not positive definite, and
therefore S[q,q +Aq] can be imaginary, even after rota-
tion of G,,,. Nevertheless, carrying out the relevant in-
tegrals and rotating back to Lorentzian signature, one
still finds that H is Hermitian in the appropriate measure.
This can be understood from the fact that, for modified
supermetrics §,,, of Euclidean signature, the operator
H, is Hermitian by construction, since S{q,q’] is real
and symmetric. But since the Hermiticity of H, does not
depend on the precise functional form of §,,,, the con-
tinuation to arbitrary signature can only upset Hermitici-
ty if it introduces factors of i in H. These factors of i are
avoided by making the standard Euclidean— Lorentzian
continuation V'det(g)—V —det(g), in the one-
dimensional _ universe example, and V/det(9,,)
—1/|det($,,,)|, in the minisuperspace case, for both H
and u.

The Schrodinger equation for stationary states is now

_D+1,, 1 3

,D+1
2m3

6m3

— Vg gm——+4#

—R ¥
V'@ 3" aq

=6V (46)

or, equivalently,

1 V 9 1 d
——# VG| —=G"——
2" VIVG] 3" vV oq™
1 2mo€
-~ - =0. @47
+3 VR o1 |¥ 47
This equation may look more recognizable if we identify
2m3é
i M (48)
D+1

then reorder the factors in the Laplacian, and drop the
curvature scalar term to obtain

— lﬁZGnmii

+M*V
2 aqn aqm

v=0,” (49)

where the quotation marks mean that this equation is
correct up to operator-ordering terms. From this it is
easy to see that the equation satisfied by stationary states,
Eq. (47), is simply the Wheeler-DeWitt constraint equa-
tion, with the dimensionful parameter identified as
M?=—2m2&/(D+1), and with a particular choice of
operator ordering. Once again, we see that all stationary
states satisfy a Wheeler-DeWitt equation, but with
different mass parameters.

As in the last section, the classical equations of motion
are obtained from the classical Hamiltonian given by (21),

D+1
4m oV

and, setting H,=& and M?=—2m36/(D+1), we ob-
tain the classical constraint equation

Hc— pnpm > (50)

ﬂM——G"”‘p,,pm +MV=0. (51)

Hamilton’s equations give us

dg" _OH. _D+1
dr 3, 2miVv "

b

(52)
dp, oH,
dr aq”

D +1

1 9GY 19V
VZan

v aqn PPiT Gpip ]

_(D+LM
miv

1 3GY 14
2M aqn pipj+Maqn

b

which can be rewritten as

(53)
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(D+1)M
(q=-2T1M 54
= g B

and where #f,,, given in (51), is the minisuperspace Ham-
iltonian # with the parameter m replaced by M

Apart from the factor of f(q), Egs. (53) are simply the
classical equations of motion of the minisuperspace ac-
tion (with my—M). So long as V is nonzero, f(q), like
the lapse function N(t), is irrelevant in determining the
classical trajectory, which depends only on the directions
of the vectors d.¢" and 9,p, in phase space, and not on
their magnitudes. The magnitudes of these vectors only
determine the rate (compared to some analogue of proper
time in minisuperspace) at which the evolution parameter
runs along the classical trajectory.

This point can be made in another way. Suppose we
pick an initial point in phase space {q,p}, and solve Egs.
(53). Denote the solutions § "(7) and p, (7). Then, define

N(T)yg 01, =F@(T (55)

It is easy to see that g "(7) and p,(r) are a solution of
Hamilton’s equations for the original minisuperspace ac-
tion (38):

Hy=

dq" _ OF y

dr ——N(T)lq,plov , (56)
dpn ay{k!

dT :—N(T}}qyp}o aqn )

with m replaced by M, and with a particular choice (55)
for the lapse function (which will be different for each
classical trajectory).

IV. QUANTUM GRAVITY

The action of quantum gravity, in the ADM decompo-
sition, is

198

s=[d* |p¥ = "Nk 3)—N,H.

; 5 . 1 ~
H (k5 =5Grap P+ Vg (“R+2A)
0

, . (57)
#i= o s

Gijkl 2\/ (glkgj[+gllgjk gijgkl)7

where Vg is the root determmant of the three-metric g;;.
At the classical level, KO 167Gy, where Gy is Newton’s
constant. It will be seen that this identification is
modified at the quantum level, much as m3 was replaced
by M? in the examples of the preceding sections.

