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Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution
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We compare the predictions of linearized theory for the radiation produced in the collapse of a
spherically symmetric scalar field with a full numerical integration of the Einstein equations. We
And power-law tails and quasinormal ringing remarkably similar to predictions of linearized theory
even in cases where nonlinearities are crucial. We also show that power-law tails develop even when
the collapsing scalar field fails to produce a black hole.
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I. INTRODUCTION

Linearized perturbation theory has been the main ana-
lytical, and until comparatively recently, numerical, tool
for analyzing nonspherical gravitational collapse. The
complexity of the problem has usually made this ap-
proach necessary, and it has been assumed until recently
that the approach was sufBcient. Recently, however,
Gomez and Winicour [1] have focused attention on the
extent to which these results are even qualitatively rep-
resentative of the late stages of collapse.

In the picture given by linear perturbation theory of
the late stages of collapse, there are two features which
are noteworthy. One is the development of "quasinor-
mal (QN) oscillations, " damped oscillations at complex
frequencies characteristic of the mass of the black hole
background. The second feature is the decay in time t of
perturbations as 1/t", the "power-law tails. " There are
good reasons to examine more carefully whether these
features also appear in the fully nonlinear case. The
arguments for the QN oscillations and for the tails are
somewhat diferent, and should be considered separately.

According to linearized theory the QN frequencies are
fixed complex numbers multiplied by the inverse of the
mass of the black hole background. (We use here and
throughout units in which c = G = 1.) It seems rea-
sonable that the phenomenon of QN ringing will be a
feature of nonlinear collapse. One argument is that some
numerical investigations of solutions of the fully nonlin-
ear equations have shown QN ringing to be common [2].
Second, the idea of QN ringing seems "robust. " It is a
natural frequency associated with a radiative boundary
condition, and can occur in many different radiative sys-
tems. If QN ringing is found, to what black hole mass
does it correspond? The QN oscillations themselves carry
energy and may change the meaning of the mass. A rea-
sonable guess, at least, can be made that the QN fre-
quency evolves somewhat during the collapse.

The situation for the power-law tails is quite differ-
ent. These tails are not familiar or common phenomena.
The explanation of their existence can be given in two
very different ways: (i) They can be viewed as the result
of the scattering of gravitational waves ofI' the "efIective
curvature potential" of the black hole spacetime [3], or

(ii) they can be associated with the branch cut in the
Green's function for the wave propagation problem [4].
Both arguments leave open the possibility that the tails
are idiosyncrasies of the linear approximation.

If QN oscillations or tails are missing from a fully non-
linear collapse, or if there is any significant new qualita-
tive feature, the result might be to undermine confidence
in the picture of collapse given to us by the analysis of lin-
ear perturbations of black hole backgrounds. Gomez and
Winicour [1] have addressed this question with numerical
studies of the collapse of a spherically symmetric scalar
field due to its own gravitational pull. Since the spheri-
cally symmetric problem involves only a 1+1 hyperbolic
system, it is enormously easier to solve numerically than
the problem of nonspherical collapse.

What is more, the problem is a wonderful testing
ground for comparing nonlinear results and the predic-
tions of linearized theory. In linearized perturbation the-
ory the evolution of a scalar field is governed by essen-
tially the same mathematics that governs the dynamics of
nonspherical perturbations. In particular, perturbation
theory makes very specific predictions about QN ringing
and tails for perturbative spherically symmetric scalar
fields. It is therefore of great interest that in their ini-

tial numerical studies of scalar field collapse, Gomez and
Winicour have seen neither QN ringing nor tails.

In this paper we will study the fully nonlinear evolu-
tion of a scalar field minimally coupled to general relativ-
ity. We consider first the evolution of a spherically col-

lapsing scalar field; in addition, we consider nonspherical
perturbations of this spacetime. We establish that the
QN frequencies and the power-law tails of the numerical
simulations are in remarkable agreement with the pre-
dictions of linearized theory when a black hole develops.
If a black hole does not develop, and all energy even-

tually radiates away to infinity, we find that power-law
tails still form. The existence of tails, but not QN oscil-
lations, when holes do not form agrees with the analysis
presented in the companion paper, hereafter referred to
as paper I.

