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An exact solution is presented which describes the scattering of a gravitational wave in an open
expanding universe. The background region ahead of the wave is taken to be a Friedmann-Robertson-
Walker (kK = —1) space-time containing a perfect fluid with an extreme relativistic equation of state
p = p. Plane surfaces are determined in this background, so that solutions describing the scattering
of a single wave with a wave front given by such a surface and the collision of two such waves can

be obtained.
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I. INTRODUCTION

Most work on gravitational radiation in terms of exact
solutions of Einstein’s equations has been concentrated
on space-times which are either flat asymptotically or
contain flat regions explicitly. Boost-rotation symmet-
ric solutions represent examples of exact radiative space-
times which are “almost everywhere” asymptotically flat
(see [1] for a review of exact radiative space-times). The
sandwich plane waves and the great majority of solutions
describing colliding plane waves possess flat Minkowski
regions (for a comprehensive review see [2]). Consider-
ably less attention has been paid to the propagation and
interaction of gravitational waves in cosmological models.

The collision of plane gravitational waves in a vac-
uum Kasner background has been analyzed by Centrella
and Matzner [3,4] by combining analytical estimates with
numerical computation. Exact solutions describing so-
called gravitational “solitons” have also been investigated
in a cosmological context (see [5] and references contained
therein, and also [6]). However, these solutions have dealt
only with the vacuum case. Similar solutions containing
scalar and electromagnetic waves have also been obtained
(for a review see [7]), but little progress has been made
on the combination of gravitational waves with perfect
fluids. One exact formalism [8] was developed for gravi-
tational waves in backgrounds corresponding to Bianchi
types I-VII. However, the only explicit solution given is
again a vacuum case.

For perfect fluid backgrounds, the simplest case to con-
sider is that of the so-called “stiff” perfect fluid in which
the equation of state is at the extreme relativistic limit
p = p. This constraint implies that the speed of sound
is the same as that of light, so the characteristics of the
governing equations are the same as those of the grav-
itational field. In this case the characteristic surfaces
are null and it is possible to consider gravitational waves
propagating along them. In this situation, classes of ex-
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act solutions are attainable.

The propagation of fluid shocks in such a fluid has been
considered by Tabensky and Taub [9]. However, our pur-
pose here is to consider the propagation of free gravita-
tional waves. We will, therefore, attempt to exclude fluid
shock waves.

An interesting exact solution describing the propaga-
tion of a gravitational wave pulse through a fluid in which
p = p has previously been given by Wainwright [10]. In
this case, the gravitational field ahead of and behind the
wave is of type D, and the gravitational wave has variable
polarization in which the polarization is not independent
of the amplitude.

In order to further explore the passage of a purely
gravitational wave in a fluid background, one of us has
recently considered the problem of the scattering of a
gravitational wave as it propagates through a perfect
fluid with p = p [11], and also the collision of waves
in such a medium [12]. In that case the background re-
gion into which the waves propagate was taken to be a
Friedmann-Robertson-Walker (FRW) k = 0 space-time.
The purpose of the present paper is to show how the
previous work can be generalized to include alternative,
more complicated backgrounds, and to discuss the colli-
sion of waves in an expanding universe in greater detail.

In the previous work, with the background being the
FRW k = 0 space-time, the spatial sections are flat and
null planes can easily be defined. The first problem con-
sidered here is how to describe appropriate plane wave
surfaces in the other FRW universes in which the spa-
tial sections are curved. It will be argued that such
surfaces cannot be obtained in the closed universes with
k = 1, but that they can in the open FRW universes with
k = —1. The FRW universes are particularly appropriate
backgrounds to consider since they are conformally flat.
This permits the features of free gravitational waves, as
represented by the components of the Weyl tensor, to be
clearly identified.
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For simplicity, the gravitational waves that are con-
sidered to propagate into such a background are taken
to have constant linear polarization. It will be shown
that such waves are necessarily backscattered, so that
the region behind the waves is algebraically general. The
collision and subsequent interaction of such waves will
also be considered. It will be indicated, by analyzing the
expansion of the fluid, that in expanding open universes
colliding gravitational waves do not apparently produce
singularities.

