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No new symmetries of the vacuum Einstein equations
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We examine some recently proposed solutions of the linearized vacuum Einstein equations. We show

that such solutions are not symmetries of the Einstein equations, because of a crucial integrability condi-
tion.
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I. INTRODUCTION

There is a conjecture that if a nonlinear system of par-
tial diff'erential equations (PDE's) possesses at least one
nontrivial symmetry, then the system is integrable. A
symmetry is a map from any solution to another solution.
Nontrivial means that it should not be pure gauge. The
converse is also thought to hold true. If a system admits
no nontrivial symmetries, then it is conjectured it will be
nonintegrable. To my knowledge, the evidence in sup-
port of these conjectures is only empirical.

A naive way to picture symmetries is to describe them
as curves q (A, ) in solution space, where A, is an arbitrary
parameter. A way to find q(A, ) is to note that
q:=dq/dA, ~& 0 is a solution of the linearized system of
PDE's. If one can find a nontrivial solution of the linear-
ized PDE's system j for an arbitrary background solution
of the PDE's system, and one can determine its integral
curves, i.e., q(A, ), this yields a nontrivial symmetry. If
one finds more than one symmetry, then one can explore
their group structure and gain considerable insight in the
structure of the system of PDE's. This method has been
useful in many integrable systems, e.g., the Korteweg-de
Vries (KdV) equation. Recently, this type of analysis has
been applied to the vacuum Einstein equations with con-
tradictory outcomes.

Torre and Anderson have argued that the only sym-
metries of the vacuum Einstein equations are trivial [l].
They are either constant rescalings of the metric or what
Torre and Anderson call "generalized diffeomorphisms. "
This result suggests that the Einstein equations are not in-
tegrable.

On the other hand, Gurses has recently produced three
sets of solutions of the linearized vacuum Einstein equa-
tions that he claims are "new symmetries" of the vacuum
Einstein equations [2]. However, Gurses himself points
out that the first one, type (a), is pure gauge, and corre-
sponds to a local tetrad rotation. Hauser and Ernst have
shown that the second solution of the linearized system,
type (b), is an infinitesimal diff'eomorphism, up to a local
tetrad rotation [3]. In this work I show that the third
one, type (c), is not a symmetry because of the existence
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II. VACUUM EINSTEIN EQUATIONS

My conventions are the same as in Penrose and
Rindler [5] (see also [6]). Lower case Latin letters denote
space-time indices. Upper case Latin letters denote
SL(2,C} indices. They are raised and lowered using the
antisymmetric symbol uzi, and its inverse, according to
th relueks"=E Xtt ~~=A, hatt~.

In a first-order formalism, the Einstein vacuum equa-
tions may be written as

Dg~~ ~ =dg~~ +I ~~/, g ~ +I ~ & P, g~, =0B B'

R~~AO ~ =0. (lb)

The space-time metric is given by the (symmetrized)
tensor product of two tetrad one-forms 0"":

AA'
~ab ~a bA A' (2)

The reality and the signature of the Lorentzian metric
may be imposed at the level of the tetrad by requiring
that 8,""=8,""=8,"". For the conditions that give the
other signatures, see [5]. Note that complex conjugation
interchanges primed and unprimed indices.

The connection one-forms I ~ =I"'~ ' and I ~

=I'" ' are, respectively, the anti-self-dual part and the
self-dual part of the spin connection compatible with8"". Note that (la) says that the torsion is zero. Their

of an integrability condition which restricts severely the
background exact solution about which one is linearizing.

