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Late-time behavior of stellar collapse and explosions. I. Linearized perturbations
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We study the power-law tails in the evolution of massless fields around a fixed background
geometry corresponding to a black hole. We give analytical arguments for their existence at seri+,
at the future horizon, and at future timelike infinity. We confirm their existence with numerical
integrations of the curved spacetime wave equation on the background of a Schwarzschild and a
Reissner-Nordstrom black hole. These results are relevant to studies of mass inBation and the
instability of Cauchy horizons. The analytic arguments also suggest the behavior of the full nonlinear
dynamics, which we study numerically in a companion paper.

PACS number(s): 04.30.Db, 04.25.Dm, 04.40.Dg

I. INTRODUCTION

In the study of nonspherical gravitational collapse, the
late stages of black hole formation, and nonspherical
stellar dynamics, certain simplifications have been tra-
ditional. Typically, linearized perturbation theory has
been used on a fixed background, and the results have

been taken to be representative of nonperturbative col-
lapse.

One of the most basic results [1—3] about the evolution
of fields on a curved background is that "sandwich waves"

are not usually possible. At late times waves do not cut
oK sharply but die ofF in "tails."

In the context of perturbations of spherical objects,
like stars or black holes, arguments have been given [4]
leading to the conclusion that the tails have a specific
power-law form. The intention of this paper is to analyze
in detail in which regions of the spacetime this form for
the tails holds and under what conditions they develop.

In Sec. II we start by giving an analytical outline of the
development of tails in spherically symmetric Bxed back-
grounds. We present a somewhat more general and more
pedagogical derivation of the results of the Appendix of
Ref. [4]. Moreover, we give two new results.

(1) We show that for perturbations around a black
hole, power-law tails develop not only at timelike infinity
as was proven in [4] but also at seri+ and at the black hole
horizon. This result is of relevance since the development
of tails in these regions is crucial for the physics of mass
inflation [5] and the stability of Cauchy horizons. At
least twice [6,7] in the literature it has been stated that
the power-law tails are "nonradiative, " suggesting that
the tails made no appearance at seri+ or at the horizon.

(2) Generalizing the arguments for the Schwarzschild
background, we show that power-law tails develop even
when no horizon is present in the background. This
would mean, among other things, that power-law tails
should be present in perturbations of stars, or after the
implosion and subsequent explosion of a massless Beld
which does not result in black hole formation.

In Secs. III and IV we confirm the first of these results
for the Schwarzschild background by performing numer-
ical integrations of the perturbation equations for dif-

ferent initial shapes and diferent multipole moments of
the Beld. We also confirm that the results extend to the
case of Reissner-Nordstrom black holes; this is the first
clear evidence that power-law tails actually develop for
the background of direct relevance to mass inHation and
stability of Cauchy horizons. Section III contains a brief
discussion of our numerical method; Sec. IV contains our
numerical results.

In Sec. V we make some Bnal remarks, especially about
possible implications, both for the behavior of test Belds
evolving on a time-dependent stellar collapse or explo-
sion background, and for the behavior of a (spherically
symmetric) self-gravitating massless field in a collapse or
explosion situation. We develop this subject in a subse-
quent paper.

Tails have also been found important in the detailed
calculation of gravitational waveforms from the inspiral
collapse of binary systems. The tail back reaction ap-
pears as a correction to the 3/2 post-Newtonian equa-
tions of motions [8].

II. SCHWARZSCHII D BACKGROUND AND
BEYOND

In this section we examine the evolution of massless
perturbation Belds outside a star collapsing to form a
black hole. (Compare Fig. 1.) We make the idealization
that the mass loss in the transition &om star to black
hole can be neglected. (If there are massless perturbation
fields outside the star at all, they will carry some energy
away to null infinity, but we neglect this compared to
the mass of the star. ) If the star is spherically symmetric
(again neglecting the perturbation fields, which need not
be spherically symmetric), spacetime outside the star is
Schwarzschild spacetime. We are therefore dealing with
the (massless) wave equation on a region of Schwarzschild
spacetime given by

r)&r)
+r (dO +sin Hdg ),
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where we have used c = G = 1 units. We introduce
a "tortoise" radial coordinate r, :—r + 2M ln(r —2M),
advanced time v = t + r, , and retarded time u = t —r, ,

in terms of which the line element becomes

ds = —
~

1 — dude + r (do + sin Odg ) . (2)
2M 2 2 ~ 2 2

scalar, electromagnetic, and gravitational perturbations
are all governed by an equation with the form of (3).
Only the details of R(r) differ from one type of field to
another.

