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The reflection and transmission of massless scalar waves in the curved background geometry of a typi-
cal Lorentzian wormhole (in 2+1 and 3+1 dimensions) are discussed. Using the exact solutions which

involve modified Mathieu (in 2+1 dimensions) and radial oblate spheroidal (in 3+1 dimensions) func-

tions, explicit analytic expressions are obtained for the reflection and transmission coefficients at specific
values of the quantity coho (co being the energy of the scalar wave and bo the throat radius of the
wormhole). It is found that both near-perfect reflection as well as transmission are possible for specific
choices of certain parameters.

PACS number(s): 04.20.Cv, 11.10.Qr

I. INTRODUCTION

Ever since Morris and Thorne [1] and Morris, Thorne,
and Yurtsever [2] rekindled interest in Lorentzian
wormholes there has been a steady flow of papers discuss-
ing various questions related to these spacetimes. The
possibility of constructing time machines and the require-
ment of matter violating the weak energy condition
(WEC) have been the two major issues on which a fair
amount of work has been done. For static geometries,
Morris and Thorne had shown that without WEC-
violating matter it is impossible to have a wormhole
geometry. The fact that there exist quantum states for
which the expectation value of the energy-momentum
tensor violates all energy conditions [3] led them to con-
clude that such matter could probably exist in the quan-
tum regime. Other attempts at justifying the existence of
such matter include the use of the Casimir effect [4] and
squeezed states [5]. Alternative models of gravity have
also been explored and the role of WEC violation in con-
nection with wormholes has been investigated in some de-
tail. R +R theory in four dimensions yielded the same
results as in general relativity (GR} [6]. The nonsym-
metric theory of gravity due to Moffat also had nothing
new in this context [7]. In higher dimensions (D & 4), the
Einstein-Gauss-Bonnet theory had a certain positive re-
sult for negative values of the coupling coefficient of the
Gauss-Bonnet term [8].

Apart from the study of the WEC in the context of
wormholes, Visser [9] has done some interesting work on
the construction of such geometries using "Schwarzschild
surgery. " The Cauchy problem in spacetimes with closed
timelike curves has been discussed in detail for the mass-
less scalar field [10]. Recently Kim [11]has studied "par-
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ticle creation" due to time travel through a wormhole.
On the other front Roman [12] has constructed a solution
which is a nonstatic metric with the required energy-
momentum tensor violating the WEC. Such a geometry
actually evolves in time and might be a way of actually
producing wormholes. Hochberg and Kephart [13]have
discussed the possible resolution of the "horizon prob-
lem" by constructing a hypothetical "wormhole cosmolo-
gy" using dynamic wormholes. One of the authors here
has recently shown that for evolving (nonstatic)
wormhole geometries it is possible to avoid the WEC
violation of the required matter at least for a finite time
interval [14].

However, the standard type of work done in other
curved spacetimes, such as the study of geodesic motion,
scalar waves, spin-half perturbations, electromagnetic,
and gravitational perturbations, has not yet been dealt
with completely in the context of wormholes. The papers
which discuss scalar waves in wormhole geometries and
in time-machine models are the ones referred to in Refs.
[1S, 10]. Very general statements regarding the well
definedness of the Cauchy problem in a class of space-
times with closed tirnelike curves (constructed from static
wormholes) have been inade by Friedmann and Morris
[10]. Our aim, however, is to study the propagation of
scalar waves through a static wormhole with a certain
specific metric and without any closed timelike curves.
The background spacetime is chosen as the simplest pos-
sible wormhole, first discussed extensively by Ellis [16]
and later by Morris and Thorne [1]. We deal with both
the (2+ 1)- and the (3+ 1)-dimensional versions of the
metric. The scalar wave equation (massless) is written
down and separated. It turns out that the radial equation
(for the coordinate l} is a modified Mathieu equation in
2+1 dimensions. In 3+1 dimensions it is the radial
equation that appears when the Helmholtz equation is
separated in oblate spheroidal coordinates Both equa-
tions can be solved exactly. We discuss their solutions in
detail and thereafter use them to understand the scatter-
ing of scalar waves in a wormhole geometry. The
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reflection and transmission coeKcients are evaluated for
both the (2+ 1)- and (3+ 1)-dimensional cases, for certain
specific values of the energy of the scalar wave. We also
comment on the possible differences that arise for the
case of a massive scalar wave.

