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We expand on the idea that the spacetime signature should be treated as a dynamical degree of free-
dom in quantum field theory. It has been argued that the probability distribution for the signature, in-

duced by massless free fields, is peaked at the Lorentzian value uniquely in D=4 dimensions. This argu-
ment is reviewed, and certain consistency constraints on the generalized signature (i.e., the tangent-space
metric t), t, (x)=diag[e'@"', 1,1,1]) are derived. It is shown that only one dynamical "Wick angle" 8(x)
can be introduced in the generalized signature, and the magnitude of fluctuations away from the
Lorentzian signature 58=m. —0 is estimated to be of order (l~/R }',where l& is the Planck length, and R
is the length scale of the Universe. For massless fields, the case of D=2 dimensions and the case of su-

persymmetry are degenerate, in the sense that no signature is preferred. Mass effects lift this degeneracy,
and we show that a dynamical origin of the Lorentzian signature is also possible for (broken} supersym-

metry theories in D=6 dimensions, in addition to the more general nonsupersymmetric case in D=4 di-

mensions.

PACS number(s}: 04.20.Gz, 04.62.+v

I. INTRODUCTION

A theorem of matrix algebra states that any real sym-
metric matrix M can be written in the form M=SDS,
where S is a real-valued matrix and D is a diagonal ma-
trix with values +1 and 0 along the diagonal. These diag-
onal entries are known as the "signature" of the matrix
M, and are unique up to permutations. The metric of
general relativity is normally taken to be a real symmetric
matrix, and can therefore be written in the form
g„=e„'q,be, where g,b is the diagonal tangent-space
metric. It has been known since the work of Minkowski
that physical spacetime has a Lorentzian signature

g =diag[ —1, 1, 1, 1].
The Einstein field equations G„,= —KT„do not, how-

ever, impose any particular restriction on spacetime sig-
nature; in fact, they do not refer to signature at all.
There is nothing inherent in classical general relativity
which either fixes the spacetime signature to be Lorentzi-
an, or even, given that the signature is initially Lorentzi-
an, forces spacetime in all cases to remain Lorentzian. In
this connection, several authors [1—3] have constructed
solutions to the Einstein equations which evolve from Eu-
clidean to Lorentzian signature. If signature-changing
processes can occur classically, then they can presumably
also occur quantum mechanically (in fact, such specula-
tions are not uncommon in quantum cosmology, see, e.g. ,
[1,4,5]). This then raises the question of why it is, if other
signatures are dynamically accessible, that spacetirne is
found to be everywhere Lorentzian.
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An explanation of the origin of the Lorentzian signa-
ture at the quantum level could take several forms. The
simplest, and in our opinion the least satisfying, is to sim-

ply assume the existence of a constraint such as det(g) (0
in the functional integration measure (this can also be
done in tetrad formulation by imposing a fixed ri, b).
Another possibility is that for some reason (perhaps the
absence of certain anomalies), the Lorentzian signature is
the only consistent choice at the quantum level, as may
be the case in the string theory [6]. Finally, there could
be dynamical reasons why the Lorentzian signature is
preferred over other signatures.

In a recent paper [7] one of us suggested a dynamical
origin for the Lorentzian signature; the idea is to general-
ize the concept of Wick rotation in path-integral quanti-
zation. Rather than viewing Wick rotation as a techni-
cality necessary for convergence of the path integral, the
Wick angle 0 is treated as a dynamical degree of freedom,
which is free to Auctuate. The tangent space metric then
has the form

ri=diag[exp(i 0), I, . . . , 1] .

In Ref. [7] the one-loop (complex-valued) effective poten-
tial V(0), generated by massless fields, was calculated. It
was found that if the number of fermionic degrees of free-
dom exceeds the number of bosonic degrees of freedom,
then Re[ V] has a minimum and Im[ V] is stationary,
uniquely in D =4 dimensions, at 0=+~, corresponding
to Lorentzian signature. In this way a relation was found
between the dimension of spacetime, the signature of
spacetime, and the presence of the factor of i in the path
amplitude exp(iS ).

This paper expands further on the idea of dynamical
signature. The results of Ref. [7], in a fiat background
space, are reviewed in Sec. II, and a quantum evolution
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equation in non-Lorentzian spacetime is proposed. Con-
sistency conditions in curved spacetime are discussed in
Sec. III. On the grounds that (i} the tangent space metric

rl„ is flat, (ii) the number of gravitational degrees of free-
dom is independent of i)„, and (iii) a spin connection
with appropriate properties is obtained in the Dirac ac-
tion, certain strong constraints on the functional depen-
dence of the Wick angle are deduced. These constraints
turn out to be crucial in suppressing what would other-
wise be unacceptably large quantum fluctuations away
from Lorentzian signature. It is also shown that it is only
possible to have a single dynamical Wick angle satisfying
the constraints; a tangent-space metric with multiple an-

gles,

r)=diag[exp(i8i), exp(i8i), . . . , exp(i8D)], (2)

is ruled out. In Sec. IV it is shown that the cosmological
constant at one-loop cannot be subtracted by a counter-
term for all values of 8; in fact, if the Wick angle is
dynamical, the cancellation can only be made in D =4 di-
mensions at 8=km. In Sec. V we extend the results of
Ref. [7] by including mass terms for the fermionic and
bosonic flelds. Again requiring a minimum/stationarity
condition for the one-loop effective potential V(8) we
show that, in addition to the case of D=4 dimensions
found previously, there is also a possible solution for (bro-
ken) supersymmetric theories, at 8=+m and D =6. Sec-
tion VI contains the conclusions.