The organization of this paper is as follows. In Sec.
II we describe the coordinate system and the version of
the field equations we use. In Sec. III we describe our
discretization and discuss the numerical error. In Sec.
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II. FIELD EC}UATIONS AND ALGORITHM

We study a spherically symmetric scalar field P satis-
fying the minimally coupled equation

iP 0iP

To describe the spherically symmetric spacetime we use
the line element [5,6]

ds:——g(u, r)y(u, r) du —2g(u, r) du dr —r dA, (2)

in which u is a retarded time null coordinate. Regularity
at the center requires that g = g at r = 0. The remaining
coordinate &eedom is fixed by the choice that u be the
proper time on the r = 0 central world line, or g = g = 1
at r = 0. We introduce the auxiliary field g by

1
Q dr.

r p

In terms of this variable, the wave equation (1) for P
takes the form

DO = (-g g)(~ —~)--t'8 y 81
(Bu 2 Br) 2r

The metric coefficients g and g are determined from P by

' /B&lt'
g=exp 4vr

~ ~

rdr
&~r)

1
g = — gdr.

p
(6)

Because of the spherical symmetry there is no indepen-
dent gravitational degree of freedom. The operator D in
(4) difFerentiates along ingoing null characteristics, and
information is propagated along outgoing null charac-
teristics (the u = const lines) by (3). The integration
scheme of Eqs. (3) and (4) can therefore be related to
a fully characteristic coordinate system (u ="retarded
time, " v ="advanced time" ) in which the metric takes
the form

IV we study the collapse of a scalar field for various ini-
tial configurations. In Sec. V we study the evolution of
multipole moments of test fields on the collapsing back-
ground. In all cases comparisons with the linearized re-
sults are made. We end in Sec. VI with a brief summary
and with conclusions.

r treated as a metric function r(u, v) which is evolved as

Dr = —y/2 .

~~(v, u+ au) —r(v, u)
~

& ~r(v+ 1, u) —r(v, u)
~

(9)

for all v = 1, 2, 3, ... . This has been found to be a use-
ful rule of thumb. Since our integration scheme proceeds
along characteristics, there can be no violation of causal-
ity, and hence there is no formal "Courant condition" to
satisfy.

Figure 1 shows our uv grid embedded in the well-
known conformal diagram of spherical collapse. Null lines
u =const and v =const are at 45'. Infinity has been
brought to a finite distance and each point, apart from
the line r = 0, corresponds to a two-sphere of surface
4vrr2. This diagram shows where our null data are set
and how far they are evolved. The upper left and right
sides of our coordinate patch, though at finite distances,
can be taken as approximations of the horizon 'R+ and
future null infinity seri+. Lines of constant r go from
past to future timelike infinity. Those with r ( 2M',
where My is the final mass of the black hole, cross the
event horizon, while r = 2M' approaches it asymptot-
ically. This gives one numerical method for finding the
final black hole mass. Another is to take the limit of the
Bondi mass M~(u) at late retarded times u ~ oo, where

M~(u) =- lim ~1—( y(u, r) 5

r~~ ( g(u, r) )
(10)

Yet another spacetime coordinate will be useful in com-
paring our results to analytic predictions, although it
plays no active role in our algorithm. This additional co-
ordinate is defined as the proper time along an r =const
trajectory, or

As initial data for the algorithm we take Q(v) and r(v)
on an initial outgoing null cone u = up. These are equiv-
alent to the choice of null data P(r) and the (arbitrary)
numerical choice of the initial position in r of each in-

going null lines of the grid (i.e. , each line of constant v).
The algorithm, which closely resembles that of Goldwirth
and Piran [6], proceeds as follows: We start by using (3)
to obtain P and by using (5) and (6) to obtain g and g
as functions of v along u = up. (The integrations over r
are discretized as summations over v. ) We next choose a
value of the "time step" Au, and we use (4) to obtain Q,
and (8) to obtain r, at grid points along u = up + Au.
The process is then repeated starting with the new out-
going characteristic u = up + Au. On each such cycle of
integrations the step size Au is chosen so that

ds = —f(u, v) dudv+ r (u, v) dA,

and in which D oc 8/Bv]„. Here the coordinate v is fixed
only up to arbitrary transformations v ~ v(v). Since the
coordinate is only a label on the ingoing null geodesics
it can be assigned values v = 1, 2, 3, ... on our numerical
grid.

Our algorithm works on a characteristic grid made up
of lines of constant u and v, with the radial "coordinate"

t = t(u, r)—: Qg( ur)y( ur) du'.
0

We shall also use Bondi time, tn = t(u, oo), which is the
retarded time coordinate that agrees with time at infinity
for constant r. In an asymptotically Hat spacetime the
large r limit of t(r) is given by dt's = lim ~ g(r, u) du.