The general solution to (3) can be written as a series
depending on two arbitrary functions F and G:

We let the star begin its collapse at retarded time u = uo.
The characteristic u = uo will be one boundary for our
problem.

After the surface has started collapsing, it rapidly ap-
proaches the speed of light. The word line of the stel-
lar surface is therefore asymptotic to an ingoing null
geodesic v = vo. It is convenient to consider this v = vo
null geodesic, rather than the stellar surface, as the left
boundary of the problem and the data on this line for
u ) uo to complete the specification of the problem. The
variation of P on the stellar surface is asymptotically in-
finitely redshifted. (See [4] for details. ) This means that
P,„will be small (more precisely, exponentially small) at
late times and we make the specific assumption that, af-
ter some retarded time u = ui, variations in P on u = np
can be ignored. This black hole formation scenario is
illustrated in Fig. 1.

Since the background is spherically symmetric, each
multipole of a perturbation field evolves separately. For
a scalar field $(t, r, 8, y), for example, we can write

(u, r)YP (8, rp)/r and for each multipole
moment we have

—4ili „„=V&(r)iI),

() zM) (&I&+a) ~ R( ))

where R(r) falls off' as r for large r, and where we
have suppressed the indices l, m on 4. The evolutions of

FIG. 1. Spacetime of a collapsing spherically symmetric
star. Outside the star the metric is Schwarzschild. Coordi-
nates t, r, u, and v are indicated.

iI =- ) A~(r " G(' " (u) + ( —1)"F ' ~ (u)
p=o

+) 4'(r) G" ' "(u)+(-1)"F"" '(u)
p=O

(4)

where the superindices on F and G indicate the num-
ber of times the function is differentiated; negative su-
perindices are to be interpreted as integrals. The coefFi-
cients A& are dimensionless fixed numbers which have the
same values as in flat spacetime. The coeKcient functions
Bi (r), however, vanish for M i 0 and have the form

B,"( ) = a", + [1+0(M/ )],
where the coefficients a~( are proportional to M. (See [4]
for additional details. )

The most interesting characteristic data on u = uo
correspond to two different cases: (a) an initially static
perturbation field for u & up and (b) a vanishing per-
turbation field for u & uo. The first case corresponds to
the collapse of an initially static star with initially static
perturbations. The second case corresponds to the col-
lapse of an initially static star in which the collapse itself
generates the perturbations.

One may also consider a more general (nonstatic) ini-
tial perturbation on u = uo, but its generic eKects can be
modeled by the data on v = vo, after reflection through
the center. We shaH see, on the other hand, that there
is a qualitative difference in the tails if there is a static
perturbation present initially.

We break the problem of evolution of the fields into two
steps. In the first step we find P on u = ui. This step
requires the data on u = up, but only the early (small u)
data on the left boundary. In this step, then, the type
of the left boundary (whether stellar center, surface of
completely collapsing star, etc. ) is unimportant. From
the data on u = ui we find P at late times, and at seri+,
in a second step. To leading order in M, the evolution
depends on the spacetime curvature in the erst step, but
not in the second step. The validity of this approximation
is ultimately justified by numerical experiment.

We begin with the first step, the scattering in the re-
gion up & u & ui. We have taken the variation in P
on v = vo to be negligible after ui. This means that,
aside from backscattering, there is no outgoing radiation
for u ) ui. In (4) the first series represents the non-
backscattered waves, and so our assumptions about no
late outgoing waves are equivalent to taking G(ui) = 0.
For large r at u = ui the dominant term in (4) is then

@(u = u„r) = a,'r ' 2G( ')(u, ) [1+O(M/r)], (6)
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where G( )(ui) = J'"' G(u)du. The characteristic data,
then, is proportional to the integrated initial burst, as
well as to M. In the case of an initial static field, with
the form

(7)

the prediction is more definitive. In this case, at u = ui,
we have

O' = Mp[(2t+ 1)/(I+ 1)]r (+ ) [1+0(M/r)] . (8)

(See again [4] for details. )
With this specification of characteristic data on u = uq

we can go on to consider the subsequent evolution of
6elds. We will show that the late-time behavior of the
fields at constant r and the late-time behavior at seri+ are
independent of the details of the background at small r.
The evolution is now the same in the spacetime geometry
exterior to a star, a black hole, or to, e.g. , an imploding-
exploding shell of scalar 6eld.