II. THE DYNAMICAL WICK ANGLE

i),b =diag[e', 1, . . . , 1] . (9)

The Euclidean theory is obtained for 8=0 and the Feyn-
man theory for 8=m, with the correct ie prescription for
propagators automatically supplied as 8~~.

Motivated by Lorentzian to Euclidean signature
change at the classical level, we now consider the possi-
bility that the "signature" of Eq. (9) is free to fluctuate;
i.e., that 8 is a dynamical degree of freedom. ' This re-
quires, of course, some generalization of quantum
mechanics. Consider a fixed Wick angle 8 anywhere in
the range n&—8&m (note that ~8~ )m is ruled out be-
cause the kinetic term in the bosonic field action would
be unbounded from below). Assuming a flat-space
(e„' =5„') background and denoting the fields collectively
by P, the path-integral definition of transition amplitudes
1s

fI
G[pf iffy, , r, ]=f 'dq(y)exp —f di))d 'x~g &

(10)

and we obtain, by the usual arguments, the generalized
Schrodinger equation

Comparing the Feynman and Euclidean path integrals, it
is easy to write down a path integral which interpolates
between them: namely,

Z= f dp(e, p, p, g)exp —f d xv'g X

In the path-integral formulation of quantum field
theory, it is required to evaluate Feynman path integrals
of the form

Z„=f dp, (e,P, f, f)exp i f d —xv' g&,—(3)

where H is the standard (and Hermitian) Hamiltonian.
For any 8%+m the norm of 4 can change. Therefore, to
conserve probability, 4 must be interpreted as supplying
relatiue probabilities, or, equivalently,

a b8'tv=el '9abev ~

(4)

where dp(e, P, P, P) is the integration measure for the
tetrads, and other bosonic (p) and fermionic (1(,g) fields.
The restriction to Lorentzian spacetime is enforced by
working with a fixed signature

(+IQI+)

Equations (11)and (12) together give

B,(Q) =sin —(i[H, Q])
8

(12)

il,b =diag[ —1, 1, . . . , 1],
and in the case of a flat background, one simply sets
g„=g„. However, in order to define propagators and
other correlators, it is necessary to improve the conver-
gence properties of the Feynman amplitude e' . Note
that even a zero-dimensional Gaussian integral

f oo ~ 2
dxx e

does not converge, when evaluated numerically, for n ~ 1.
Convergence can be improved by either adding a small
imaginary mass term (the ie prescription}, or else by ro-
tating the time axis into the complex plane. Rotating
t ~it gives the Euclidean path integral

—cos—((HQ+QH ) —2(Q )(H ) ) . (13)
8
2

&, (H ) = —2 cos—((H (H ))2)—0
2 (14)

(along with Lorentz invariance), and an arbitrary initial
state %';„will eventually relax either to the ground state

Providing Q is Hermitian, this evolution equation
preserves the reality of observables, and satisfies conser-
vation of probability.» the other hand, for 8%+m, conservation of energy
is violated,

ZE= f dp(e, P, g, P)exp —f d xi/g &

where this time

g~b diag[1, 1, . . . , 1] .

(6)

%'e will continue to refer to the (complex) entries of g as the
"signature, " although this is admittedly an abuse of the
mathematical terminology.
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%'o, or else to the lowest-energy eigenstate %z for which
('p;„~%z )WO. There are, of course, very stringent obser-
vational limits on nonconservation of energy; see, e.g. ,
Ref. [8]. The first problem, for a theory in which the
Wick angle is allowed to fluctuate, is to show that the
probability distribution is peaked at Lorentzian signature
0=m. . The next problem is to show that fluctuations
away from Lorentzian signature are so strongly
suppressed that observational bounds on energy conser-
vation are not violated.

To study the first problem we need to compute the
e6'ective potential V,s(0) for the Wick angle, which is
generated after integrating out all other fields. In Ref. [7]
this was computed for massless fields at one-loop level.
The calculation requires some assumptions about the 8
dependence of the integration measure, which is other-
wise just taken proportional to the (real-valued) DeWitt
measure. The following assumptions were made:

(1) For free fields of mass m, the contributions to Z in
Eq. (8) from each (propagating) bosonic degree of free-
dom are equal, and inverse to the contribution from each
fermionic degree of freedom. Thus, e.g. , Z= 1 at any 9
for a supersymmetric combination of free fields.

(2) The integration measure for the scalar fields is given
by the real valued, invariant volume measure (DeWitt
measure) in superspace dp(P) =DP't/~Gt, where G is the
determinant of the scalar field supermetric G(x,y)= v'g 5(x —y).

Under these assumptions, the one-loop contribution to
V ff ( 0) due to a massless scalar field propagating in flat

(g„„=r)„,, ) space is

exp —f d x Vs(0) =det '~
( —&rishi' B,Bb) (15)

and heat-kernel regulation of the determinant gives

1 - ds dDp

2 iyw' s (2~)

Xexp[ —s(e ' p'+e' p')]

D(4~)'" exp[ i (D —2)0/—4],

where A is a high-momentum cutoff which, given the
nonrenormalizability of gravity, is taken to exist at the
Planck scale. For our purposes, the choice of heat-kernel
regularization is essentially unique. g-function and di-
mensional regulation methods contain implicit subtrac-
tions which remove nonlogarithmically (e.g. , quadratical-
ly) divergent terms; these happen to be the terms of in-
terest here. On the other hand, a naive momentum-space
cutoff does not uniformly respect the spacetime sym-
metries at 0=0, +m. . A cutoff such as k 0+@ (A, which
is appropriate for the Euclidean case at 8=0, is clearly
asymmetric at 0=++, and the reverse is true, for exam-
ple, for ~ko

—k
~
&A . The same objection applies to a

lattice cutoff; moreover, a regular lattice, even at 0=0,
does not respect the full O(D) symmetry. We are looking
for a regulator which respects the symmetries at
0=0, +m., and which interpolates smoothly in the range
HE [ —vr, n]. With these requirements, the choice of

heat-kernel regularization seems almost unavoidable. In
connection with the assumptions about the measure, it is
worth noting that these lead, for any spin, to a contribu-
tion which can be regulated at all 0E [ vr—, rr] by the heat
kernel technique.