The presence of the shift functions N; is a serious com-
plication, as compared to the minisuperspace models of
the preceding section, where the shift functions were ab-

sent. The problem is that the classical equations of
motion

ag’j — 2 nm

T“zKWGijnmP +N;;+N (58)
which are used to solve for the momenta in terms of d,g;;,
contain derivatives of the N;. These shift functions can
be solved for, in principle, by substituting the expression
for p”/ obtained from (58) into the supermomentum con-
straints 7. =0, which gives the N, in terms of the lapse
N, and then substituting these N; into the Hamiltonian
constraint 7, =0 to solve for the lapse. However, since
the N, are determined, in this way, by complicated partial
differential equations, this procedure leads to intractable
expressions, and there is no simple form for S[g’,g ].

A great simplification is achieved if we instead set
N;=0 from the beginning. In that case the supermomen-
tum constraint is not obtained by extremizing the action,
and must somehow be recovered by imposing an operator
constraint on physical states:

Qx[plj,gzj]\y':o ’ (59)

where the subscript x indicates that there is a separate
constraint at each point, and of course these must be mu-
tually consistent, as well as consistent with the 7-
evolution operator. These constraints will be obtained
below. For the moment, we just set N; =0 and proceed.
Denote

fa=1-6}<{(i,j),i <j} ,

qa(X)‘—’gij(x) ,
(60)

pUx) (i=j),
T l2plx) (i<j),
G U (x)

pa(x

Gp(x)

in order to compress the number of indices somewhat.
Hamilton’s equations with N; =0 give us

1 b
G . 61)
2N e

Pa™

Inserting this into the constraint equation

1 1.~
0=H,=——G,4%G " +—VgU, (62)
X 4K%N2 abq q K(z) g
where
=—R+2A, (63)

and solving for the lapse gives
172

Gabq aq- b

CwgU

so we have
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, 1 At 127~ - gl
AS=S[q ,q]=——K7fd3xf0 dtV —g'?UG,,4 %"
0

1
_ —K—%fd3x\/—(g’/2UGab )oAg*Ag®+0(Ag?)

== [ @5 (VG o[V = (9, 1eba g +0(8g)] (03
0

where Aqg°=¢q’—q’'“ and we define

1
e UG - (66)

¢ ab
The notation (---), means that the quantity in
parentheses is to be evaluated at Ag =0, i.e., at q’.

Once again, we implicitly rotate the signature of the
superspace metric G,, to Euclidean signature, and ex-
tract a factor of i, before evaluating the transfer matrix.
Note that it is the signature of superspace, not the signa-
J

[

ture of spacetime, which is rotated to the Euclidean
value. At the end, of course, we rotate back to the usual
signature of superspace, according to the prescription
(14). It was found, in the minisuperspace example of the
previous section, that the evolution operator is Hermitian
in an appropriate measure u(q), despite the fact that the
potential term V was not positive definite. It is expected,
for similar reasons, that Hermiticity of H will also be
maintained in full quantum gravity, where U is not posi-
tive definite.’

The transfer matrix is obtained from

Wq',r+e)= [Dau(gle =25V | y(g)+ [d’x 8—“2”— lAq“(x)
: q%(x
1 8%y
+— d3xd3 Ag%x)A b( Y+ -
2 f Y 8g°(x)8q%(y) 7 i
=g, 7)+e(Ty+T,+T,)+0(e) , (67)
where the T, represents terms with n derivatives of ¢. To find these terms we need to evaluate
(Aq®(x,)Aq%(x,)) = [ D(Aq)(1)oAg?(x;)Ag®(x,exp —% [ @ (Vg 15V (9,,)68q°0g Vi | . (68)
0
—
This quantity is highly singular, and, at this point, regu-  Obviously, with this naive discretization we lose

larization is unavoidable.

Unfortunately, the problem of regularizing a functional
integral nonperturbatively, in such a way as to preserve
diffeomorphism invariance, is unsolved. So I will have to
resort to a naive regulator, and replace the continuum de-
grees of freedom, labeled by x, by a finite set, labeled {n },
which are taken to represent regions of equal volume.
We make the correspondences

Ag%(x)—>Aq%n) ,

N
V /4
d3xV'g <>—
f *re NP n§1 ’
(69)
5 N,Vg(n) 3
8q°%(x) 14 dg%n)

where V is the three-volume. For pure quantum gravity,
there are six independent components of g;;, so D=6.

diffeomorphism invariance of the integration measure,
and we can expect to make mistakes, even after taking
the continuum limit, on certain expressions which depend
crucially on the invariance of the measure. In the
transfer matrix formulation, it is the operator ordering,
and the presence of terms analogous to R in Eq. (36) [or
R in (47)], which are sensitive to the measure. Operator-
ordering problems are notorious in quantum gravity, and
I will not try to solve them here. From here on, only the
principal term of the evolution operator [coming from T,
in Eq. (67)], will be determined explicitly. This term is
relatively insensitive to the measure, and is the only term
which is important for the classical limit. But even for
the T, term, the ultimate justification for the prescription
(69) above will be a posteriori.
With the above caveats duly noted we find