We con6ne our attention to the region u ) uq, r, )&
M. The leading order efFect on the propagation of 4 is
now that of the "centrifugal term" l(t + 1)/r in Vl. In
this sense we now approximate spacetime as Bat. The
solution for 4' is then that of (4) with M = 0:

@(u, ) = ):A' .' g" '(u) + (-1)"f" "'(v) (S)
p=p

(To the approximation we are using here, for r, )) M, we
have also r = r, .) By matching this form to the initial
data on u = ug we find that

We know that at late times f(v) has the power-law form
given in (10); we make the ansatz that g(u) also falls
off as a power law, so that we may write h(t) = IIp/t
where Hp is a constant.

We note that as t m oo the term h(t)r, ' will domi-
nate if X & P + 2l + 1 and the term 2f(2'+1)(t)r',+1 will
dominate if N ) P + 2l + l. In either case only one of
the constants Hp or I"p has an in8uence on the solution,
and in fact the constant is simply an overall scaling of the
solution. If either N & P+2I,+1 or X & P+2L+1, there-
fore, the form of the solution (aside from overall scaling)
is fixed for r, » M, its continuation to smaller values
of r, is 6xed, and we cannot satisfy boundary conditions
for small r (e.g. , regularity at r = 0 for a stellar model
or, as r„m —oo, at the horizon of a black hole). In or-
der to satisfy a small-r boundary condition we must have
% = P + 21+ l and hence

f(t) Fot, g(t) (—1) '+ )F t

For M && r, && t the form of the fields is particularly
simple. In that case we have

~2l+l2f (2l+1) (t) l+1
l

21' 2l+l F (P + 2!)lt
—(P+2l+1) rl+1

and @ therefore falls off as 1/t l+2 (initial static field) or
1/t2'+2 {no initial static field) at timelike infinity i+. It
follows from (15) and (S) that at seri+ (i.e., at v 1 oo)
we have

where

f(v) = Fp/v {io) @(v m oo, u) = A, g(')(u) = A, Fp(t+—P —1)!u

Fp ——(—1)'2MG( )(ui), P = 2,

if there is no initial static 6eld, and

Fp ——(—2)'2M@ [t!/(2l)!], P = 1, (12)

if there is an initial static field, with the form of (7).
(These expressions involve a sum over the AP(, which are
given in [4].)

We next take t )) r, and we expand g(") (u) = g(")(t)—
g("+1)(t)r, +, and similarly for f(v) By reorde. ring
terms we arrive at

At null infinity seri+ the fields therefore fall ofF as u
(static initial field) or as u ' 2 (no static initial field).

We keep in mind that the above analysis did not de-
pend on the small-r details of the problem, and we go
on to consider the specific case of a black hole. (It does
not matter if it is eternal or formed in collapse, only
that there is an internal "infinity, " i.e., an event hori-
zon. ) As r, ~ —oo the curvature potential Vl in (3) is
negligibly small and the solution to (3) can be written as
ill = a(u) + p(v). The nature of the characteristic data
at v = vp requires that n(u) be a constant (aside from
exponentially small variation) and with no loss of gener-
ality we choose it to be zero For ~r,

~
&&. t we can then

expand the solution, for large u and r, « —M as

The coeKcients K& are constructed from the A& and van-
ish for t —n even, —/ & n & /. We define h = f +(—1) g,
and we note that for t » r* 4 has the form

@ = &(v) = &(t) + & (t)" + —& (t)"*+ (iS)

~—lh(t) —l + ~ I+2 hlI(t)
——l+2 +

+If 2l+1 2f (2l+1) (t) h(2l+1) (t) l+1 + (14)

To join this solution, at r « —M to our previous so-
lution in (17) for r, &) M, we make one further assump-
tion. We assume that when t )) ]r, [, then, for the whole
range of r, (from r, « —M to r, )& M), the solution
has the form @ —its»t~t(r)/tP+2'+1, where 4's„,t~t(r) is
a t-independent solution of (3). This is clearly the case
in the region t » r, » M. With this assumption we can
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4(u m oo, v) = p(v) = I'ov (20)