Our code has limited integration time precisely because
it is characteristic. By definition u is the proper time of
an observer at r = 0. The event horizon starts spreading



892 CARSTEN GUNDLACH, RICHARD H. PRICE, AND JORGE PULLIN 49

out &om r = 0 at a finite value of u, say up . In a collapse
g(oo, u) becomes infinite as u ~ uh. In our algorithm this
means that the step size Au decreases rapidly, while At~
remains about constant. The numerical approach to the
horizon is stopped eventually by an overflow of g or un-
derflow of Au. The situation is best illustrated in Fig. 2.
The u =const lines of our grid are squeezed together
against the horizon. The problem of over and jor under-
flow and of numerical instability (which usually develops
earlier) is shared by all codes which avoid singularities by
staying outside apparent horizons. A possible cure would
be a slicing which does cross the horizon, combined with
simply discarding parts of each slice inside the horizon. If
the surface beyond which time slices are discarded eats
into the remaining part of the grid with the speed of
light or faster, no boundary condition is required on it
[7j. Such a procedure is not applicable to a characteristic
grid, where the "time" slice is already an outgoing null
cone and cannot be intersected by one.

t(u, r)

u0

III. DISCRETIZATION AND ERROR ANALYSIS

As we have just seen, our grid is highly nonuniform
in u if a horizon forms. In that case it becomes also

r=0
FIG. 2. Our null grid in coordinates t(u, r) and r The.

u =const (tB =const) grid lines approach the event horizon
in a finite interval of u which is an infinite interval of t ~ .

I

0

r=0

FIG. 1. The conformal diagram of the spherical collapse
spacetime for a final hole mass Mf . Shown is our null grid
in relation to the future event horizon 'R+, future null in6n-
ity scrit+, future timelike infinity i +, and spacelike infinity
i o. Null grid lines pointing to the top left are lines of con-
stant v; those pointing to the top right are lines of constant
u or t~ . Null data are set on the bottom right side of the
grid at u = uo. The curved lines from left to right are (a)
r = const ( 2M', (b) r = 2Mf, and (c) r = const & 2M'

highly nonuniform in r . Ingoing null geodesics pile up
at r = 2M', even if v is chosen uniform in r on the
original slice. Truncation error is reduced, of course, if
the grid spacing is made finer. We have tried to produce a
code that is second-order accurate under a uni form grid
rescaling. We denote here the relative size of the grid
spacing by h; a reduction by a factor 2 of 6 means that
the spacing in r is reduced by 2 and, due to the Courant-
like condition (9), the spacing Au is also reduced by 2.

On the top level we treat each of Eqs. (4) and (8) as an
ordinary differential equation (ODE) in u at each fixed
v . These are solved by the second-order Runge- Kut ta
method. The calculation of the "coefBcients" P, r, g,
and g in these 0DE's is nontrivial, however, and couples
the equations at different values of v. They are given
by the definite integrals (3), (5), and (6), which must be
evaluated in that order. The integrals are discretized by
the trapezoidal rule, which is again formally second-order
accurate.

In principle our code should be second-order accurate.
That is, for the finite difference approach we use, the er-
ror at a given spacetime point should vary as 6 . We did
not find this second-order convergence one would expect
naively from the code, but did find convergence better
than first order. One reason for the failure of a simple
error analysis is the ambiguity about the measure of er-

ror. As the dynamical range of P and the other fields

is very large in a collapse spacetime, there is little point
in taking an /2, IIq, or l norm of the error in the fields

over a set of spacetime points covering all of the integra-
tion region. The regions where the fields are large would

dominate the integrated error. What is relevant to our
confidence in the results is the relative error, in particular
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1/1

1/20

60 ~ --
1/40

1/80

J;1 "L
48.0 50.0 52.0 54.0 56.0 58.0

FIG. 6. Results of the same runs as in Fig. 5, but here in a
region where P is dominated by the power-law tail. Note that
the higher the precision, the smaller the value of t~ where
the run stops due to an overflow, here at 53 and 57. From
bottom to top the curves correspond to initial radial grid sizes
of 1/20, 1/320, 1/160, 1/80, 1/40.

IV. SPHERICAL COLLAPSE

In this section we present our results for the purely
spherical collapse of a self-gravitating minimally coupled
scalar field. Our expectations are based on linearized
perturbations as analyzed in paper I. Because the scalar
field at late times has small amplitude, it seems plausible
that the late-time fields can be viewed, roughly, as per-
turbations, and that the analysis of paper I applies, at
Least approximately. Our expectations then include the

tains an explicit factor of 1/r, which in the exact solution
is canceled by the very boundary condition we are trying
to impose, and which analytically leads to g —g = O(r)
and i/ —P = O(r). The risk of large numerical error,
or even numerical instability, is clear. Empirically we
found that our linear approximation algorithm is stable,
but gives rise to large errors at small u, which actually
decrease with increasing u. We believe the reason is that
at smail u the scalar field P is still large at r = 0, thus
introducing a large error into the boundary condition. At
large u, the field strength resides mostly at large r, and in
this regime the standard discretization error is dominant.
We addressed this problem, not by using higher-order in-
terpolation, but by brute force. We made the grid much
denser in r, typically by a factor of 16, up to and slightly
beyond the radial scale of the initial data. This meant
that the grid size was much smaller until the bulk of the
energy in the scalar field had reached r = 0 and then
had propagated out to large r. In this way we achieved a
reasonably small relative error everywhere, small enough
to give us confidence in our results.