II. PLANES AND NULL HYPERSURFACES IN
THE FRIEDMANN-ROBERTSON-WALKER
OPEN UNIVERSES

The standard form of the metric of an open FRW
model with negative spatial curvature can be written in
coordinates x € [0,+00), 8 € [0,7), ¢ € [0,27) as

ds? = dt? — R%(t)[dx® + sinh® x(d8? + sin® 6 d¢?)]. (2.1)

The spatial three-geometry on a hypersurface t = to =
constant is, up to a constant factor R%(ty), given by

df? = dx?® + sinh? x(d8? + sin® 0 d¢?). (2.2)
It cannot be embedded in a four-dimensional Euclidean
space but it can be embedded in a four-dimensional
Minkowski space (see, e.g., [13]),

do? =dV? —dX? - dY? — dZ?, (2.3)

the embedded surface being a three-dimensional hyper-
boloid:

Vi-X?-Y*-Z?=1. (2.4)
By setting
X = sinh x sin @ cos ¢,
Y = sinh x sin @ sin ¢,
Z= sinh x cos 8,
V= coshy, (2.5)

it is straightforward to see that (2.4) is satisfied, and
(2.3)—(2.5) imply do? = —d¢?, where d¢? is given by (2.2).

We can introduce another system of spatial coordinates
on the three-hyperboloid (2.4) such that the three-metric
is conformally flat. By putting

x=2, =4
z z
1

Z= Z(l —xz? —y? - 2%), (2.6)
1

where z,y € (—o00,), z € (0,+00), we find (2.4) to be
satisfied. Restricting ourselves to z > 0, our new coor-
dinate system (z,y,z) sweeps out the whole “positive”
(V' > 0) sheet of the hyperboloid (2.4). Inserting (2.6)

into (2.3), we obtain the metric on the hyperboloid in the
conformally flat form
—do? = df? = zlg(dxz + dy? + dz?). (2.7)

Now consider the sections of the hyperboloid (2.4)
given by z = 29 = const. Equations (2.6) then imply
X =x/z, Y = y/20, so that (X,Y) € IR?, (z,y) € IR?,
and V + Z = 1/z9. Hence, we are just cutting the three-
hyperboloid (2.4) by “null hyperplanes” V +Z = const in
Minkowski space (2.3). Since then dV = —dZ, (2.3) im-
mediately implies that the two-dimensional sections we
obtain are spacelike and their intrinsic geometry is flat.
The same result, of course, follows directly from (2.7) by
putting z = const therein. In choosing coordinates ac-
cording to (2.6), we “singled out” the coordinate z (while
x,y are appearing symmetrically), and thus also the set of
two-planes given by z = const. However, since the three-
hyperboloid (2.4) is isotropic and homogeneous, we can
construct other sets of two-planes by simple transforma-
tions.

Notice that the geometry of the two-spaces z = const
would not be flat if the three-hyperboloid (2.4) would be
embedded in a four-dimensional Euclidean space rather
than in Minkowski space. In the case of the FRW models
with positive spatial curvature the hypersurfaces ¢ = con-
stant are three-dimensional spheres in four-dimensional
Euclidean space (cf., e.g., [13]). No analogous set of
planes can be constructed in this case.

Returning now to the space-time metric (2.1), we
go over from coordinates (x,8,¢) to new coordinates
(z,y,2) by the transformation given by combining (2.5)
and (2.6):

sinh x sin @ cos ¢= f,
z
sinh x sin 0 sin ¢= %, (2.8)
1
sinh x cos 0= 2—(1 —z? —y? - 2%,
z

which implies that coshx = (1/22)(1 + 22 + y% + 2%). It
is easy to express (x,6,¢) directly in terms of (z,y,z)
and vice versa. Under this transformation the FRW line
element (2.1) becomes

ds? = di? — R2(¢) z—lz(da,-2 td? +d?)|. (2.9)
Introducing next the new coordinate
p=lnz, (2.10)
we obtain the metric
ds® = dt* — R*(t) [du® + e~ 2#(dz® + dy?)].  (2.11)

Finally, going over to the “conformal-time” coordinate 7
by the usual relation

dt = R(n)dn,

we arrive at the metric

(2.12)

ds? = R*(n) [dn? — du® — e ?#(d2® + dy?)]. (2.13)
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It is now easy to find two families of null hypersurfaces
by putting

n=1u+7, p=1u-—7, (2.14)

or

1
=g+ n),

The metric then reads
ds? = R*(a+9) [4dﬁdf; — 2@ (gg? 4 dyz)] . (2.16)

with 4 = const and ¥ = const being the two families of
null hypersurfaces. These intersect in two-planes with
(z,y) € IR?.