The constant I'0 is determined by the condition that
there is a static solution 4g»&~q such that

lim 0'fi„,g~g(r) = I'o,

match the solution in (19) at r„« —M and that in (17)
for r, )) M, and conclude that p(t) = I'ot + 2' ~, and
therefore that the late-time behavior at the horizon is

lution satisfying the appropriate small-r condition (e.g. ,
regularity at r = 0). The result in (22) remains un-

changed.
The analysis of perturbations on a Reissner-Nordstrom

(RN) background, of mass M and charge Q, is very simi-
lar to that given above for the Schwarzschild background.
For scalar perturbations or for all radiative degrees of
freedom of the mixed electromagnetic-gravitational per-
turbations, the field equations can be put in the form of
(3), but with a potential of the form

hm 4finsca~(r ) = 2K(— Fo(P + 2l)!r'+'. (22) Vj(r) = (r —r+) (r —r ) l(l + 1) + R(r) (23)

The coeKcient I'0, and therefore the behavior at the hori-
zon, like all other aspects of the late-time behavior, is
fixed by the initial backscattering.

In the above analysis, we have seen that the backscat-
tering of the initially outgoing waves, and the subse-
quent evolution in time, produces the power-law tails at
seri+ and at future null inanity i+. The small-r nature
of the background does not enter (except, of course, in
the discussion of the tails at the horizon). This means
that the same power-law tails should develop at seri+
and at i+ in models other than black hole models. We
might consider as backgrounds: incompletely collapsing
stars, static stars, imploding and exploding shells, and so
forth. These different models would have different small-
r boundary conditions. All that is important to tail for-
mation is that the source of the perturbations be sharply
cut off as happens, due to the in6nite redshift, in the
black hole collapse case. We might consider, as an exam-
ple, a quadrupole deformation of a nonrotating neutron
star. A dynamical process might change the quadrupole
perturbation from one static value to another (nonzero)
static value. In this case, clearly, there cannot be a
power-law falloff of the perturbation in time; the pertur-
bation does not fall off at late times. On the other hand
there might be a phase change in which the stellar crust
loses the ability to support shear stresses responsible for
the quadrupole moment, and the star might quickly be-
come spherical. In this case, our analysis predicts that at
late times the exterior quadrupole perturbation will fall
off as 1/t .

The only specific detail of our analysis that must be
modified for nonhole models is the nature of the small-
r solution. In particular, the horizon condition in (19),
(20), and (21) must be replaced by the appropriate small-
r condition, and the static solution @fi g g(r) is no longer
the solution well behaved at r m 2M, but rather the so-

where r+, r are the radii of the outer and inner horizons,

ry = 2M[1 + Ql —(Q/M)'], (24)

and where R(r) falls off as r s. The tortoise coordinate
r, for the RN background is the solution of

dr*
dr (r —r, )(r —r )

(25)

III. NUMERICAL METHOD

It is straightforward to integrate Eq. (3) on a uv
null grid. The two-dimensional wave equation —44' „
Vj(r) 4' is most simply discretized as

for r+ (r (oo.
A review of the analysis of late-time behavior for the

Schwarzschild background confirms that almost all of the
arguments depend on the general form of Vj(r) at large r
and the exponentially sharp fallofF of Vj (r) at the horizon.
In these features there seems to be no difference between
the Schwarzschild and the RN problems. The difference
in the relationship of r and r, in the two cases must be
carefully considered, however; it is this relationship [not
the details of R(r)j that determines the initial backscat-
tering and therefore the behavior of the late-time tails.
It turns out that there is no difference (for the tails) be-
tween the Schwarzschild and the RN cases. When the
expression in (4) is substituted in (3) (with the RN form
of u, v, and Vj) the result in (5) again emerges, and it
is this result that determines the initial backscattering.
The differences between the RN and Schwarzschild cases
enter into the determination of B~&(r) only to higher order
lIl r

4 ) 8
(26)

Here the points N, S, E, and W form a null rectangle with relative positions indicated by the points of the compass,
and 6 is an overall grid scale factor, so that

+u = uN uE —uw us —O(~)~ AV: V~ —V~ = V~ —VS = O(6). (27)
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Starting &om null data on u = uo and v = vo, inte-
gration proceeds to the northeast (increasing v) on one
u =const line after another.