In summary, our code is not second-order accurate,
but better than first-order accurate. We achieved high
enough accuracy to have a small relative error every-
where, but even at a much lower resolution the physical
features we had set out to verify, QN ringing and power-
law tails, are unambiguously present.

presence of QN oscillations at late times after a black hole
has formed and power-law tails at late times, both when
a black hole forms and when it does not. The real and
imaginary part of the QN frequencies —the least damped
mode is the only one visible in practice —are fixed num-
bers divided by the black hole mass. The powers of the
linear theory tail are fixed integers. When there is a
static scalar field present on the initial null slice, the am-
plitude of the power-law tail, in the linearized case, is
also determined. The analysis in paper I suggests that
these predictions for a scalar test field should hold also,
approximatively, if the spherically symmetric scalar Beld
evolves under the influence of its own gravitational pull
rather than on a Bxed Schwarzschild background.

We examined two one-parameter families of initial
data. In the first family the field is a Gaussian in r;
we consider the Gaussian to represent a typical collapsing
"shell of matter. " There is a scale invariance in the prob-
lem which can be used to set the center of the Gaussian at
r = 1; the remaining physical parameters are the Gaus-
sian width and amplitude. A black hole will form from
these initial data if the amplitude is sufBciently large, or
if the Gaussian width is sufBciently small.

As a second family of data, two different forms of
P(u = 0, r) are joined. For r less than some joining radius
rg, the solution is constant at P = Ps, and for r ) rg, the
initial data is taken to be that static solution of (1) which
is well behaved as r —+ oo (i.e. , the solution which falls off
as r ). This solution is called "static-static" [1] because
it gives rise to a static spacetime in the domain of depen-
dence of either the inner (r ( rg) or outer (r ) rJ) initial
data. Without loss of generality we can set the joining
point at rJ ——1. The only free parameter is then A, the
field amplitude at that point. Again this one-parameter
family should contain spacetimes with and without an
event horizon.

Static-static data are the boundary between generic
"shell" initial data and data which are not asymptoti-
cally flat. We found that when we replaced the exact
static solution (given analytically as an implicit function
in [9,1] by P = const/r) the resulting solution is qualita-
tively different: It corresponds to an infall of matter at
arbitrarily late times.

A first check of our code is the amplitude of static-
static data at which a black hole first forms. We find
0.28 ( Po ( 0.29, which agrees with the critical value

Po ——0.286 given in [1]. For the Gaussian data we find
0.033 & A ( 0.034, where A is the height of the Gaussian.
These limits are stable under reduction of the grid size
by a factor of 16, from 1/20 down to 1/320, as described
in the previous section.

A crucial feature of both Gaussian and static static
data is that the amplitude (the value of 4o or the Gaus-
sian height A) can be chosen either "subcritical" (no hole
formation) or "supercritical" (a hole forms). By varying
the amplitudes we found three different regimes for the
resulting spacetimes. (a) For the amplitude much greater
than its critical value we found QN oscillations and tails
qualitatively and, for the most part quantitatively, as
predicted by linearized analysis. (b) For the amplitude
near its critical value we found the same power-law tails,
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but we found QN ringing to be qualitatively di8'erent in
the Gaussian and static-static cases. (c) For the ampli-
tude smaller than its critical value (even marginally) we

found the same power-law tails as for collapse, but no
QN ringing.

We now discuss in more detail the results for power-law
tails and for QN ringing, starting with the former. The
analysis in paper I shows that for linear spherical per-
turbations tails should fall off in time (time for a distant
observer or Bondi time) as t& in the case of generic data
and as t& for data corresponding to an initially static
monopole moment. Figure 7 shows log-log plots of P at a
constant values of the radius (here r = 10) as a function
of Bondi time for different values of the amplitude of the
initial Gaussian data. At late times P clearly decays as
a power of Bondi time, t&". The measured exponents
are in reasonably good agreement with the prediction of
linearized theory: n = 2 for static static data and n = 3
for Gaussian data. These power-law tails develop, and
have the same exponents, whether or not a hole forms,
and the amplitude of the tails is a smooth function of
the initial amplitude. For the development of a tail, hole
formation is irrelevant. This independence of hole for-
mation is explained by the argument in paper I that tail
development is due to backscatter at large r, and does
not depend on the small-r nature of the spacetime.