This work is organized as follows. In Sec. II, I briefly
recall the formulation of the Einstein equations in the
spinorial version of the first-order tetrad formulation.
The linearized vacuum Einstein equations are given in
Sec. III. In Sec. IV, I describe the form of infinitesimal
variations of the tetrad that are pure gauge, either tetrad
rotations, or constant rescalings, or infinitesimal
difFeomorphisms. In Sec. V, I consider the ansatz that
leads to Gurses type (c} solutions of the linearized vacu-
um Einstein equations, and to its generalization by Ernst
and Hauser [4]. It is shown here the existence of an in-
tegrability condition that implies a restriction on the
background solution, and thus that Gurses type (c) solu-
tions are not symmetries of the full vacuum Einstein
equations.
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curvature two-forms RAB and RA B are defined by

R„=dr„+r,'n, r„,
c'R„,=dr, , +r„, 'r I,,

(3a)

(3b)

They are the anti-self-dual and self-dual parts, respective-
ly, of the Riemannian curvature tensor constructed with

g,b, when (la) is satisfied.
With the torsion-free condition (la) satisfied, (lb) is the

vacuum Einstein equation. It implies that g,b given by
(2) is Ricci fiat. An equivalent way to write (lb) is

IV. TRIVIAL DEFORMATIONS

jA A' X A gBA'+X A'
g AB'

B B' (9a)

In this section I describe the explicit form of deforma-
tions of the tetrad that are (locally) pure gauge. For con-
creteness, I consider solutions of the linearized vacuum
Einstein equations. Note that the linearized Einstein
equations enter only in the form of the deformation of the
connection.

An infinitesimal SL(2,C) rotation is given by

CD~ AB 4ABCD~ (4) I AB =DXAB, (9b)

where QABcD =it~ABcDi is the Weyl spinor, and the two-
form g =g js defined by

6)AA' p gBB' ~A'B'y AB+ ABy A'B'

i.e., X and X" form a basis for the space of anti-self-
dual and self-dual two-forms, respectively. The cyclic Bi-
anchi identities are given by

D ~ R A R ~CA'. +R A' h ~AC' 0

and the differential Bianchi identities by

I A B.=DXA.B (9c)

AA'
(t2 b) A A'

C( ~b) A A'+ 2X c'( b) A A

XAc& OiI gbDA +XA c'& Q bAD 0

where X" =X' ' is an arbitrary symmetric matrix, and
X =X . With the help of the identity
D XAB =2R (AXB)c and its primed version, one can ver-2 C

ify that (9) solve (8).
The space-time metric is left invariant since

DRAB =0,
DRAB =0.

(7a)

(7b)
A constant rescaling of the space-time metric is generated
by

III. LINEARIZED VACUUM EINSTEIN EQUATIONS

Consider now a one-parameter solution of the vacuum
Einstein equations (1):

gAA'
( +—)gAA'

~AB

I AB=0

(10a)

(lob)

(10c)

DjAA'+I AB
P 6I A'+I A'B'

P gA 0

DI AB R, O A. +RAB R, H A
=0 .

(8a)

(8b)

The quantities without overdots are evaluated at X=0 on
an arbitrary solution of the full vacuum Einstein equa-
tions (1). Note that (8b) may be rewritten in the
equivalent way

L) [r„,Wg'„, ]+a„,r 8'„,=0,
since DO =0.

8""(X), 1 "
(A, ), I " (X)

Let 8 " denote the derivative of 8""(A, ) with respect
to A. evaluated at ~=0, and similarly for I " and I
The linearized vacuum Einstein equations are then given
by

with c a constant.
An infinitesimal diffeomorphism may be generated by

jAA' Dg AA'

c CI A ~~CA =RAC~ A

~AC =RA c ~A
c' c'

(1 la)

(1 lb)

(1 lc)

with A an arbitrary matrix. This solution was called
type (b) by Giirses. (This solution was also considered by
Pagels in a different context [7]).