The paper is organized as follows. Section II discusses
the wormhole metric and general features of wormholes
in some detail. Section III deals with the scalar wave
equation, the separation of variables, and the correspond-
ing equivalent Schrodinger-type equations. In Sec. IV we
discuss the solutions for both the 2+1 and 3+1 cases.
The scattering problem is analyzed in Sec. V. Finally,
Sec. VI is a conclusion with comments on certain un-
solved issues.

II. THK %'ORMHOLE GEOMETRY

Spherically symmetric static Lorentzian wormholes are
generically represented by the following form of the
metric:

2 24 (r)dt 2+ + 2d g2d7"

1 b(r) I—r

ds = d—t +dl +(b +1 )d8

(2+1 dimensions), (5)

ds2= d—t'+dl'+(bo+1 )(d9 +sin'8dg')

(3+1 dimensions) . (6)

In the above I —~+ oc and ~—oc correspond to the
upper and lower asymptotically flat regions. 1=0 is the
throat region. We now write down the scalar wave equa-
tions for the two cases, separate them and solve them.

III. MASSLESS SCALAR WAVE EQUATION,
SEPARATION OF VARIABLES,

EQUIVALENT ONE-DIMENSIONAL PROBLEMS

The massless scalar wave equation is given by

g"'V„V,,4 =0,
where V„denotes the covariant derivative. We shall dis-
cuss the (2+ 1)- and (3+ 1)-dimensional cases separately.

A. 2+1 dimensions

where 4(r) is known as the redshift function, b (r) the
wormhole shape function, and d 0 =d 9 (2+ 1 dimen-
sions), dQ =d8 +sin 8dg (3+1 dimensions). The
metric in (1) can be written alternatively by introducing
the proper radial distance function 1 (r) defined as

Using standard methods of separation of variables we
find that the equations for the t, I, and 0 coordinates
reduce to the following. We assume

&P(t, 1, 8)= T(t)L (t)8(9) .

1(r)=+
~0 [1 b(r)!r]—'

This leads to the equivalent form of (1) given by

Then,
(2)

d 8 +m 8=0,
d0

ds 2 e 2v(l)dt 2+ dl2+ r2(l)dII2 (3)
T

+Q) T —0,
dt

(10)

where i~(l) is the functional form of P(r) in the 1 coordi-
nate and r(l) is the inverse of l(r). Notice that the vari-
able I extends from —~ to + ~ as r varies from 0 to ~.
For the metric to be a wormhole b(r) and 4(r) have to
satisfy the conditions (i) b(r)/'r ~ 1, b(r =bo)=bo, (ii)

r ~~, b (r) Ir ~0, and (iii) 4(r) finite everywhere. In
the 1 coordinate representation (i) and (ii) translate into (i)
1~+ao, r (1) o-l, and (ii) 1~0, r(1)~bo. The condi-
tion on 4(r) becomes an exactly identical condition on
~(l ). The simplest such wormhole metric is the one for
which 4=0, b(r)=bolr or a'=0, r(l)=(ho+1 )' . One
can show that when a t=const 0=m./2 slice of the
(3+1)-dimensional metric or a t=const slice of the
(2+1)-dimensional analogue is embedded in fiat R the
embedding function z (r) is given by

z(r)=boarccosh(r/bo) .

It can also be shown that the Einstein equations of gen-
eral relativity imply that such a metric can exist only if
the classical energy-momentum tensor in the static
observer's frame has a negative energy density. This is
the background metric we shall use for studying scalar
waves. We explicitly write out the metrics for the (2+ 1)-
and (3+1)-dimensional cases below (in the 1 coordinate
representation):

d L
(b +1 ) +1 +[co (b +1 ) —m ]L=0.

The first two of these equations are simple. The third
equation can be reduced to the following alternative
forms. If we define a function g (1) such that

L(1)=
(b2 g, 12)1/4

(12)

then (11) reduces to

d2 + CO

dl

2b —l 2

+ g=0. (13)
4(b +1) b +1

This is the equivalent one-dimensional problem
(Schrodinger equation) with the role of energy being
played by co and the potential function is given by the
term in large parentheses. The allowed values of m are
discrete in order that 8(8) be single valued. The effective
potential is plotted for various values of m in Fig. 1. For
m=O there are two minima situated at l =5bo and a
maximum at l=0. If m )0 the potential has only a max-
imum at 1=0. Asymptotically (1~k~) the potential
drops to a zero value. On the other hand, if one uses the
transformation