For n~ massless, propagating, bosonic degrees of free-
dom, and nF massless fermionic degrees of freedom, the
one-loop contribution to V,ir(0) becomes

V(0) =(n~ ns )
— exp[ —i(D —2)0/4] .' D(4~) " (17)

This potential is complex. We therefore look for a value
of 0 in the range [

—ir, ir] for which, simultaneously, (i)
Re( V) is a minimum and (ii) Im( V) is stationary. These
conditions together give us

cos [(D—2 )0/4] =0,
min[Re[V(0)]]=0, HE[ n, n—] .

(18)

Then

Then

ri, b =diag[ —l, e', 1, . . . , 1] . (19)

However, it is easy to see that the kinetic term of a func-
tional integral with such a signature is, for general
0%+m., unbounded from below. On the other hand, one
could instead consider tangent space metrics with two or
more dynamical "Vhck angles, "e.g.,

i el i e2 ieD
i),b =diag[e, e, . . . , e ] (20}

with the [0„] suitably restricted to ensure the bounded-
ness of the action. Finally, it is important to investigate
the expected size of fluctuations away from Lorentzian
signature. The magnitude of such fluctuations, which
violate both Lorentz invariance and energy conservation,
would have to be extremely small to be consistent with
experiment. These issues will be discussed in the next
section.

In searching for a solution of (18), there are five cases to
consider.

(I) nF & nii The.n min Re[ V] & 0~no solution.
(II) nF=nz or D=2. Then V(0) is independent of 0,

and no 0 is preferred.
(III) nz & ns and (D 2)m/—4 & ~/2.

min Re[ V] & 0 ~no solution.
(IV) nz & nz and (D —2)m/4 & m/2.

min Re[ V] & 0~no solution.
(V) nF &ns and (D 2)m/4=mr—/2. In this case, both

conditions are satisfied at 0=+m, which corresponds to
Lorentzian signature. The equality (D 2)rr/4=m. /2—
can, of course, only be achieved for a spacetime dimen-
sionality D =4.

Since case (V), above, is the unique solution of the con-
ditions (18), we have found an interesting connection be-
tween spacetime signature and spacetime dimension:
Lorentzian signature seems to be singled out by the dy-
namics only in D =4 dimensions.

It is natural to look for generalizations. For example,
just as the il of (9) interpolates between Euclidean and
Lorentzian signature, one might consider metrics inter-
polating between a Lorentzian and a "two-time" signa-
ture, i.e. ,
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III. THE WICK ANGLE IN CURVED SPACETIME

3„8=fe0 ~ e'„.
This leads to a consistency condition

(21)

V(8) was computed above for constant 8. Before tack-
ling the question of fluctuations away from 8=m, we
should ask whether there are any restrictions that should
be imposed on the functional dependence of 8(x), apart
from the condition that ~8~ (m. Since 21„„is supposed to
be a generalization of the flat space metric, it is reason-
able to impose the condition that the Riemann tensor
computed from g„=g„„vanishes. To put it another
way, signature should not, by itself, generature curva-
ture. In Cartesian coordinates, with e„'=5„', this means
that 8 depends only on the time coordinate 8=8(t). The
obvious generalization of 8=8(t) to curved spacetime is

ber is abruptly reduced. Let us instead impose (23).
Then e„contains only one degree of freedom, the e„'

(iXO) contain D(D —1) degrees of freedom, and sub-
tracting the dimension of the O(D —1) group we have

=1+D (D —1)— (25)
2 2

which is the usual number of gravitational degrees of
freedom, modulo diffeomorphisms. Thus we can impose
(23) on the grounds that the dynamical Wick angle
should not change the number of independent degrees of
freedom of the gravitational field.

The final argument for the conditions (23) concerns fer-
mionic fields in curved space. For the bosonic fields, the
Lagrangian involves the signature only via the metric,
while for Dirac fields, the signature also enters via the y
matrices, which in the tangent space should satisfy

0= (B„B„—B„B„)8=8„(fe „)—8„(fe„), (22)
(26)

which imposes some extra constraints on e„. In fact, (22)
is satisfied by

The generalized Dirac action in curved space is just the
usual Dirac action

8=8( T(x)), S22 =I 1 x ~g p( i yi'D—„+m )p (27)

(23)
e„=d„T(x) .

It will now be shown that these conditions on e„and 8
are required by two other, quite different arguments, one
of which concerns the number of degrees of freedom of
the gravitational field.

In D dimensions at 9=0,+~, the metric tensor g„ is a
real symmetric matrix, and therefore has D (D + 1)/2 de-
grees of freedom at each spac ctime point, modulo
diffeormorphisms. The metric can also be expressed in
terms of vielbeins g„„=e„'g,be„, and the vielbeins have
D degrees of freedom (again, modulo diffeomorphisms).
Naturally, the number of gravitational degrees of free-
dom should be the same, whether one counts metric or
vielbein components. In fact, if g,b is the Euclidean or
Minkowski metric, one should subtract the dimension of
the local Lorentz group [O(D) or O(D —1, 1)] from the
number of vielbein degrees of freedom, to get the actual
number of gravitational degrees of freedom. Since the
number of group generators is D(D —1)/2, we have, for
the inequivalent vierbein degrees of freedom,

D(D+1) 2 D(D —1)
2 2

(24)

which is the same as the number of metric degrees of
freedom.