In the case of static-static data, the linear perturba-
tion analysis of paper I predicts not only the exponent of
the tail, but the amplitude. If our static static data were
evolving on a fixed Schwarzschild background of mass M,
the paper I prediction would be that at late times and
large radii (specifically t )) r )) M) the tail would have
the form p = 4Mpo/t . I—t is unclear just how to apply
this in general to the time-dependent spacetimes of our
present numerical investigations. Since the mass of the

10

spacetime is evolving, and might fall to zero, what value

of M should be used in the prediction for the amplitude
of the tail? The picture of scattering underlying the cal-
culations of paper I would suggest that the correct M is
some average, over retarded time, of the mass. The ques-
tion of the appropriate mass is not crucial in one subset
of cases: collapse models in which the initial data lead to
the formation of a hole of mass not very different from
the initial Bondi mass. In this case one might expect the
linear Axed background prediction to apply. Our results,
however, do not show this. In all cases, whether sub-
critical or supercritical, the amplitude of the tail is an
order of magnitude less than the prediction of linearized
theory (using the initial Bondi mass for M in the above
expression). The reason for this is not yet clear.

The results for QN ringing difFer in an important way
&om those for tails. QN ringing is a late-time oscillation
associated with the "effective potential" governing the
dynamics of perturbation Belds outside a hole. Unlike
the power-law tails, QN ringing depends on the small-
y nature of the spacetime. If a hole (or relativistically
compact object) does not form, the generation of QN
oscillations is not expected. This is verified by the results;
we have found no QN ringing for solutions without black
holes. The transition from solutions with QN ringing to
solutions without is, however, qualitatively different for
Gaussian and static-static data.

For Gaussian data, this transition is abrupt; QN ring-
ing is clearly present in a marginally collapsing space-
time, and clearly absent in a marginally noncollapsing
spacetime. This is strikingly illustrated in Fig. 8, show-

ing the solutions evolved from Gaussian data with ampli-
tudes 0.033 and 0.034. We plot P as a function of Bondi
time at constant radius. Initially the two solutions are
close, as one would expect from the closeness of their ini-

tial data. Later, the collapsing solution is delayed with
respect to the noncollapsing one, and shows QN ringing.
But after QN ringing has died away, and the power-law
tail dominates both solutions, they are again close. This

10
lxlO 4

8 x 10 5-

6x 10 3-

10
4x 10 5-

10
I

100 1000 2xlO 5-

FIG. 7. Log-lag plots of P(r = 10, tn) for Gaussian data
with di8erent amplitudes. Each plot starts after the last
change of sign of P. The amplitudes of the initial Gaus-
sian are (a) 0.06, (b) 0.034 (marginally collapsing), (c) 0.033
(marginally noncollapsing), and (d) 0.01. The power-law na-
ture of all curves is clearly visible; the exponents are (a)
—2.74, (b) —2.63, (c) —2.63, and (d) —2.68, compared to a
linearized theory prediction of —3. Only the two collapsing
cases show QN ringing.

Ox 100
0.0

I

5.0 10.0 15.0

FIG. 8. A closeup an p(r = 10, tn) in the region of QN
ringing for initial Gaussian data. Solid line: Amplitude 0.034,
which collapses marginally, showing QN ringing (the small
feature around t 5). Dotted line: Amplitude 0.033, which
marginally does not collapse. Note the complete absence of
QN ringing.
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result is compatible with the linearized analysis given in
paper I. Power-law tails are the result of backscatter, at
large r, of the initial outgoing burst of waves. The two
near-critical curves in Fig. 8 have almost identical out-
going bursts (since they correspond to very nearly the
same initial data), and so, at late times, the tails should
be the same. The QN ringing, on the other hand, de-
pends on how the solution develops at small r and hence
is expected to be very different for the subcritical and
supercritical cases.

For static-static data, the QN ringing fades away grad-
ually before the critical amplitude is reached from above.
In consequence, P(r = 10, t~) is nearly the same function
everywhere for marginally collapsing and noncollapsing
data; see Figs. 9 and 10. It may be that the QN ringing
is masked, in the marginally collapsing case, by the non-

QN fields, but the explanation at present is not clear.
It is difficult to measure the QN frequencies for the

spherical scalar field, as only one minimum and one maxi-
mum is visible. For an initial Gaussian of amplitude 0.06,
for example, one measures a half-period of about 4.0. In
this case the initial Bondi mass is 0.1699 and the final
Bondi mass still 0.1696, so that the mass is practically
constant. The half-period predicted for spherical scalar
perturbations [10] is 28.44M, and so on the basis of lin-
ear perturbation theory we would expect a half-period
between 4.832 and 4.824, which agrees with what is seen
in the numerical results within the rather unsatisfactory
precision available.