III. FRIEDMANN-ROBERTSON-WALKER
MODELS WITH A FLUID WITH A STIFF
EQUATION OF STATE

It is simple to integrate Einstein’s field equations for
the FRW models filled with a perfect fluid satisfying the
extremely relativistic equation of state p = p. Although
various spatially homogeneous and even inhomogeneous
cosmologies with such a “stiff” fluid have been analyzed
in the literature [14], we have not found the simplest
FRW cases given explicitly. For the benefit of the reader,
these are now stated. We treat all three possibilities of
the FRW universes with the positive (k = +1), zero (k =
0), and negative (k = —1) spatial curvature.

With p = p, the equation of energy conservation,
(pR) : = —p(R®) , implies that

pR® = poRS = const = o. (3.1)
Substituting for p into the only field equation which re-
mains to be satisfied (e.g., [13]), (R:/R)? = —k/R* +
(87/3)p, we obtain

R = —k+~°R7%, (3.2)
where 7% = (87/3)y0 = const. [Notice that, in the
geometrical units we are using here, the dimension of
v is (length)?, R and t have the dimension of length,
while 7, u, , and y are dimensionless.] Introducing the
conformal-time coordinate 7 in accordance with (2.12),
Eq. (3.2) converts into

R, = [-kR®+y*R™ %%, (3.3)
This can easily be integrated to yield
R= [ysinh 217]% if k=-1,
R= [y2n)? if k=0, (3.4)
R= [’ysinZn]% if k=+1.

Here we have put an integration constant equal to zero,
so that the big-bang singularity occurs at n = 0.
In order to obtain the expansion function R as a func-

tion of the “cosmic time” t, we have to find t = t(n)
by integrating Eq. (2.12) with R given in (3.4), and ex-
press back 7 = 7n(t). In the simplest case of k = 0 we
immediately get

R = (3yt)s3. (3.5)

Hence, the flat FRW universe with a “stiff” fluid ex-
pands slower than the corresponding universe with dust
for which R ~ t3 (e.g., [13]).

In the more complicated cases with £ = £1, we can still
explicitly integrate Eq. (2.12) to find (see [15], expression
2.464.5) for k = —1:

(o) 5 (o)

N [sinh 27(1 4 sinh?® 27;)]§ j‘

t= VA

3.6
1 + sinh 27 (3.6)

where a = arccos [(1 — sinh7)/(1 + sinh7)], and F' and
E are the elliptic integrals of the first and the second
kind, respectively. If k = +1, we obtain (see [15],
2.619.11 with z — 2’ — 7 /4)

0 1 1 itm
il (o) n)]
where a = arccos [v/2cos(n + 7/4)], and F and E are
again elliptic integrals. Therefore, in these cases, R(t)
can be found only in parametric forms given by (3.4),
(3.6), and (3.7).
Notice that for the negative curvature open universe, in
which we are primarily interested here, Eq. (3.7) implies

(3.7)

that ¢ =~ (7ysinh 277)5 as 7 — oo. Hence, at large times
the k = —1 FRW model with a stiff fluid expands linearly,

R=>t, (3.8)
i.e., exactly as the standard k = —1 Friedmann models
with dust or radiation. This, of course, was to be ex-
pected, since the Einstein equation from which we started
implies that, asymptotically, at large R’s the universe
with k£ = —1 is just “curvature dominated.”

IV. THE FIELD EQUATIONS IN NULL
COORDINATES

The purpose of this section is to present field equations
for the scattering or interaction of gravitational waves in
a fluid with a stiff equation of state in an appropriate
coordinate system. In order to find solutions that can be
matched to the background space-times considered above
across a null hypersurface, it is assumed that there exist
two Killing vectors 9, and 3,. Restricting attention to
the case in which any gravitational wave has a fixed po-
larization and colliding waves have collinear polarization,

the line element can be taken in the form
ds? = 2e " Mdudv — e Y (eVda? + e~V dy?), (4.1)

where U, V, and M are functions of the null coordinates
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u and v only. A standard null tetrad (I, n, m, m) can
always be chosen such that the two real null vectors are

—M/2 —-M/2

l,=e Uy s n,=e Uy s (4.2)
and the null vectors m, and m, are combinations of the
two Killing vectors. In the solution described below, it
is assumed that the fluid does not move in the directions
spanned by 8, and 8,, and it is thus possible to express

the fluid four-velocity as

w_ L u

u \/i(al + bnt),

where a and b are functions of u and v only, and ab = 1.