However, for the generalized metric, the "local
Lorentz" invariance is only O(D —1). If the e„' are unre-
stricted, then the independent vielbein degrees of freedom
exceed D(D+1)/2 except at 8=0,+n, where the num-

with

yP =ePy

D„d„+ —cr co„~—b ~

tjab L[ya yb)
(28)

PCO b
—8 8b.

where the y' satisfy (26).
Equation (28) defines a spin-connection for covariant

derivatives acting on spinors at arbitrary 8E[ n, n]—
The question is whether those covariant derivatives have
the expected properties. Of course, since even global
frame invariance is broken at 8%0,+~, we cannot
demand that the spin-connection should enforce local
Lorentz invariance for general 8. Certain other proper-
ties of the covariant derivative, however, are reasonable
to require. Let us introduce a sort of "ict"notation

-a-agpv=e pe v ~

eis/2e0 (& 0)p

e„' (a%0),

[yE yz] = —2&'"

where the latin indices of e and yE are raised and lowered
with the Euclidean metric. In this notation, it is clear
that the covariant derivative should have the property

O=D„g p=D„(d'e p)

=(D„F') +epF'(D„f p), (30)

Otherwise we would really be dealing with a fully complex
general relativity, and we should consider complex general
coordinate transformations, resulting in complex coordinates.

which implies

and therefore

(31)
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~ p~
confab

=e e

The covariant derivative for spinor fields in "ict" nota-
tion would then be

AS —A VI@60

V——60,
Ip

(36)

CC 7+D„"' =a„+-, Eb„„.b ~

(33)
where lJ, is the Planck length, and V is the three-volume
of the T=const hypersurface. Therefore

for arbitrary 0. It then turns out that the covariant
derivative D„ in Eq. (28) above, obtained simply by using
generalized Dirac y matrices in the Dirac action, and the
covariant derivative D„"' above, agree only if conditions
(23) are imposed In. that case, it is easy to check that all
derivatives of 0 drop out of cr' co„,b, in which case

ab ab-
COpab 0 F 6)gab (34)

and therefore D„=D„'". A further consequence is that
D„commutes with y", and by Eqs. (26) and (34), and
straightforward partial integration, one can verify that

SD = I d x g(iD„y"+m )Pv'g (35)

leading to the standard equation for g. Similar con-
siderations apply to the Weyl equation.

The conclusion is that there are three separate reasons
for imposing the condition (23): namely, (1) to require
that the metric g„,=g„„ is flat; (2) to ensure that the
number of gravitational degrees of freedom (=ine-
quivalent vielbein degrees of freedom) is independent of
the Wick angle; (3) to obtain a covariant derivative for
spinors with appropriate properties. These conditions,
taken together, also rule out having more than one
dynamical Wick angle in the tangent space metric, as in

Eq. (20). The reason is that requirements (1) and (3),
above, imply that 8„8,~ e„'. But then the number of ine-

quivalent vielbein degrees of freedom would be less than
D (D +1)/2, in violation of the second requirement.

However, Eq. (23) is a very severe restriction of 8(x); it
means that rather than having one degree of freedom per
point, which is characteristic of a field, 0(x)=8(T(x))
has only one degree of freedom per T=const hypersur-
face, where the preferred time direction B„Tis fixed by
the choice of e„. Obviously, a variable which cannot
vary local1y is inimicable to the spirit of Lorentz invari-
ance; but local Lorentz invariance is lost, in any case, for
any 0&0, +n.. The whole argument of this paper is that
Lorentz invariance can arise dynamically; it does not
have to be imposed from the beginning.

We may now estimate the magnitude of fluctuations
away from Lorentz signature, in flat (e„' =5'„) spacetime.
It is again assumed that there is a high-frequency cutoff
around the Planck scale, in which case there is roughly
one degree of freedom per Planck time. Writing
0=~—60, the action for one Planck time (during which
0 is approximately constant) is

(M) -l~/V . (37)

Even under conservative assumptions, i.e., a closed
Universe of length scale on the order of 10' light years,
the ratio of Planck volume to the volume of the Universe
gives 50-10 ' radians. It seems safe to say that devia-
tions from Lorentzian signature of this magnitude are un-
detectable. Of course, in the very early Universe, fluctua-
tions away from Lorentzian signature could have been
substantial.

Note that in this argument it was crucial that 0 is con-
stant on the preferred T=const hypersurfaces. If this
were not the case, and 0 could vary locally, then entropy
would overwhelm the effective potential and we would in-
stead expect 50 to be of the order of 1, which is surely not
consistent with observation.

IV. CANCELLATION OF THE COSMOLOGICAL TERM

S, = jd xeg X, (38)

to remove the induced term. At first sight, it might
seem that this "conservative" approach to removing the
cosmological constant also removes the mechanism
which singles out Lorentzian signature at D =4. In fact,
that is not true. Writing

(39)

the total effective potential is

The efFective potential V(8) can be interpreted as a 8-
dependent cosmological "constant, " and the argument of
this paper is based on looking for the minimum (of the
real part) and stationarity (for the imaginary part) of
V(0) [the "minimum/stationary point" of V(8)]. Since
V(m)%0 in D =4 dimensions, the cosmological constant
is nonzero and of order O(A ). This, of course, raises the
question of how to justify expansion of the metric around
Hat spacetime, in computing the one-loop contribution to
the determinant in Eq. (15).