V. PERTURBATIONS OF SPHERICAL
COLLAPSE

To understand better the results of the nonlinear evo-
lution of the spherically symmetric scalar field, we have
investigated a closely related problem. We consider a
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FIG. 10. Log-log plots of P(r = 10, t~) for static-static data
with different initial amplitudes $0. Each plot starts after the
last change of sign of &P. The amplitudes are (a) 0.5, (b) 0.29
(marginally collapsing), (c) 0.28 (marginally noncollapsing),
and (d) 0.01. The power-law nature of all curves is clearly
visible; the exponents are (a) —2.08, (b) —1.98, (c) —1.95,
and (d) —1.86, compared to a linearized theory prediction of
—2. The power laws are (a) —2.08, (b) —1.98, (c) —1.95, and

(d) —1.86, compared to a linearized theory prediction of —2.
Only curve a shows clear QN ringing.

second minimally coupled scalar field y, not coupled
to the P field, and we treat this second field perturba-
tively. That is, we ignore the contribution of p to the
stress energy, and hence to the spacetime geometry. We

study, then, the evolution of the perturbative y field on
the backgrounds generated by collapsing P fields. Since
these backgrounds are spherically symmetric, the per-
turbations can be decomposed into spherical harmonics
which decouple. The equations of motion for a perturba-
tion of fixed angular dependence p = p& (u, r)YP (0, P)
are simply

1= —(9 9)(it' 'P ) + I(f + I)&&P (12)
2r t

10

10"

-10 d.
,
/'C

-10
5 17.5 27.5 37.5 47.5 57.5

FIG. 9. A closeup of P(r = 10, t'ai) in the region of QN
ringing, for static-static data: (a) Amplitude 0.50, which
collapses, and here shows QN ringing. (b) Amplitude 0.35,
showing only faint QN ringing. (c) Amplitude 0.29, which
marginally collapses. (d) Amplitude 0.28 which marginally
does not collapse. There is no qualitative difference between
(c) and (d), in contrast to the case of Gaussian data depicted
in Fig. 8.

where g and g are still determined by the background
solutions for P, through (5) and (6). The last term in

(12) turns out to drive instabilities near r = 0 for I g 0.
The simple expedient of reducing the step size Au to a
value much smaller (we used I/16) than that of condition

(9) was found to remove the instability. (We are grateful
to Jeffrey Winicour for suggesting this remedy. )

It should be understood that the equations governing y
are not quite the same as those that would describe per-
turbations of the P field itself. The stress-energy tensor
is quadratic in P, so that a perturbation bP in P would

give rise to a perturbation in the stress-energy tensor
that is first order in 8P, and proportional to the "back-
ground" value of P. It follows that there would be a first
order perturbation in the spacetime geometry. The equa-
tions governing 6P would therefore not be the equations
for a minimally coupled field on the background space-
time given by the background P solution. (The situa-
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tion is similar to that for electromagnetic perturbations
of the Reissner-Nordstrom spacetime. Since there is a
background electromagnetic Beld, the equations for elec-
tromagnetic perturbations are not simply the Maxwell
equations on the Reissner-Nordstrom spacetime. ) De-
spite this, one should expect that there is not a great
deal of difference in the late-time behavior of y and of
bP. Since the background P field becomes very small at
late times, the stress-energy perturbations should be very
small.

The motivation for studying the p field is that the
scalar collapse models go beyond the models of paper I
in two distinct ways. First, the scalar collapses involve
nonlinear Beld evolution, and second, they produce time-
dependent spacetime geometries on which the tails and
the QN oscillations are developing. The introduction of
a perturbation field allows us to separate these two com-
plications. The dynamics of p is purely linear, but takes
place on the time-dependent background spacetime. A
study of the p field has an additional attraction: For Bxed
backgrounds the exponents of the power-law tails depend
on the multipole index 1. For generic data the tails fall
off' as t ~ + ~; for initially static multipoles they fall off'

as t ~ + ~. By computing difFerent multipoles of y we
can check whether this l dependence applies also to time-
dependent backgrounds. A further technical advantage
is that multipole modes of higher I have QN frequen-
cies which are considerably less damped than the least
damped l = 0 mode. This allows us much more read-
ily to "observe" the presence of QN oscillations and to
measure their frequencies.

