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Evolving wormholes and the weak energy condition
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Nonstatic Lorentzian wormholes conformally related to static wormhole geometries are found to exist
for a finite (arbitrarily large) or half-infinite (6 & t ~ ~ ) interval of time, with the required energy-
momentum tensor satisfying the weak energy condition. Features of such spacetimes are discussed,
along with several examples.
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Lorentzian wormholes have been quite popular over
the last few years for a variety of reasons. Among them,
we have the exciting possibility of constructing time
machines with these spacetimes. Several such construc-
tions have been suggested by various authors [1,2]. How-
ever, the basic problem with the existence of these space-
times as solutions to the Einstein field equations of classi-
cal general relativity (GR) has been the fact that they re-
quire an energy-momentum tensor whose components
violate the energy conditions [3]. In fact, the weakest of
these conditions, namely, the weak energy condition
(WEC) or its averaged version has been found to be
violated by the matter required to support a wormhole.
Although, as pointed out by Visser [4], there is no experi-
mental evidence that clearly supports the WEC (in fact
the Casimir effect [5] clearly demonstrates its violation),
physicists (or, more specifically, general relativists) tend
to believe in these conditions for primarily two
reasons —(i) almost all known and physically realizable
forms of matter satisfy them and (ii) they are among the
assumptions necessary to prove the Hawking-Penrose
singularity theorems [6]. A way out of this contradiction
between wormhole existence and WEC violation was to
take refuge in quantum theory. It has been shown (much
before the WEC was proposed) [7] that there exist quan-
tum states for which the expectation value of the energy-
momentum tensor violates all energy conditions. On the
other hand, some authors have also considered the possi-
bility of using modified gravitational actions in order to
obtain wormholes from "normal matter" [8,9].

However, most of the efforts in understanding
Lorentzian wormholes and WEC violations have concen-
trated on static geometries. The only place where a non-
static geometry is used is in the "time-machine" con-
structions due to Morris, Thorne, and Yurtsever [1] and
Novikov [2]. The aim of this paper is to show that within
classical general relativity there exist Lorentzian
wormholes which are nonstatic and which do not require
WEC violating matter to support them. These
wormholes, as will be shown, exist for a finite —(however
large) semi-infinite time interval and represent evolving
geometries. During the evolution, the shape of the
wormhole changes in the embedding space —the throat
radius expands or contracts and the rate of change of the
embedding function increases or decreases. One can

draw an analogy of these geometries with the usual
Friedmann-Robertson-Walker (FRW) universe (k =1)
with S spacelike sections. The difference is that we have
spacelike sections which are R XS with a wormhole
metric. Therefore, in a certain sense, one can christen
these spacetimes as "wormhole universes. "

We begin our analysis with the ansatz for the metric
and the energy-momentum tensor. These are

dr
ds =0 (t) dt +- +r dQ

1 b(r) I—r

(2)

and

e =A(t)r sin0dgdAi

is the line element on the two-sphere. b(r) is the usual
"shape function" as defined by Morris and Thorne [3]. It
will be assumed to satisfy all the conditions required for a
spacetime to be a Lorentzian wormhole: i.e., b (r)lr ~ 1;
6 (r)/r ~0 as r ~~; at r =bo, b (r) =ho,. r )bo. The
Einstein field equations with the ansatz (1) and (2) turn
out to be (units 8nG =c = 1 }

2 0
0

1 0,+ 0
2

(4)

Here 0 (t) is the conformal factor, finite and positive
definite throughout the domain of t. One can also rewrite
the metric in (1) using "physical time" instead of "confor-
mal time. " This would mean replacing t with
r= f Q(t)dt and therefore Q(t) would become R (r)
where the latter is the functional form of the metric in

the ~ coordinate. However, it is convenient for us to use
"conformal time. " Translating all the results for t into
those for r is a trivial exercise. p(r, t), r(r, t), and p(r, t)
are the components of the energy momentum tensor in

the frame given by the one-form basis e =Q(t)dt,

e ' =Q(t)dr/[ I b(r)lr]'—
e =Q(t)r d8,
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'2
2 Q 1 Q 1 b —b'r+ + =p(r, t) . (5)Q' Q Q' 2r'

dX &( —1) .
dt

(14)

The overdots denote derivatives with respect to t and the
primes are derivatives with respect to r. The WEC
(T„u"u"~0 V nonspacelike u") reduces to the follow-

ing inequalities for the case of a diagonal energy-
momentum tensor:

1

Q

~ ~ ~

b'r —b Q Q+2 2 — —— )0
r Q Q

p~O, p+r~0 and p+p ~0 for all (r, t)

From (3), (4), and (5) one can write down three inequali-
ties which have to be satisfied if the WEC is not violated.
These are

'2
3 Q 1 b')

Q2 Q Q2 2

With b'~0 and (13) one clearly sees that (9) is satisfied.
Therefore, from this very simple analysis it is clear that
nonstatic spherically symmetric Lorentzian wormhole
geometries can exist with the required rnatter not violat-
ing the WEC. However, the fact that Q(t) be finite every-
where and satisfy the condition (13) implies that these
wormholes exist for finite or semiinfinite intervals of time
(however large). At the end points of these intervals we
have singularities.

Before we construct explicit examples it is necessary to
discuss the embedding in 8 of a t =const, 8=m /2 slice
briefly. Since our geometry is nonstatic each such slice
will be difFerent —more precisely the value of the func-
tion Q(t) as t =to (to lies in the interval in which the
wormhole exists} will dictate the shape and features at

that instant. The metric (denoted by ds ) on such a slice
takes the form

1

Q

b'r +b Q
2r'

Q
Q

)0.
dp

ds =Q (to) +r dP
1 b(r)/—r

(15)

Several important facts should be noted here in com-
parison with the case of a static geometry. Equation (7}is
trivially satisfied if b )0 irrespective of the geometry be-

ing static or nonstatic. However, if it is nonstatic then
one can satisfy (7) even for the case when b'(0. In fact,
one obtains the inequality

'2

Q
(10)

For every t =const slice (10} has to hold true, which
means

~ min 3
2 Q

where "min" denotes the minimum of the function for
the given time interval.

For a static geometry (8) can never be satisfied, as
shown by Morris and Thorne [3]. But, for a nonstatic
geometry with b' ~ 0 one can satisfy (8). We require

r 7
b b'r—0 0~msn 2 2

r Q Q

Q Q
2 2

Q Q

in the corresponding domain of t. However, we need
'2

QF(r)=2 2
Q

(13)

Equation (13) can be written in a more precise form by
introducing a function y(t) =Q/Q. We have

Stated explicitly (12) implies that the value of
(b b'r)/r for all r mu—st be less than or equal to the
minimum value of the function

Define

r'=Q(to)r .

Thus (15}takes the form

(16)

$2
t2

, +r' dP
1 —a (r')Q(t )/or'

(17)

where a (r') is the functional form of b(r} in the r' coor-
dinate. The minimum value of r' which determines the
throat radius is evaluated from

a(bo)Q(to)=bo . (18)

This clearly shows the dependence on Q(t). Using the
mathematics of embedding as outlined by Morris and
Thorne [3],we can write

dz (r')
dp

a (r')Q(to)
r' a(r')Q—(to)

1/2

(19)

where z(r') is the embedding function. Integrating (19)
one can obtain the z (r') for the slice at t = to.

We now discuss several examples to illustrate the facts
mentioned above. The form of b(r) to be chosen is
b (r) =ho where bo is a constant. Such a form of b (r) is
not allowed for the case of a static geometry as it leads
(from the Einstein equations) to p=O (~,pAO). However
for a nonstatic geometry we can choose b(r)=bo. For
Q(t) different functional forms can be assumed such as
power laws, exponentials, trigonometric, and hyperbolic
forms. Table I shows the various cases in a compact way.
The condition (12) for the case b(r) =bo leads to an in-
equality of the form

r ~max[bo[F(t)]

Since r & bo this leads to

bo ~max[[F(t)] 'j .
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TABLE I. The table shows for different choices of Q(t) the corresponding functional forms of F(t),
the constraints on the minimum values of the throat radii, and the maximum ranges of t for which the
wormhole can exist without collapsing into a singularity or allowing WEC violation of the matter stress
energy.