It has been suggested occasionally that the cosmologi-
cal term is somehow screened at large distances [9,10],
and this idea, if it really works, would justify the flat-
space expansion. But it is obviously important to consid-
er other possibilities. The most conservative approach to
the cosmological constant problem is simply to add a
counterterm

DifFeomorphism invariance, however, is an exact symmetry at
all 0.

4The value of A.„like that of all other bare masses and cou-

plings, is assumed to be real.
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V (8)=X e""+we-"~-'""
T (40)

and it is clearly impossible to choose A,, such that
Vr(8)=0 for all 8. Instead, the object would be to
choose k, such that V&=0 at the minimum/stationary
point of Vz (8). It will now be shown that it is only possi-
ble to make such a choice in D =4 dimensions, where the
minimum/stationary point is again Lorentzian signature.

Denoting

D —28
2

the condition that V&=0 gives

8 8
A, cos—+A. cos—=0

2 2

for the real part,

8 . 8
A,,sin ——

A, sin —=0
2 2

(41)

(42}

(43)

for the imaginary part, while

8 D —2 8
A,icos A. cos—=0

2 2 2
(44}

is the stationarity condition for Im[Vr]. Equations (42}
and (44) simply that

8=(2n + 1)~, 8=m, (45)

Now suppose D is large enough so that one can choose
8 3n., consistent with (45). The remaining question is
whether 8 corresponding to this choice of 8 is the
minimum point of Re[Vr]. If D is such that 8 3n is

possible, then it would also be possible to choose a value
of 8=8' where 8'=(D —2)8'/2=2m. , in which case

8I
Re[ Vr(8') ]=k, cos——X

81
1+cos—

2

where we have used the fact that ~8~ ~n(n inte. ger).
Then, from (43) we have that

(46)

since 0(8' n. This would mean that Vr=0 is not the
minimum/stationary point, so the only other possibility
is that 8=m. For 8=m, this can only be true in D =4 di-

mensions, in which case

8
V (8)=A, cos—T 2

and 8=~ is clearly the minimum of this potential.

(48)

V. THE CASE OF MASSIVE FIELDS

The analysis of the previous sections, applied to mass-
less fields, was extremely simple; it is not as simple when
our considerations are extended to massive fields. The
problem is that the integral in Eq. (16), extended to mas-
sive fields, involves incomplete gamma functions, and the
corresponding analysis becomes more involved. Our ap-
proach will be to make an m /A expansion around
m =0. There are three cases of interest. First of all, for
D =4 and nz & n~, the mass corrections can be expected
to separate the minimum point (of Re[ V]) and stationary
point (of Im[V]) slightly. We will show below that this
slight separation does not destroy the Lorentzian
behavior; it turns out that the minimum of the real part is
still exactly at 8=+m, while the stationary point of the
imaginary part moves just outside the range 8& [ n /n ],—
provided that a certain inequality among the masses is
satisfied. Thus Lorentzian signature is still the optimum
8 value. The other two cases of interest are D =2 and
nz =ns For mas. sless fields, V(8) is independent of 8 for
those choices. The introduction of masses can be expect-
ed to remove this degeneracy, and the question is wheth-
er any new solutions of the minimum/stationarity criteria
are obtained. We will find that only for the case n~ =nz
at D=6 is it possible to have the minimum/stationary
points (nearly} coincide.

The starting point of our analysis is the one-loop con-
tribution Vs(8) to the effective potential due to the in-

tegration over a scalar field P of mass m in a fiat back-
ground (e„'=5„'). This is given by the obvious extension
of Eq. (15), i.e.,

exp —f d x Vs(8) =det '/
[ vol(ri'~B, B—

&
—m }].

(49)

&0 (47)
Again evaluating the determinant with heat-kernel regu-
larization one finds

Vs(8)= ——f" f P exp[ —s[e ' /po+e' / (p +m )]]ds d~p

2 i/w' s (2~)n

dss exp —m e' s) .exp [ ~(D —2)8/4]—
2(4~) " 1/A

(SO)

The convergence of the p integration sti11 requires that
8e [—~,~].

As in Sec. II, the one-1oop contribution to V,s(8) from
each bosonic (fermionic) propagating degree of freedom

of mass ms (m~ ) turns out to be proportional to

det
—1/2(+1/2)[ Q+(+~bQ Q m2

b mg (F)
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[neglecting factors of deti'(rl), which one assumes to be
absorbed in the functional measure]. The heat-kernel
regularized value of these determinants is complicated, as
compared to the massless case of Eq. (16), by the ex-
ponential factor exp( —m e' r s). However, in the p-

integration convergence domain, OF[ r—r, vr], the in-
tegral in Eq. (50) can be expressed in terms of the incom-
plete gamma function [11]. Again V(8) is complex
valued in general. Summing over all one-loop bosonic (B)
and fermionic (F) contributions gives

Re[ V(8)]= gxF [e' I ( D/—2, xF+ )+e ' r'-I
( D /—2, xF )]

gxD/2[ei()I2r( D/2 x )+ e
—i&/21

( D/2 x )]
B

~ D

Im[ V(8)]= — g xF [e' I ( D/2—,xF+ )
—e ' I ( D/2, —xF )]

(51)

—+xi) [e' r I ( D/2, x—s+}—e ' I ( D/2, —xs)]
B

(52)

where we have de6ned

2
B (F) +i 6/2XB(F)+-
A

8
Im[ V] =0 .

Taking advantage of the useful relation [11]

(54)

l —D/2

~8
I ( D /2, xa(F—)+ ) = + «a(F)+—) exp( xa(F)+)

2

and I ( D /2, xs~(—+)) is the incomplete gamma function
defined in the Appendix [Eqs. (Al) and (A2)].