49 SCALAR WAVES IN A WORMHOLE GEOMETRY 855

(a)
monies. As in the 2+1-dimensional case Eq. (18} can
also be reduced to an equivalent Schrodinger-type equa-
tion of the form

d2F

dl

bo p(p+1)
(b +I ) (b +I )

F=0, (21)

where we have

L (I)= F(1)
(b 2 +12)1/2

(22)

I

-(0

(b)

On the other hand, by introducing )=I/bo we can write
(18) in the form

(1+/ ) +2/ +[to ba(1+/ )
—p(p+1)]L =0 .2 d2L dL

dg'

(23)

The Helmholtz equation (V +k }/=0 when separated
in oblate spheroidal coordinates (see Appendix} yields a
radial equation of the form

d vmn dUm~
(1+/ ) +2(

dg
FIG. 1. (a) The V(l) versus l plot for the effective potential in

Eq. (13)~ bo is chosen as 1 and m=1,2,3 for the three curves
with successively increasing values of the barrier at l=0. (b)
The U(1) versus I plot for the effective potential in Eq. (13).
b0=1 and m=0.

+ —
A, „+kg—m

U „=0.1+( (24)

For m=0 this equation is exactly the same as (23) with
the identifications

I =bosinhg, (14)
Ao„=p(p+1) —ro ba and k =co bo . (25)

one can reduce (11) to the equation

d 2
L (g) —(a —2q cosh2$}L (g) =0, (15)

In 3+1 dimensions one can similarly use

4(t, 1, 8,$)=T(t)L (l)8(8)P (P) . (16)

The corresponding equations for T(t), L (I), 8(8), and
P(P) turn out to be

d2T
+co T —0 (17)

dt2

2dL dL(b~~+I ) +21 +[co (ho+I ) —p(p+1)]L =0,
dl

(18)

where a =m ro bo/2 and —
q =to bo/4. The equation in

(15) is known as the modified Mathieu equation with
a +2q =m as a constraint on the values of (a, q).

B. 3+1dimensions

Therefore, A,a„+k =p(p+1) is a constraint on the al-
lowed values of A,a„, which are essentially functions of k .

The potential function in (21) is plotted in Fig. 2. For
all l this is a barrier-type potential with the barrier situat-
ed at 1=0. We have, therefore, reduced the study of sca-
lar waves to a one-dimensional scattering problem in
traditional quantum mechanics. The reflection and
transmission coei5cients across the barrier can now be
evaluated very easily. However, before we do that it is
essential to understand certain important characteristic
features of the functions which are the solutions of (15)
and (23}. This is dealt with in the subsequent section.

l d . dO msin8 + p(p +1)— 8=0,
sinO dO sin O

(19)

d P
d

+m P=O. (20)

The solutions to (19) and (20) comprise the spherical har-

FIG. 2. The V(1) versus l plot for the effective potential in
Eq. (21). bo is chosen as (1) and p=0, 1,2 for the three curves
with successively increasing values of the barrier at I=O.
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IV. THE EXACT SOLUTIONS
IN 2+ 1 AND 3+1 DIMENSIONS

The full solution of the wave equation in 2+1 dimen-
sions will be (see Appendix)

AMC 2„2„+1
+ z„zn +

(1) (2)

fol a 2„
4(r I 0) e e ' X

~zn, zn +1 ~zn, zn +1

for bz„,

(26)

where Mc2n, 2n+1 d MC2n, 2n+1 ale a fundamental sys-(1) (2)

tern for the l coordinate equations for the characteristic
values a2n d azn+1' M~zn, zn+1 and Mszn, zn+1

(1) (2)

fundamental system for which the characteristic values
are bz, and bz„+, . Known solutions to the modified
Mathieu equation are essentially of two types —integral
order and fractional order. In the above we have written
down the solutions for integra1 order only. Thus we have
chosen specific values of (a, q) that lie on the characteris-
tic lines. These values are the ones we get when we inter-
sect the characteristic lines with the straight lines
a +2q =m . Other values of (a, q) which lie on the lines
a +2q =m and fa11 in the regions between the curves a,
and b,.+, give rise to the fractional order modified
Mathieu functions. It is worthwhile to note that for
m=0 there are known solutions for positive values of q.
The diagram shown in Fig. 3 demonstrates the facts dis-
cussed above. Details about the modified Mathieu func-
tions can be found in the Appendix of this paper. It is
necessary to realize. that all the information regarding the
re6ection and transmission of scalar waves can be ob-
tained by properly analyzing the solutions of the I coordi-
nate differential equation. The asymptotic forms of the
various solutions are essential ingredients for understand-
ing scattering phenomena. Below we discuss the asymp-
totic forms of Mc' "and Mc' ' as I ~+ ~ and —+ —~ in

some detail. We sha11 work with the solutions on the
characteristic lines az„, thus considering only Mcz'„' and
Mcz„'. For all other cases the analysis is very similar.