3An actual proof of Hermiticity, however, would involve the
regularization and/or operator-ordering issues discussed below.
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(Ag4(n)Ag®(m) )_f I1 d%q(k)(u)oAq®(n)Aq (m Jexp
k

ONP gab

=0,,(D+1)he

then

——zzmmq"(nmq (m))

K(,Np

82¢ ab
y? % 9g%n)dg®n)

(D+1)efi

1
2
- IG ab %

6q°dq b
where (3 is a divergent, dimensionless constant,

B=LD+1)N,

4
K,
—»ehB—VOfd3x (71)

(72)

proportional to the number of degrees of freedom. Final-
ly, from T, we get

__ﬁZB Ofd3 ~1Gab 62
8q%6q° ’

where, again, operator-ordering and/or measure terms
have been dropped.

However, this evolution operator does not yet give us
general relativity, not even in the classical limit. This is
easy to see from, e.g., the WKB approach, since the
Hamilton-Jacobi equation corresponding to (73) is

(73)

y-i1gen8S 8S.
5q° 5q°

which is not the Einstein-Hamilton-Jacobi equation of
gravitation. Now, although the transfer matrix formula-
tion as presented in Egs. (9) and (13) was guaranteed to
recover the correct classical limit, it is not hard to see
what went wrong in this case. The difficulty, as already
mentioned above, comes from setting the shift functions
N;=0 at the beginning; this means that the supermomen-
tum constraints #. =0 were lost from the start. One
could try to simply reintroduce these as physical state
constraints 7{;‘1’20, but this still does not lead to the
Einstein-Hamilton-Jacobi equation.

Note however, that because of the factor 1/V in the 7-
evolution operator H of Eq. (73), the Schrodinger equa-
tion can be written in the form

6——fd3 (74)

[d*x 0. w=0, (75)
where
_ — 9d
=—ﬁ2 4U lGab —iHV o — 6
Qx BKO aqaaqb ! g 87 (7 )

The extra constraints which need to be imposed on the
physical states, which then generate the usual constraint
algebra of general relativity, are simply

Q.¥=0 (77)

J. GREENSITE

/Veh

Y S V(90 (K)Bg (k)

pKO k

(70)

f

at every point x. It is not hard to see why. Consider an
arbitrary solution of the Schrodinger equation

Vg, 1) =S aze P (q) . (78)
&

Since the a . are arbitrary, the Q constraint (77) requires
that, for each stationary state,

2 _ -
— w2 S+Vg f U|®.=0 (79)
89 g Bko
Identifying
8 172
= 167TGA7 é, K(Z) s
y (80)
6 l167#h
M3 = — ,
Planck B K%

as Newton’s constant and the Planck mass, respectively,
we see that Eq. (79) is just the Wheeler-DeWitt equation

8q%q° «?

H (kP = | —#PGO———

(81)

with Newton’s constant inversely proportional to V' —§.

Finally, we invoke the Moncrief-Teitelboim intercon-
nection theorem [10], which says that if a state satisfies
the (Wheeler-DeWitt) Hamiltonian constraint (81) at
every point x, then that state also satisfies the super-
momentum constraints

H D=0 (82)
at every point x. In this way, the supermomentum con-
straints that were lost at the outset by fixing N; =0 have
been recovered. Further, given that the Hamiltonian and
supermomentum constraints are consistent (commutators
close on the Poincaré algebra), and that the Q, con-
straints (77) are implied by the Hamiltonian constraints
(81), it follows that the O, constraints are consistent not
only with the evolution operator H, but also with each
other.

The Einstein-Hamilton-Jacobi equations follow direct-
ly from a WKB treatment of the Wheeler-DeWitt con-
straints, and the classical limit, obtained by replacing
—i#8/8¢q° and p,, follows in complete analogy to the
minisuperspace case. Since the proper constraint algebra
has been obtained, it is fairly obvious that the correct
classical equations must fall out. But it is still nice to see
this explicitly. We begin with the classical limit of the
evolution operator:



1 -
H.= [ d*x Be§U~'Gp.p,

ziV [a*x H, . (83)
Beginning from a set of initial data {q,p}o={g;,p"},
consistent with the supermomentum constraints

F'{q,p}o]=0 (84)
we have
6=H_.[{q,p}o] (85)
|
dp,(x) 1 SV 1 1
= | —-=——[d*'H, —— [d*x'—
dr V2 8g%x) Ja¥x o= [d'45

Applying Eq. (86)

f3,

dp,, (x) _ 8Vg

8q%(x)

f3, )
UVK 8g%x)

=_fd3:

B"o o)

——H AK?) .
UVk? 8q°(x)

The evolution parameter 7 has units of mass Xlength. To
give it conventional units, rescale 7—t=7/Mpy,, ., and
define

4
M PlanckB Ko

: 90)
U(x)Vk

F.lq]=

Then the full set of gravitational field equations derived
from H, plus the constraints is

dq"(x SHC
dt Planck Sp (x)

'—fd3 IF [q] )7{ (KZ)

dp, 8H, 1)
dt - PlaanW
()
=— [d*'F,. H k),
[’ (405 e

H,(k*)=0, F =0.