The stationarity condition on Im[ V(8)] is defined by Eq. (54) becomes

(55)

0=exp i 8 g [(xF ) I ( D/2, X F)
——e ]

—g[(xs ) I ( D /2, xs )
——e ]

F B

+exp i —8 g [(xF ) I ( D/2xF+) —e— ' "]—g[(xs+) I ( D/2xs+) ——e ]
F B

(56)

where an overbar over the variable x means that this has to be evaluated at 0=0.
Eliminating the incomplete gamma function dependence of Eq. (51) by means of Eq. (56), one finds that the value of

Re[ V(8) ] at the stationary point 8 is

ARe[V(8)]= +exp( —xFcosO/2)cos[(D —2)8/4+xFsinO/2]
2(4') F

—+exp( —xs cosO/2)cos[(D —2)8/4+ xz sinO/2 ]
B

min[Re[ V(8)]]=Re[ V(8)], (58)

where xB(F)—= IB(F)/A, and we require, in the stability
range OC [ —rr, vr],

where the approximate equality of the minimum and sta-
tionary points is up to O(m /A ) corrections. Typically,
if masses are on the order of the grand unified theory
(GUT) scale and A is on the order of the Planck scale, we
would expect I /A =10

We define
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6(n)BF ——nF —nB,
'n

mF
6(X")BF=—g

F A
n

mF
h(x "lnx )BF—=g ln

F A

2mF

A

n

(59)

and (57) is quite straightforward although tedious, and
the detailed m /A expansions for arbitrary signature
and dimension are collected in the Appendix.

The three cases of interest, namely, (i) nF )nB at D =4,
(ii) D =2, and (iii) nF =nB, will now be considered sepa-
rately.

n

mB
ln

A

2
mB

A

(where, now, nB and nF represent the total number, mass-
less plus massive, of bosonic and fermionic propagating
degrees of freedom). Since the GUT mass, on a logarith-
mic scale, is not so far from the Planck mass, we wiH

treat b, (x ")BF and b (x "lnx )BF as being of the same order
of magnitude.

The derivation of the expansions of Eqs. (51), (52), (56),

A. D =4 at 5( n )g~ & 0

Except in the degenerate cases (D =2 or nF=nB),
small mass corrections cannot affect the conclusion of
Sec. II for D%4, namely, that the minimum and station-
ary points are not close to one another. For D =4 and
nF )nB, however, mass terms will spoil the exact coin-
cidence of the two points. In this case, only the second
term of Eq. (A3) of the Appendix trivially vanishes and
the stationarity condition (54) becomes

0=5(n)BFcos—+ b(x lnx)BF+ 6(x )BF cos———A(x )BF8sin ———6(x )BFcos8+O[h(x lnx)BF]
0 2y —1 2 8 1 2 —.8 2 4 (60)

whose approximate solution is

2k+1 ~(x')BF
2 bnBF

(61)

(y is the Euler constant and k =0, —1). For the real part of V(8), from Eq. (A5) of the Appendix evaluated at D =4,
we find

A 1 t9 1 2Re[ V(8)]~ = — —b(n) cos——b(x) ——b(x lnx) + 6(x ) cos—D =4
2(4 )2 2 BF 2 BF 2 BF 2 BF

+—b(x )BF8sin —+O[b(X )BF]
1 2 . 8 3 (62)

In the stability range 8E[—m, m], the value ~8~ =n. is
still the minimum of the real part of V(8) for h(n )BF)0.
The stationary condition point of the imaginary part is at
~8~ =m+e, where e is O[h(x }].Moreover, if

B. D =2 at h(n)@A%0

The approximate stationarity condition for Im[V(8)]
in D =2 dimensions and arbitrary b, (n)BF turns out to be

b(x )BF(0 (63) 0= [6(x lnx )BF+yh(x)BF]cos — 5(x)BF—8 si—n—8 1 —.0

then e) 0, and the stationary point lies just outside the
stability range. For masses at the GUT scale, and cutoff
at the Planck length, this means that the stationary point
1s

k(x }BFCOS8+ k(x }BFcos +0[5(x lnx }BF]
1 3 30 4

4 2

(65)

while, for the real part,

(8( =~+O(IO-"), (64)
Re[ V(8) ] ~ D

which is certainly very close to the minimum point at
~8~ =m.. Moreover, 8=+@ is as close as it is possible to
come to the stationary point in the stability range. We
conclude that for D =4 at nF )nB, Lorentzian signature
is still the optimum value of 0, as in the massless case.

1 8 2

2
——6(x )BF8 sin —+0 [b (x )BF] (66)

A 8
h(n }BF+ [5(x lnx )BF+(y —1)5(x}BF]cos-

sm BF BF
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which follows from Eq. (A5) of the Appendix.
Given that b, (x)~~ is of the same order as h(x lnx),

and ruling out any special fine-tunings among the masses,
there is no reason at all that the stationary point of Im( V)
should coincide with the minimum of Re[ V].

Next we consider the nF =n~ case, separately in di-
mensions D =2—6 and D )6.

C. 5(n)&F =0 at D =2

The stationarity condition for D =2 with b, (n)&F=O is
identical to the corresponding condition at b ( n )sF&0,
while the equation for Re[ V] differs only by a constant.
Barring fine-tuning among the masses, the minimum and
stationary points are not close together.