It is well known that a stiff perfect fluid for which the

pressure p is equal to the density p can be related to a

scalar or potential field [16] which is here described by

a function o. Using the metric defined by (4.1), o(u,v)

is required to satisfy the equation (representing the con-
tracted Bianchi identities)

(4.3)

20y, = Uyo, + Uyoy,. (4.4)

In terms of this function, the fluid density and four-
velocity components are given by

16mp = eMoua,,,

a=1/0y/0,, b= +0y/0u,

which ensures that the fluid four-velocity is proportional
to the gradient of o. In addition, the nonzero components
of the Ricci tensor are given in Newman-Penrose notation
by

(4.5)

_ 1 _M_ 2 _ _ 1M
Do = 2€¢ Ov ), ®; = -3A= g€ OuOy,

q)zz = leMUuz.

i (4.6)

The field equations can now be written in the suitable
form

Uno= U, Uy, (4.7)
2Uy=U,? + V,2 — 2U,M, + 0,2, (4.8)
U= U2 + V.2 = 2U, M, + 0,2, (4.9)
2My,= -U, U, + V,V, + 0,0, (4.10)
2V, = UV, + U,V,. (4.11)

The nonzero components of the Weyl tensor, which repre-
sent the gravitational waves (free gravitational field com-
ponents), can be expressed as

o= —1eM(V,, — U, V, + M, V,),

_1.M 1M
U= 5" My, — g€ 0u0y,

Uy= —L1eM(V,, — U Vi + M, V,,).

(4.12)

It can be seen that Eq. (4.7) can immediately be inte-
grated to give

e”V = f(u) +g(v),

where f(u) and g(v) are arbitrary functions. It is conve-

(4.13)

nient here to choose the gauge such that

-U

e’ =u+w. (4.14)

It should also be observed that Egs. (4.4), (4.7), and
(4.11) are the integrability conditions for Eqs. (4.8),
(4.9), and (4.10). Thus if Egs. (4.4) and (4.11) are satis-
fied, there automatically exists a function M which satis-
fies the remaining equations, and which can be obtained
by a simple quadrature.

Let us now express the FRW space-time with k£ = —1,
and which contains a stiff fluid, in this notation. Substi-
tuting from Eq. (3.4) into the metric (2.16) yields the
line element

ds?= 2y [ez(a+a) _ e—z(a+5)] dindi

-1y (646 - e_‘m) (dz? + dy?). (4.15)

Rescaling the coordinates z and y such that z — z’ =
V7v/2z and y = ¥’ = 1/v/2y (but omitting the primes),

and introducing new null coordinates by the relations

—44

u—c=—e **, v+c=e??, (4.16)

where ¢ > 0 is an arbitrary constant, the metric (4.15) is
recast in the form

P s

T 2dudv — (u+ v)(dz? + dy?).
6 (o T (o 2 — (u+0)(de? + )

(4.17)

Hence, in terms of the functions U, M, and V introduced
above, we obtain

U= —In(u +v),

M= —In(u +v) + 3In(c — u) + 3 In(c + v) — In(L),
V=o0. (4.18)

Part of this space-time is represented in terms of these
coordinates in Fig. 1.
It is easy to see that the potential

a:\/ﬁln(m—‘/c"—")

Vervive—u) 41

(R=0) u+v=0

FIG. 1. The coordinate range for the FRW open (k = —-1)
universe with a stiff fluid as represented by the metric (4.17).
The spacelike surface v + v = 0 corresponds to the initial
big-bang singularity, and u = c corresponds to part of null
infinity.
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satisfies Egs. (4.4) and (4.8)—(4.10). From this, and from
(4.5), we obtain

_yle—w¥ e+ 0)¥?
T y(ut o)

(4.20)

which clearly indicates the “big-bang” curvature singu-
larity at w + v = 0 and the timelike infinity at v — c,
v — 00 [cf. (2.15) and (4.16)]. Finally, we note that the
four-velocity of the fluid is given by (4.3) in which

(c—l—v)”z (c_u>1/2
a= , b= .
cC—Uu c+v

In the form of the metric given by (4.17), it is evi-
dent that the surfaces given by u = const and v = const
are plane. It is therefore possible to consider hypersur-
faces u = const(< ¢), or alternatively v = const, as wave
fronts in which the above solution is chosen ahead of the
wave. The region containing the wave will then have to
be matched to this solution across such a hypersurface.