To see that this is classical Einstein gravity, let g %(x’,¢)
and p,(x",1) be a solution of (91) for some set of initial
data {q,p},= {gu,p '}, compatible with the constraints.
Then, as in the minisuperspace case, define

N(x,t){p'q}o_:‘Fx[zj(t)] (92)

and one sees that § %(x’,¢) and p,(x,¢) is a solution of
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and the consistency of the initial data with the Q, =0
constraints gives us also

H,=Vg 6. (86)
Then Hamilton’s equations, derived from H_, are
dq®(x) _ Br Pro 26,
dr UV
3}
= | d’x’ ——H (k) 87)
f UVK2 dp,(x)
and
4
U 4 be 1 3 ,BKO o) be
G +—=(d°’x'"— G (88)
8q"(x)ﬁko Pobe Vf YU 8gq%x) Pobe
+,BK4 ) Gbcp p
% 8g9(x) b
(89)
[
dq "(x) — 8IiEinstem
dt 8p,(x)
dpa(x) - _ aHEinstem
dt 5q°%(x)
Hiingein= [ d°x NOx, 1)y, 0 H, (62) 93)
H, . (k})=0
FH=0,

which are simply the Einstein field equations in Hamil-
tonian form, with lapse (92), which is in general different
for each classical solution, and shift N; =0.

V. DISCUSSION

To summarize, given an initial “wave function of the
Universe” ¥[q,7,], it has been shown how to trace its
subsequent evolution along a trajectory in the Hilbert
space of physical states, with the trajectory parametrized
by 7. The r-evolution equation for quantum gravity, up
to factor-ordering terms, is

i%id,¥q,7)=H¥[q,7]
B}
= — 2= 7 3 —1ab
#w—-[dxU~'G 597597 11971
(94)

where the space of physical states is spanned by the
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eigenstates
H®s(q]=6P4[q] (95)
each of which satisfies the constraint algebra

,WX(KZ)(DG:O ,

H. D=0, (96)
w=—L,

and where #,(k?) denotes the super-Hamiltonian con-
straint operator, with Newton’s constant GN=K2/ 167
Modulo operator-ordering issues, every stationary physi-
cal state in the transfer matrix formulation satisfies the
usual constraint algebra of general relativity, but each
with a different value of Newton’s constant, where G% is
inversely proportional to the eigenvalue & of the evolution
operator. The number of degrees of freedom, in this for-
mulation, is therefore 2X w3+1; i.e., 2 degrees of free-
dom per point, which is the degrees of freedom of states
satisfying the constraint algebra (96), and one extra de-
gree of freedom corresponding to the Planck mass. This
is only one more degree of freedom (overall, not per
point) than in the standard formulations; there should be
no danger of, e.g., the graviton acquiring a mass.

Thus, in the transfer matrix formulation, time evolu-
tion of states is recovered at a modest price: the Planck
mass (inverse Newton’s constant) becomes a dynamical
quantity, analogous to energy in nonrelativistic quantum
mechanics. As is the case for the time parameter in non-
relativistic quantum mechanics, or in quantum field
theory on a fixed spacetime background, the evolution
parameter 7 is only an evolution parameter; it is not an
observable, and there is no operator acting on the Hilbert

space which corresponds to 7. This avoids the problems
encountered in relativistic quantum mechanics, as well in
standard formulations of canonical quantum gravity,
where the approach is to identify one of the operators in
the theory as an evolution parameter.

We note that the spectrum of the evolution operator H
in (94) is unbounded from below; this is true of all the sys-
tems considered in this paper. For closed systems (such
as the Universe) which do not interact with anything
external, this absence of a ground state is not a problem.
The eigenvalue & is a constant of motion, and its distri-
bution cannot change.

In nonrelativistic quantum mechanics, any nonstation-
ary state has a certain dispersion in its energy. For quan-
tum gravity, the corresponding statement is that since the
Universe is nonstationary, there must be a certain disper-
sion in &, the eigenvalue of the evolution operator. This
implies dispersion in the Planck mass My, O,
equivalently, Newton’s constant. Since Mp,. . < —6 is
conserved by the evolution equation, the fractional
dispersion of Newton’s constant AGy, /Gy should be a di-
mensionless constant of nature. Depending on how large
this dispersion is, there could conceivably be observation-
al consequences. I hope to return to this question at a
later time.
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