To see that this solution corresponds, up to an SL(2,C)
rotation, to an infinitesimal diffeomorphism, I reproduce
here an argument due to Hauser and Ernst [3]. Consider
the Lie derivative L ~ of the tetrad along a vector field V:

L 8""=i dg"" +d(i 8"" )

(I ACg8 A'+I A'C'P gA )+d( ~ gAA')

(i I AC)g A'+I AC(i g A') (i I A'C')gA +I A'C'() g )+d(i gA ')

CDX AA' y Ac@ A' y A'c'gA c'
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V. GURSES TYPE (C) SOLUTIONS
OF THE LINEARIZED EINSTEIN

VACUUM EQUATIONS

The ansatz proposed by Giirses for his type (c} solu-
tions [2], and further generalized by Ernst and Hauser
[4], is of the form

jAA' h AA'+h AA'

I ACR g
A'

Dh AA'

I A'O'R g Dh
AA'

(12a)

(12b)

(12c}

This ansatz specifies the dependence of the deformation
of the spin connection on the deformation of the tetrad.
It is just one way to solve the first linearized equation
(8a}.

There is a problem with it, however. The definition
for I A is only implicit. There are 12 components
in I " . There are 24 equations in (12b). Thus, there
must be 12 additional conditions, which arise because
I ROc'" AHA '=0. In terms of the right-hand side
of (12b), the conditions are (see Ref. [4] for a diff'erent

way to write these conditions)

where I have set XA" =iv8"A, and Y" =i~I AB. iva
denotes the contracted multiplication, or interior prod-
uct, of a vector field V with an arbitrary differential form
a. In the third equality I have used the identity
iz(a AP)=(i),a)P a—(i&P) H. ence, a deformation of the
type (1 la) is simply the sum of an infinitesimal
diffeomorphism generated by the vector field defined by
A =i&0", and a local tetrad rotation of the form
(9a).

return to these conditions below.
Consider now the second linearized equation (8b'),

which becomes

CD C'D'
4 ABCD h A 'B'+ 4 A'B'C'D'h AB (17)

The second linearized equation (8b') has been put in the
form of an algebraic equation to be solved for h, h with
respect to the Weyl spinors.

A possible solution of (17) is given by the vanishing,
separately, of the two terms. This implies that the Weyl
spinors and h, h are degenerate as three by three matrices,
but this gives an unwanted restriction on the background.

Another possible solution is given by

h
ABA'B' &qAB—CDg A'B'

CD (18)

ABC'D' ABC'D'
with 8 " =B . This solution was given as an
ansatz by Ernst and Hauser in [4]. Giirses type (c) sym-
metries are of this form, with 8AB

= A A AB, for
some matrix A„

At this point, I return to the difFerential conditions
(16). For a solution of the type (18), they take the form

DyABcDg A'B'
p y —qABcDDg A'B'i) y —p

—D hAA +RA RhcA'+RA RhcA'=0 .

Developing the D yields

RA RhCA —RA RhAC =0 .

Using the expansion (14), wedging with a tetrad 8BB, and
using the vacuum Einstein equations in the form (4), one
arrives at

D[hA(A'p 8 B')] p (13a) (19)

similarly

D [h ( A
~

A'(
P eB) ) () (13b)

Now, the one-forms h "" and h ""
may be expanded

with respect to the tetrad as follows:

together with its complex conjugate. (The diff'erential Bi-
anchi identities have been used in the first equality. )

For an arbitrary background solution, the Weyl spi-
nors are arbitrary. Therefore, the vanishing of (19) im-
plies

h
AA'

h ABA'B'g
BB' 7 (14a) ~( AB R D~CD) A'B' (20)

h
AA'

h
ABA'B'g

BB' ' (14b)

Since the antisymmetric parts give SL(2,C) rotations, or
conformal scalings, as shown in the previous section, I
can assume that

with its complex conjugate.
Consider now the integrability conditions of (20), ob-

taining by taking its covariant exterior derivative. This
gives

h
ABA'B'

h ( AB) A'B'
h AB( A'B')

7 (1Sa) 0( ABC ~D)E
E A'B'

(21)

h
ABA'B'

h ( AB) A'B'
h

AB( A'B')
(15b)

The differential conditions (13) may then be written in the
form

These are 15 algebraic equations on the 9 components of
A'B'

BAB . Therefore, for an arbitrary background solu-
tion, BAB will have to vanish.

Dh ABA'B'
R y 0 (16a)
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