To consider such a situation, it is convenient to initially
assume that the gravitational wave can be described by
the line element (4.1). To match this to a background
region described by the metric (4.17) across a null hyper-
surface given by u = const or v = const, it is necessary
that U is smooth across the hypersurface and that V', M,
and o are continuous [17].

(4.21)

V. SCATTERING OF A PLANE
GRAVITATIONAL WAVE IN A FRW OPEN
UNIVERSE

Consider now the propagation of a gravitational wave
with wave front given by the null hypersurface v = 0.
The background region of space-time ahead of the wave

is part of the conformally flat FRW (k = —1) universe
described above with u < 0. This will be referred to as
region 1.

The region containing the wave, for which v > 0, will
be referred to as region II (see Fig. 2). It will be assumed

v

I

wave front

source

of the wave FRW open universe

Initial big bang singularity u+v=0

FIG. 2. Region I is part of the open FRW universe. It
contains a perfect fluid expanding from an initial singularity
at u + v = 0. Into this a gravitational wave propagates with
wave front v = 0. This wave is partially backscattered and
region II is algebraically general. Our solution breaks down
at v = 0 in region II, which is where the sources of the wave
are to be expected.

that the line element in this region can be taken in the
form (4.1). This implies that the gravitational wave has
constant linear polarization.

We can continue to adopt a gauge in region II such
that

-U

e " =u+u, (5.1)

which is the same as that in region I. This ensures that
U is smooth across the wave fronts. We can also take o
to have the same functional form in both regions I and
II: namely [cf. Eq. (4.19)],

This ensures that the fluid remains continuous across the
wave fronts, thus automatically avoiding the introduction
of fluid shocks. With these initial assumptions, part of
future null infinity is again given by u — ¢, so that u is
confined to the range 0 < u < c.

It is now necessary to obtain a solution for V(u,v)
satisfying Eq. (4.11). With (5.1), this can be written as
a Euler-Darboux equation with noninteger coefficients:

(5.2)

(w4 v)Vuo + 3V + 5V, = 0. (5.3)

A solution of this equation is required such that V =0

and V, is bounded on the wave front v = 0. Such a

solution has been discussed elsewhere [11] and may be

written in the form
u™ U

V= CnﬁF (%,% +n;1+n;—~)

= Cp,

u 11, o u
\/mF(z’z’lﬁhn’quv)’ (5.4)
where n > 1 and ¢, are arbitrary constants, and
F(3,3 +n;1+n;—u/v) and F(3,3;1+ n; %) are hy-
pergeometric functions. It may be noticed that near the
wave front, V develops as u™.

Since Eq. (5.3) is linear, any solutions of the form
(5.4) with different values of n and ¢, may be combined
to obtain arbitrary profiles of the gravitational wave.

The remaining metric function can be determined by
first putting

Mo =—In(u+v)+ 2In(c—u) + 21In(c+ v) — In(F).
(5.5)

which is the expression for M in region I [see Eq. (4.18)].
It is now possible to obtain M in region II by putting

M = M, + , (5.6)
where Q(u,v) is zero on u = 0 and satisfies the equations
[see (4.8) and (4.9)]

Q= —L(u+v)V,7?

Q= —u+v)Vu2  (5.7)

1
2
We have thus determined the solution up to this quadra-
ture.

The nonzero components of the Weyl tensor are given
by
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3
= 1M 2 v, - Vv, 3
Ty i€ (2V‘”’+(c+v) » — (u+v)V, ),
(5.8)

—1
4

eMV, Vv,
\1’42 ——ieM (ZVuu -

3
=

It should immediately be noticed that the propagating
wave which is represented essentially by the component
U, is partially reflected, so that the gravitational field
behind the wave front is algebraically general. It can
be easily seen that, when n = 1 or n = 2 in (5.4), the
component ¥4 has a step wave front. For higher values
of n, U4 develops as u™~2 while ¥y which describes the
backscattered wave develops as u™. The ¥, component
develops as u?"1.

It should also be noticed that the hypergeometric func-
tions appearing in (5.4) are not defined for (—u/v) — oo
(cf., e.g., [18]). Thus, this region behind the wave may
contain singularities which could be considered as the
sources of the gravitational wave. The form of the sources
will be determined by the set of constants c,,.

Vi — (u+ v)Vu?’) .