D. 5(n)elF=Oat D=3

In three dimensions, the stationarity condition becomes

0= —2b(x)szcos —+ &re(—x )s~cos ——3b, (x )sFcos +—A(x )icos +O[b(x lnx)s~) (67)

whose approximate solution is

2k+1
2 h(x)s~

(68}

This stationary point is well outside the convergence domain [ rr, rr]—

K. 6(n)~F =0 at D =4

For the stationarity condition we have

0= b(x lnx)zz+ h(x )zz cos———b(x )&F8sin ———b(x )zzcos8+O[b(x lnx)zz], (69)

while, for the real part,

W4
Re[ V(8)]~D =~=

2(4m. )

1 2 . 0—b, (x)s~+ —h(x )sF8sin ——
—, b(x lnx)zF+ h(x )s~ cos—+O[b(x }s~]

2y —3, e 3

2 2
(70)

and, in general, the minimum/stationary points do not coincide.

F. 6(n)~F =0 at D =S

In the case D = 5, Eq. (A3) of the Appendix with 6(n)sF =0 becomes

0— 5(x)sFcos +6(x )spcos — V1TA(x )spcos —+b (x )sFcos + 0 [6 (x lnx )s~ ]=2 8 p 8 16 —
5qq 8 3 38 4

3 4 4 15 2 4

whose approximate solution is

2k +1
2

b, (x }sF
b, (x)s~

As in the previous case with D =3, the stationary point is far outside the stability domain.

G. h(n)~F =Oat 8=6

In six dimensions, Eq. (A3) of the Appendix for the stationary point becomes

0=6(x)z~cos —+—h(x Inx)sz+ b(x )s~ cos———b(x )s~8sin —+O[b(x Inx)s~]8 I, 6y —5, 0 1, —.0 4 (73)
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whose solution is

2k +1
2

1 ~(x')aF
m 1 ——

3 b(x)ttF 4(x)ttF &0 . (77)

and this has a minimum in the stability domain exactly at
0=++, if

b, (x lnx)ttF+0
b,(x)~„

(74)

b, (x')sF/b, (x)~F &0 .

Moreover, Eq. (A5) of the Appendix gives

(75)

Therefore, the stationary point of Im[V(8)] can be just
outside [ —n, m ] if the following inequality holds:

This means that the case of D =6 and 5(n)sF =0 is
similar to D =4 and nF )n~. Assuming two inequalities,
namely, b, (x )B„&0 and b (x )ttF & 0, we find that
min Re[ V] is at

~
8

~

=n, and the stationary point of
Im[V] is at (8~ =n+e, where e is positive and
O(trt ~/A~). As in the D =4 case, Lorentzian signature is
the optimum 8 value in the range [ n, m ]—.

Re[ V(8)]
I g) =6 ——

2(4m )

1 8——h(x) cos—
2 '~ 2

H. h(n)&~=OatD &6

+0 [h(x 'lnx )~~ ] (76)
Finally, we consider the cases D & 6 with b, (n)~F =0.

For the stationary part

D —4 (D —4)80=2 6(x )npcos
D —2 4

D —6 (D —6)85(x )ttFcos

1

D —6
D —8 32[1—h (D —8)] g Dm+ cos

3 D (D —2)(D —4) 2
h(x )tt~cos +O[b,(x lnx)tt~]

(D —8)8 4 (78)

so that

D —4-
4

8= 2k+1
2

5(x z)ttF

b (x)~~
(79)

while, for the real part,

Re[ V(8)]~o &6-—2(4~)'"
2 (D —4)8 2h(x)~icos +0[6(x )zz]D —2

(80)

It is readily seen from Eq. (80) that, in general, the
minimum of Re[ V(8)] is not at 8. This eliminates from
consideration all dimensions D & 6.

We have, throughout, treated b, (x)~F and A(x lnx)~F
as being of the same order of magnitude. If the Planck
scale is not a fundamental cutoff, so that A can be taken
arbitrarily large, or if the mass generation scale is many
orders of magnitude less than the presumed grand
unification scale, then it is appropriate to treat
h(x lnx )zF » b (x)~z. In that case, in addition to
Lorentzian solutions at D =4 (n~ & ntt ) and D =6
(n~ =n~) we find additional Lorentzian solutions at D =2
[A(n)ttt, arbitrary], and D =4 (n+= nest)

Finally, since nonzero mass terms displace the station-
ary point slightly away from the minimum point at D =4
(n~ & ntt ) and D =6 (n~=ntt ), the exact cancellation of
the cosmological constant found in Sec. IV is no longer
quite exact. Although the real part of Vr(8) can be can-
celed exactly at the minimum point (~8~ =m), one would

expect a small imaginary part, of order m ~/A~, left over,
which in principle constitutes a contribution to the mea-
sure.

VI. CONCLUSIONS

Two fundamental facts about spacetime are its
Lorentzian signature and D =4 dimensionality. An
equally fundamental feature of quantum mechanics,
which distinguishes it from any sort of classical field
theory or diffusion process, is the appearance of v' —1 in
the Feynman amplitude and Schrodinger equation. The
proposal that the spacetime signature (i.e., the tangent
space metric) is dynamical provides an intriguing relation
among these three facts. The i of quantum mechanics
can be traced to the factor &g = ~e~/ri in the path am-
plitude, which becomes just exp(iS) at Lorentzian signa-
ture. By allowing the tangent-space metric g,b to inter-
polate continuously between diff'erent signatures (which
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requires that entries of g can rotate into the complex
plane), we have found by a simple one-loop argument
that Lorentzian signature is dynamically selected, for
nF & n~, uniquely in D =4 dimensions. In broken super-

symmetry theories, there is also a possibility for Lorentzi-
an signature at D=6. With the help of curved-space
consistency conditions, it has been further argued that
fluctuations away from Lorentzian signature at D =4 are
enormously suppressed (except, perhaps, in the very early
Universe) and are certainly undetectable in the present
epoch.
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APPENDIX

In this appendix we give a list of basic de6nitions and equations, which we use and to which we make reference in the
main text, for the case of arbitrary signature and dimensions. In general, the incomplete gamma function I (a,x ) is de-
scribed by two different series expansions in the variable x for the case of a integer (D even) or fractional (D odd). The
two expansions can be combined by writing

( 1)D/2 D/2 i
(
—1)nn i D~I( D/2x —)= E (x ) —e —' g; cos

(D/2)! ' — „,(x, )"+' 2

1 )iD+ i )/2g
+

(D /2)!