The error estimate for 4~ follows directly if one as-
sumes that the exact solution iII(u, v) has a Taylor ex-
pansion in the given null rectangle. On a grid of 6xed
total size in u and v there are O(h z) grid points, so
that the total error on the far end of the grid from the
null data should scale as h, when the grid size is scaled by
h. We have done numerical tests which have con6rmed
this O(h ) convergence.

The only diKculty in developing a code for this prob-
lem was the calculation of r from r, = (v —u)/2. We
have done it by iteration of the de6ning equation, in the
form r = r, —ln(r —1) for large r, and in the form
ri ——exp(r, —1 —ri) for r close to 1, that is, close to
the horizon, where rq = r —1. We have used a grid of
constant Au = Av. Because of the scale invariance of
the problem we have set 2M = 1.

There is a small difference between the null data on
u = uo and v = vo which we posed in the previous,
analytical, section and our numerical work. For the nu-

merical work, we posed constant data on v = vo, and
either generic (here Gaussian) or static data on u = uo.
The justification for this is the following. As we consider
a linear wave equation, we can examine the evolution of
data on v = vo and of data on u = uo separately. If we
want to consider generic data on v = vo, i.e., data which
are localized, we can reHect them back at the scatter-
ing potential to get generic (although different data) on
some u = uo. So if we are not very interested in the exact
shape of our data, putting them on u = uo is suKcient.

IV. NUMERICAL RESULTS

We now report on the results of our numerical simula-
tions of test fields on a Schwarzschild or RN background.
Without loss of generality we have set 2M = 1. As we
are dealing with a linear wave equation, the overall am-
plitude of our initial data can also be chosen arbitrarily
and is physically irrelevant. As our initial data null sur-
faces we chose v = 0 for u & 0 and u = 0 for v & 0, which
meet at the point t = 0, r, = 0. (The background is of
course t independent. )

In a first series of numerical experiments, we chose
Vi(r) appropriate for a massless minimally coupled scalar
6eld on a Schwarzschild background for different multi-
pole indices l. It is of the form (3), with R(r) = 2M/rs.
As null data we used a Gaussian of width 3 centered at
v = 10 on u = 0. 4 is chosen to be constant on the
null boundary v = 0, with the constant determined by
ill(u = 0, v = 0). This is a simple approximation of the
idea that the field is anchored in a star whose surface is
rapidly redshifting, as explained in Sec. II. We extended
the grid from v = 0 and u = 0 to u = 400 and v = 400,
with a typical value of Au = Av = 0.1.

We examined the value of 4' as a function of t on three
lines, namely, r, = 10, u = 400, and v = 400. We
took these lines as finite approximations of the future
timelike infinity i~, of the future horizon 'R+, and future
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time (t u orv)
1000 10000

FIG. 2. Log-log plots of a spherically symmetric scalar
test field on Schwarzschild spacetime. The initial data were
Gaussian. P(r = 10, t) represents future timelike infinity.

P(u = 400, v) represents the future horizon. P(v = 400, u)
represents future null infinity. The power-law exponents are
—3.08 on i+ and —3.02 the horizon, and —2.11 on seri+.
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FIG. 3. P(r = 10, t) plotted for a scalar test field with an-
gular dependence l = 2 on Schwarzschild spacetime, showing
quasinormal ringing. The initial data are Gaussian.

null in6nity seri+. Log-log plots of these three "tails"
for I, = 0 are shown in Fig. 2. The predicted power-law
behaviors are apparent for the case of an initial static
field. On 'R+ and i+ the Beld falls off as t s; on seri+
the fallofF is as t 2. The bend at the end of the seri+
line is not surprising. It represents null infinity only for
v )) u, which is no longer the case at that end of the line.
The large wiggles at the left are a remnant of quasinormal
ringing.

Quasinormal ringing is shown more clearly in the linear
plot, for l = 1 scalar perturbations, shown in Fig. 3. The
agreement with the theoretically calculated frequency [7]
is good. From the plot we read ofF values of 0.56 and
—0.19 for the real and imaginary parts of the frequency,
for a scalar field with l = 1, for 2M = 1. The predicted
values [7] are 0.58587 and —0.19532 for the least damped
modes.