VI. COLLISIONS OF PLANE WAVES IN A
FRIEDMANN-ROBERTSON-WALKER
BACKGROUND

In recent years considerable attention has been paid
to the problem of the collision and interaction of plane
gravitational waves. Numerous classes of exact solutions
have been obtained and their singularity structure has
been clarified. A substantial review of this work has re-
cently been given in [2]. However, in all of this work
the background region ahead of the waves prior to the
collision has been taken to be flat Minkowski space.

Part of the motivation for the present work has been
to consider the colliding wave problem in the context of a
cosmological background. With the results of the previ-
ous sections, we can now consider the collision of gravita-
tional waves in a FRW (k = —1) background containing

source

of another

gravitational
wave

source

of one
gravitational

wave

(R=0)

u+v+1=0

FIG. 3. The background region I is part of the FRW
(k = —1) space-time. It contains a stiff perfect fluid expand-
ing from an initial singularity. Into this background, gravita-
tional waves in regions II and III propagate with wave fronts
u = 0 and v = 0. Region IV is the interaction region follow-
ing the collision. Regions II, III, and IV are all algebraically
general.

a perfect fluid with equation of state p = p.

With the formulation of the FRW (k = —1) space-time
given above, we can consider approaching plane gravita-
tional waves propagating along the hypersurfaces v =
const and v = const. At this point it is convenient to
replace v by 1+ v in the formulas of previous sections so
that we can consider approaching waves with wave fronts
given by u = 0 and v = 0. The various regions of the
space-time are illustrated in Fig. 3. The initial singular-
ity (R = 0) now occurs on the hypersurface u+v+1 = 0.

The background region I is FRW space-time with
k = —1. It is described by modifying the solution (4.18)—
(4.21) to the form

Uo = —In(1+u+v),

I
o

Mo =—In(1+u+v)+ 3In(c—u)
+3In(c+1+v) - In(),
0':0'0:\/511’1 \/c+1+v—\/c—u ,
Ve+rl4+v4+e—u
(c—u)¥%(c+1+0)%?
my(1+u +v)3 ’

(C+1—+—’U>1/2 ( c—u >1/2
a= _— y b= _ .
c—u c+1+v

Region II in which u > 0, v < 0 is the region contain-
ing the gravitational waves as described in the previous
section. The solution is given by

U
|4
M

(6.1)

U=U,, o = oy,

V=W :cnl—un;F (l L ng; 140, ———)
Jo+1 202 ) ) 1)

M= My + ;. (6.2)

It is understood that terms with different values for n > 1
can be included in the expression for V7, and that Q; can
be obtained by integrating the equations
Q,=
Q.=

1+ u+0v)V,2,

_1
2
~11+u+0)V2

(6.3)
using V = V.
The solution in region III (v < 0, v > 0) can be taken

in the same form as in region II, but with « and v inter-
changed in the expression for V', namely,

U=Uo, o= oy,
V=V v Fi14+ny1+ v
= = C. _— =. = Mo Ny, —————
2 nz\/m 2932 2 25 u+1 )
M= Mo —+ Qg, (64)

In the interaction region IV (u > 0, v > 0), the solution
satisfying the necessary junction conditions is given by

U= UO, 0 = 0Oy,
V=Vs=Vi+ Vs,
M= M0+Q3,

(6.5)
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in which the term V3 has been taken as the sum of the
two expressions given in (6.2) and (6.4) and Q3 can be
obtained from (6.3) using V3.

The expansion of the fluid in this region is given by

_ 3vV2[(c—u)(c+v+ 1)]1/469/2
V7 (1+u+wv)3/2

x((c—u)[l + :(1+u+0)%V, 2

0

+e+1+v)[1+ (1 +u+ v)ZVvZ]), (6.6)
where 2 = Q3 and V = V3. Since V,, and V,, are bounded
in region IV, expression (6.6) indicates that the space-
time after the collision continues to expand indefinitely.
Indeed, since u € [0,c] and v € [0,00) in region IV,
Eq. (6.6) shows that 6 remains positive here. Thus,
although the presence of the gravitational waves slows
down the rate of expansion, future spacelike singulari-

ties apparently do not occur for interacting gravitational
waves in this expanding background as they do in the
vacuum case with a Minkowski background. This result
is qualitatively similar to those of Refs. [3,4] which con-
sider the collision of gravitational waves in an expanding
vacuum Kasner background. It is also consistent with a
theorem of Tipler [19] since, in this case, the singularity
is in the past.
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