1 )n( )n
—D/2

n!(n D /2)—
Dm

sin
2

(A 1)

where E, (x+ ) is the exponential integral function,

(
—x+)"

E, ( +x)
=—— y+ inx+ + g n!nn=1

(A2)

and y is the Euler constant [11]. The effect of cos (Dm/2)[sin (D~/2)] in Eq. (Al) is just to select out one of the two

(exact} expansions for the case when D is even [odd] [11].
Moreover, using the series expansion (Al} and assuming x « 1, one can easily rewrite the stationarity condition for

Im[ V], Eq. (56) of Sec. V, up to order 0 [b (x lnx )sF ] as

2(2 —D) (D —2)0
D

n SFCOS
4

D —4 . 2 Dri +1 4h(D —4)
sin

D —2 2 D D —2

Dm
cos

(D —4)06(x )2iFcos

+ (
—1) +' b, lx lnx ) cos

2 Der

(D /2)! 2
cos —h(6 —D )

0
2

+( —1) +' h(x )sF } cos +( —1) ' +~sin
(D /2)! 2

0
cos

2

0 . 0 2
Dm.——sin —cos

2 2 2
.h(6 —D)

1 )D/2 h(x +')2iFcos cos(0)h(4 D)—
(D/2)! 2

( —1)D/2+i D/2+2 2 D~ 30+ b, (x + )sFcos cos h(2 —D)
2(D /2 )! 2 2

5We restrict our analysis to the case of dimension D &2, i.e., we do not consider the case of a D =1, single-particle quantum

mechanics.
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D —6 . 2 Dm. 1 16h(D —6)
s1n

(D —4) 2 D (D —2)(D —4)
Sh (D —4) 2 D~

D —2 2
(D —6)8

b, (x )BFcos
4

D —8 . g Dm. 1 D —2
3(D 6)

M
2 D 3

32h(D —8) 16h (D —6)
(D —2)(D 4—)(D —6) (D —2)(D —4)

4h (D —4) 2 Dm

(D —2} 2

Xh(x )BFcos +O[b,(x lnx)BF],
(D —8)8

4

where h (y) is the Heaviside step function

1, y+0,
h(&}= 0 (0

Similarly, expansion of Eqs. (51) and (52) of Sec. V gives

A 2 (D —2)8
Re[ V(8) ]= —5(n)BFcos

2(4n) /

1 . 2 Dn 1 2h(D —4} 2 Dn. (D —4)8
6(X)BFCOS

(A3)

(A4)

D~ 8+ 5(x / lnx )BFcos cos —h(6 —D)
(D/2)! 2 2

D/2+ 1

~ ( —1) +'
~( D/2) 2 Dm. ~( 1) 1/2~ . 2 Dn

——sin —cos
8 . 8 2 Dtr
2 2 2

h(6 —D)

+ ( —1} "
D/2+i 2+, b(x )BFcos cos(8)h(4 D)—

2

8
cos

2

+ ~(x )BFcos cos h (2—D )
2 2

1 . 2 Dn' ~ 1 ~ 8h(D —6) 4h(D —4) 2 Dn
S1n +—1+ + cos

D —4 2 D (D —2)(D —4) D —2 2

(D —6}8Xh(x )BFcos
4

1 . g Dm+ Sln
3(D —6) 2

1 1 16h (D —8) i gh (D —6)
D 3 (D —2)(D 4)(D —6) (D——2)(D —4)

2h (D —4) 2 Dn'

Xh(x )BFcos +O[b(x Inx)BF]
(D —8)8

4 (A5)

Im[ V(8)]=
2(4n. )

——b, (n)BFsin
2 . (D —2)8

1 . 2 Dn 1 2h(D —4) 2 Dm'
sin +—1+ cos~

(D —2) 2 D D —2 2

( 1 )D/2+1 D 8+ h(x lnx )BFcos sin —h(6 —D )
2 2

(D —4)8
b (x )BFsin

4
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D/2+ 1 0
sin

2

0 0 p Dm+—cos —cos
2 2 2

h(6 —D)

1
D/2

+ 4(x +')&Fcos sin(8)h (4—D)

+ b,(x )zzcos sin h (2—D)

1 . 1 Dn + 1 1+ Sh(D —6) 4h(D —4) p Dm.
sm +—1+ + cos

D —4 2 D (D —2)(D —4) D —2 2

(D —6)8X b, (x )sFsin

1 . p Dm 1 1 16h(D —8) 8h(D —6)
3(D —6) 2 D 3 (D —2)(D 4)(D——6) (D —2)(D —4)

ssn

2h (D —4) 2 Dm.
D —2 2

(D —8)8
b, (x )sFsin

+O[h(x lnx )sz]

and, finally, Eq. (57) of Sec. V becomes

(D —2)8
Re[ V(8)]= cos

2(4m ) 4

(A6)

6( n )sF —b (x )sFcos—+—b, (x )sFcos8 ——b, (x )sFcos—4 cos ——3
8 1 2

— 1 3 8 2 8

(D —2)8 0 1
S18.

4
b, (x ) sin ———b, (x ) sin8BF 2 2 BF

——b, (x ) sin —4 sin ——3
1 3 . 8 . i 8
6 2 2

+O[h(x )sF) (A7)
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