In Fig. 4 we show the efFect of the multipole index l
on the power law of the tail at i+, again for a scalar field
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FIG. 4. Log-log plots of P(r = 10, t) for scalar test fields
with angular dependence I = 0, 1, 2, showing power-law expo-
nents —3.03, —4.99, and —6.94. Gaussian initial data.

l=2

op

10
10 100 1000 10000

FIG. 5. Electromagnetic test field, with angular depen-
dence l = 1, 2, 3 on Schwarzschild background. Plotted is

the field at r = 10 versus time at infinity, t. Static-static
initial data. The power-law exponents are —3.97, —5.91, and
—7.72.

and Gaussian null data. The agreement of the power
laws with the prediction is striking.

In a second series of numerical experiments we looked
at the potential V~ appropriate for an electromagnetic
field on a Schwarzschild background, which is (3) with

R(r) = 0. We took null data corresponding to the initial
presence of a static I-pole moment. (These are given in
power-series forin in [6], and we numerically evaluated
the first few lowest orders in 1/r. ) The tails at constant
r for t = I and t = 2 are shown in Fig. 5. (There is
no electromagnetic monopole field. ) It was shown in [4]
how electromagnetic and spin-2 fields can be encoded in a
scalar field. The potential Vj depends on the spin as well
as on l, but the terms by which it differs for different spins
are essentially Riemann tensor components and therefore
of order 2M/rs. Terms of this order have been neglected
in our analytic derivation, and the surprising prediction
is therefore that the power law of the tails is independent
of the spin of the test field.

In a third series of experiments we examined a scalar
test field on Reissner-Nordstrom backgrounds. The po-

FIG. 6. Scalar test field on RN background, shown on

"horizon. " Plotted is the field at u = 400 versus v, repre-

senting the horizon. Gaussian initial data with l = 0. Shown

are charge/mass ratios Q /M = 0.1 and 0.9. The power laws

are —3.18 and —3.17.

tential for a scalar field is now of the form (23), with
R(r) = 2Mr s —2Qzr . As explained in Sec. III
one expects the tails to be independent of the charge
of the black hole. Figure 6 shows that this is in fact so,
with the example of the tails at the (outer) horizon of an
t = 0 test field on Reissner-Nordstrom backgrounds with
charge/mass ratios of Q2/Mz = 0.1 and 0.9 respectively.
This figure constitutes also direct evidence for the exis-
tence of power-law tails on the (outer) horizon for generic
perturbations, thus underpinning a central condition for
the mass infIation scenario.

V. CONCLUSIONS

When the dust of an approximately spherical collapse
has settled, and spacetime inside the future light cone of
the collapse has approached Schwarzschild, Minkowski,
or a stellar interior spacetime, any massless fields that
were present in the collapse still show "tails" that linger,
decaying only as a power of time. In particular the lth
multipole moment of a massless test field decays like
t '+ + at fixed radius at large times, with P = 1 if
there is an l-pole moment present before the collapse and
I = 2 otherwise. But power-law tails are also present
on seri+, where they decay like u ~ + ~, and if a black
hole has formed, on the horizon, where they decay like

~ '+ + ~. The amplitude of the tails can be calculated
as a function of the initial multipole moment, and in its
absence, as an integral over the radiation going out tc~

infinity during the collapse.
Neither this amplitude nor the exponent of the power

law depend upon the spin of the massless field in ques-

tion, nor, if the black hole is charged, on its charge. We
have shown the origin of these features in an analysis
which is based on [4]. The spin- and charge-dependent
parts of the effective radial potential of a massless test
field on a Reissner-Nordstrom background are of an order
that can be neglected in this analysis.

We have checked numerically that the tails are in-
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deed present on null infinity and the horizon, and are
independent of the spin of the field and the black hole
charge. The fact that power-law tails are present on the
outer horizon of a Reissner-Nordstrom black hole after a
generic collapse situation is of crucial importance to the
mass inflation scenario. It has, to our knowledge, never
been demonstrated explicitly.

Finally, one decisive step of our analysis was a regu-
larity condition, either on the horizon when a black hole
formed in the collapse, or else at the center of spheri-
cal symmetry. This argument generalizes to any kind of
boundary condition posed at small radius, and strongly
suggests that perturbations of massless fields outside any
spherical background object should also have power-law

tails with the powers given above. In an accompanying
paper we report results for a closely related nonlinear
problem: the implosion of a shell of scalar field.
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