F(t)
Lower bound on bo from

Eq. (12)

Domain of t from
F(t) &0 and

finiteness of Q(t)

n

e tat

sincot

2n (n +1)t

2' (2cot cot+1)

bo & max[t'/2n (n + 1)J

b2 & (2~2) —
1

b2 & (2~2)

bo &max[[4' cot'cot+2co ]
'

j

0&t & oo

—oo & t & oo

—oo & t & oo

mm m'

&t &(m+1)—

tanhcot 4a)'cosech cot

2(2t —a')
(a 2+ t2)2

bo & max[ [4''cosech'cot]

2 (a 2+ t2)2
bo &max

2(2t —a )

—oo & t &0 or 0 & t & oo

2

t )—,t2'

t +a
t2+b2

4(b —a2)(3t —a ) (t +a ) (t +b )
bo max

(t2+a2)2(t 2+b2) 4(b2 a2)(3t2 a2)
a a—oo & t & — — or —& t & oo

v'3 v'3

We therefore obtain a lower bound on the throat radius
parameter b~. The constraint (13) together with Q(t)%0
for all t implies a certain domain of validity for t. One
could also have used a different form of b(r) [e.g. ,
b(r)=arbor ]. Certain characteristic features are men-
tioned below in a systematic way.

(i) The first five solutions in Table I exist for a finite
amount of time which can be arbitrarily small or large.
Curvature singularities signaled by the divergence of a
component of the Riemann tensor appear at the boun-
daries of the time intervals mentioned against each solu-
tion.

(ii) Singularities occur at finite values of t only for the
solutions of the form Q(t)-t" (at t =0), Q(t)-tanhtot,
(at t =0), A(t) —singlet [at t =mr/to, (m +1)vr/to]. The
latter case can be an example of a "wormhole universe"
which begins with a "bang" and ends with a "crunch. "
One can think of ~/co as the "lifetime" of such a
universe.

(iii) The exponential solutions can also have an ex-
panding and a contracting phase if one considers time in-
tervals of the form —A & t &8; A, B )0, and functional
forms e '(t &0) and e '(t )0) or e '(t &0) and
e '(t )0). The former case is that of an initial contrac-
tion followed by an expansion and the latter one leads to
an initial expansion followed by a contraction.

(iv) If we assume a perfect fiuid with an equation of
state for the matter of the form p/3=~=p then there are
no wormhole solutions. In fact, the only solutions with a
perfect fluid matter stress energy are the flat, closed, or
open Friedmann-Robertson-Walker universes.

(v) If the energy-momentum tensor is assumed to be
conformally invariant [i.e., Tr( T„,) =0] then we have

~ ~

+ ' =0. (20)0
Therefore, the only possible wormhole solution is the one

for which b(r)=const and Q(t)=at +b (a and b being
two constants).

(vi) The last entry in Table I provides an
example of a solution valid for —oo &t & —a/v'3 or
a /i/3 or a /v'3 & t & ~. Within the time domain
(
—a /i 3,a/v 3), the WEC will be violated. By choosing

a to be very small, one can construct a solution for
—~ &t & ~ for which the required energy-momentum
tensor will satisfy the WEC modulo, the fact that there
would be a "flash" of WEC violation. Such a "flash" will
exist only for an infinitesimal time interval. Also, for the
solution with Q(t)-(a + t )'~ one can construct a solu-
tion for —oc &t & ~ with a similar "flash" of WEC
violation for —a /v 2 & t & a /v'2. It is important to note
that the solution with A(t)-(t +a )l(t +b ) for
—oo & t & ~ will be nonsingular everywhere.

We conclude with a few remarks. We have shown that
it is possible to have nonstatic Lorentzian wormhole
spacetimes with WEC satisfying energy-momentum ten-
sors. These "wormhole universes, " however, exist for a
finite —semi-infinite time interval. Allowing WEC viola-
tion for a finite (however small) time interval, we have
shown that there is a solution for —~ & t & ao. Ques-
tions of traversability and possible models of time
machines could be logical extensions of this paper. These
will be discussed in a future article [10]. On the other
hand, one knows that nonstatic spacetimes are back-
grounds in which the study of quantum field theory yields
processes such as "particle creation. " Also, for our
wormhole geometries one can do such an analysis. Final-
ly, the fact that the WEC and the existence of Lorentzian
wormholes are not entirely incompatible is perhaps quite
encouraging for workers in this field.

Note added. Recently, T. Roman [Phys. Rev. D 47,
1370 (1993)]has discussed a special Lorentzian wormhole
geometry which is nonstatic. However, the correspond-
ing energy-momentum tensor in his case violates WEC as
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the scale factor when substituted in the expression for
F(t) [Eq. (13) in this paper] gives F(t)=0. The analysis
in this paper, however, is for those Q(t) which satisfy the
condition F(t))0 strictly. As has been shown here, this
condition is crucial for avoiding WEC violations at least
for finite —semi-infinite time intervals.
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