As an example we turn again to the solution with
Gaussian data of amplitude 0.06, an example we con-
sidered in the previous section. For the y test Beld we
choose a Gaussian of width 0.1, the same width as for
the background P field, but we put the center of the p
Gaussian at 2.0 while the center of the P Gaussian, which
generates the background, is at 1.0. This means that the
perturbation "shell" goes in later than the background
shell, giving the black hole time to form. For the l = 0

p field we again (as in Sec. IV) find a half-period of
about 4.0, and again find it difficult to determine the pe-
riod with any accuracy, so that a meaningful comparison
cannot be made with the fixed background prediction of
4.824 (calculated from a final Bondi mass of 0.1696). For
the l = 1 p Beld, however, we could see 10 oscillations,
and could measure a half-period of 1.811, which is within
0.7% of the predicted value of 1.819. For I = 2 there are
20 oscillations, with the measured half-period of 1.105,
within 0.2% of the predicted value of 1.104. QN ringing
for these cases is shown in Fig. 11.

We also examined I = 2 QN ringing on a background
with considerable mass loss during the time of QN ex-
citation. To arrange this a Gaussian "shell" of P and
a Gaussian "sheIl" of test field p were both centered at
r = 1.0. The P field was chosen to have amplitude 0.033.
This gives an initial Bondi mass of 0.05822 which de-
creases to a final Bondi mass of 0.02035, with most of
the mass loss taking place during 2 ( t~ ( 4. For these
masses, linearized theory predicts that the frequency of
the least damped l = 2 mode should go up from 8.31 to

0.0005

0.0000

-0.0005
8.1

I

13.1 18.1

FIG. 11. Test fields pP(r = 10, tn) on a Gaussian back-
ground, amplitude 0.06. The three graphs are l = 0, l = 1,
I = 2 (in order of increasing frequency).

23.87. This is in excellent agreement with our numerical
results, within the inevitable uncertainty in measuring a
varying frequency.

For power-law tails the most interesting backgrounds
are those that are the most time dependent, the noncol-
lapsing backgrounds. For these backgrounds results are
shown in Fig. 12 for tails from Gaussian data with an
amplitude of 0.020 and in Fig. 13 for tails from static-
static data with an amplitude of 0.10. As these figures
show, the late-time behavior is rather accurately that of
a power-law tail; the numerically determined exponents
are in rough agreement with the predictions of linearized
theory, and show the predicted increase of slope with
multipole index l.

10

10

& 10"

10

10 so I

10 100

FIG. 12. Log-log plots of test fields yP(r = 10, tn) for
di8'erent multipole indices l on one background spacetime.
The background is evolved from Gaussian initial data for P
with amplitude 0.02 (noncoilapsing). The initial data for the
test field are in each case a Gaussian (the test field ampli-
tude 1.0 has no significance). From top to bottom the curves
correspond to l = 0, 1, 2, 3. The best fits for the power-law
exponents are —2.77, —3.95, —5.94, and —8.34, compared to
predictions of —3, —5, —7, and —9.
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FIG. 13. Log-log plots of test fields rpr (r = 10, tn) for
difFerent multipole indices l on one background spacetime.
The background is evolved from static-static data for P with
amplitude 0.1 (noncollapsing). The initial data for the test
field are in each case a Gaussian (the test field amplitude 1.0
has no significance). From top to bottom I = 0 then I = 1,
l = 2, and II = 3. The best fit for the power-laws exponents
are —2.70, —3.66, —5.52, and —7.26, compared to predictions
of —3, —5, —7, and —9.

should form in general not only in perturbations of black
holes. The analysis suggested that the tails should form
for massless perturbations of any approximately spheri-
cally symmetric spacetime whose metric is approximately
Schwarzschild, at least on an outgoing null cone of finite
thickness (i.e. , finite range of advanced time).

The central idea, as elaborated in paper I, is quite sim-

ple. Radiation going out along a thick null cone (the
"initial burst" of radiation) will be scattered back in by
the spacetime curvature at arbitrarily large radius. The
backscattered radiation then reaches a small radius again
at arbitrarily large time, attenuated by a power of Bondi
time. This backscattered radiation then evolves tails.
The leading eKect in this evolution is independent of
spacetime curvature. The exponent of the tails is there-
fore the same if at late times there is, at small r, a star,
empty space, or a black hole.

In our numerical work described here we first set out to
verify the existence of the tails, as well as of QN ringing,
in a collapse situation. We chose the model of a spheri-

-30
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VI. DISCUSSION

In paper I we revisited the argument [3] for the exis-
tence of power-law tails of perturbations of Schwarzschild
spacetime, in order to point out that it predicts these
tails not only at timelike infinity, but also at null in-

finity and on the horizon. Reformulating the argument
yielded an important spin-off prediction: Power-law tails
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FIG. 14. Log-log plots of the initial Bondi mass and the
amplitude of the t power-law tail r/r(r = 10, tn), both ver-

sus the amplitude of initial data. The upper graph of each
pair (full dots) represents Gaussian data, the other (empty
dots) static-static data The region of dense data points marks
the collapse-noncollapse transition on each graph. Both the
initial Bundi mass and the amplitude uf the tail scale rather
precisely as powers of the initial data amplitude for noncol-
lapsing data. The powers are, for the mass, 1.99 (Gaussian)
and 1.97 (static-static) and, for the tail, 3.22 (Gaussian) and
3.01 (static-static).

FIG. 15. Mass of black hole formed versus difference be-

tween the amplitude of the initial data and the critical am-

plitude. On the vertical axis, ln(mass). On the horizontal
axis ln[(p —p„)/p, ], where p is Po or A and p, its critical
value. Empty squares denote static-static data; solid squares
denote Gaussian data. The fact that the static-static data
points are further to the left means that they were measured
closer to criticality. This was necessary because the universal

power-law behavior of the mass develops only closer to criti-

cality for static-static than for Gaussian data. The deviation
from this behavior is clear in the plot for the empty squares for

(Po —rtro«)/Po ) e . For smaller values the empty squares

fall approximately on a straight line. The sets were shifted
vertically (but not horizontally as was done in B.ef. [11])with

respect to each other in order to place them on one line. This
corresponds to an overall constant multiplicative factor in the
black hule mass which is not universal but depends upon the
family of initial data (Gaussian or static-static). We assumed

A = 0.032 80 and Po, = 0.2860. Formally, the best fit to
the slope (power-law) for Gaussian data alone is 0.39, for

static-static data alone 0.31, and combining buth sets 0.35.
A full analysis uf the uncertainties in these slopes has nut

been carried out, but we assume that within numerical accu-

racy the slopes agree with each other and with the slope 0.37
found by Choptuik [11].
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cally symmetric self-gravitating massless minimally cou-
pled scalar field, because tails and QN oscillations seemed
to be absent in the results of a previous investigation
[1]. The explanation of that absence seems to be simply
that one has to go to very late times to see the late-time
features. We did find tails and QN ringing precisely as
expected. Fortunately these features arise about an or-
der of magnitude in time before our code is stopped by
a diverging redshift.

Extending the scope of previous work, we paid atten-
tion to the late-time behavior of solutions which are sub-
critical, just below or well below the margin of black hole
formation, and we again found power-law tails, but not
QN ringing. For what can be considered "generic" data
(see paper I), we found that QN ringing disappeared
abruptly at the margin of collapse, while the appear-
ance of power-law tails was continuous and unremark-
able across the transition from subcritical to supercriti-
cal models. This last observation in itself is a very strong
corroboration of the simple picture of tail formation set
out above. Further evidence can be found in the depen-
dence of the tail amplitude on the amplitude of the initial
data, as shown in Fig. 14. The Bondi mass of the space-
time scales as the square of the amplitude of the initial
data and we find that the tail amplitude scales as the
cube. This suggests that the tails are scattered ofI' the
spacetime curvature only once, picking up a single factor
of mass.

In a second extension we considered nonspherically
symmetric test fields on the dynamical backgrounds gen-
erated by collapsing scalar fields. We found that the ex-
ponent of the tails varies with multipole index roughly as
for fixed backgrounds. Furthermore we used the fact that
QN ringing is less damped in the higher modes to make
precise measurements of QN frequencies. For models in

which the mass of the background was reasonably con-
stant we found excellent agreement with the predictions
on a fixed Schwarzschild background. For models with
significant mass loss we found a shift in QN frequency
corresponding to the changing mass of the spacetime.

In summary, we found that the predictions for power-
law tails of perturbations of Schwarzschild spacetime [3]
hold to reasonable approximation, even quantitatively,
in a variety of situations to which the predictions might
seem initially not to apply.

In the interest of brevity and timeliness, the results
reported here do not exhaust the interesting questions
that might be asked. It will be particularly interesting to
explore in more detail the behavior of power-law tails and
QN ringing on the critical boundary between collapsing
and noncollapsing initial data. It should be said here
that our code is probably capable only of much coarser
accuracy than that of Choptuik [11],and will have to be
modified for this purpose. On the other hand, our code
was adequate for verifying, for our two families of initial
data, one of Choptuik's crucial results: that for marginal
black hole formation the mass of the hole depends in a
universal way on the parameter of the family (in our case
the amplitude). See Fig. 15.
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