Using the Bessel function series representations for the
functions Mcz'„' and Mcz„' we first analyze the limit
I~ ~ (g~ ~ ). The series for Mc2'„ is valid for all g
( —oo & g & oo ) whereas for Mc&„' it is valid only for g) 0.
Moreover, Mcz'„' is an even function whereas Mcz„' is nei-
ther even nor odd.

20
I

50 40

FIG. 3. The b versus S plot for the characteristic lines. Here
b =m and S=co bo. In relation to a, q we have S=4q and
a +2q = b. The regions between the a; and b;+ &

curves are the
"stability regions. " (i), (ii), (iii), (iv), and (v) correspond to m = 1,
2, 3, 4, and 5, respectively (i.e., b= 1, 4, 9, 16, and 25).

Mc2'„[ce2„(0,q)] ' g (
—1)"2~1",(q)

k=0
1/2

~v'q cosh(
cos(2v'q cosh/ —~/4),

Mc2„[ce2„(O,q)] ' g (
—1)"22k(q)

k=0

~v'q cosh(

1/2

sin(2&q cosh( ~/4) .

(28)

B. Asymptotic forms for g~ —ao ( I ~ —ao )

The arguments for analytically extending Mcz'„' for
g & 0 are presented in the Appendix. Here we just state
the result:

A. Asymptotic forms for g~ oo (1-+ Do )

The asymptotic forms for g~ ~ (l ~ ~ ) are the fol-
lowing:

Mc'z'„'~ [ce,„(O,q)] ' g (
—1)"&qk(q)

I& =0 wVq cosh/

1/2

cos(2v'q cosh( —~/4),

Mc',"~ [ce,„(O,q)] ' g (
—1)"(q)

I& =0
t.

harv'q cosh(

1/7

[
—sin(2V q cosh( —vr/4) —2f, 2„cos(2v q cosh( —m. /4)],

{30}
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Mc2'„'(o, q)

Mc,"„'(O,q)
(31)

where ce2„ is the ordinary Mathieu function evaluated at
)=0 and

g~ —oo:

u„() (()~ sink(, n even,
qno

k

'qno
v„'0'(g)~ — coskg, n odd, (3&)

@(r l g ) jicute+imPP)m) (cosg)

Au„'0 (g)+Bu„'0'(g) n even,

Cu(t (g)+Du(0)(g) n odd . (32)

We have written two different sets of solutions for n odd
and n even with the same notation v„'0 v O'. It should be

noted that the functional series representations for n odd
and n even are not entirely identical. In this case also we

have a constraint on the allowed values of A,o„[this is the
condition Ao„= —k +p(p+1)]. Therefore, we have to
draw the lines A,()„=—k +p(p+1) on the A,()„-k plot
for the characteristic curves. Each value of p gives a cer-
tain straight line which cuts the n =0, 1, . . . curves at
specific points. These points denote the specific values of
k for which we have the solutions v 0„' and vo„'.

The asymptotic forms for vo„' and v 0„' can be written

down from Ref. [16]. These are as follows. For g~ —oo

we use the fact that vo„' is neither even nor odd and

define joining factors by which we analytically extend the
solutions to the g (0 region:

f, 2„are known as the joining factors and are tabulated in

Refs. [17, 18].
A remark about the allowed values of (a,q) or co bo is

in order now. We note that solutions to the l equations
are possible only for certain ranges (bands) of energies of
the scalar wave. The edges of the bands lie on the
characteristic curves and therefore correspond to integral
order solutions. The region within the curves a; and b;+ &

lying on a +2q =m but excluding the end points corre-
sponds to fractional order modified Mathieu functions

Cez„+& and Sez„+&, which can coexist for a values

az„+&. However, while discussing the scattering of scalar
waves we shall consider only those values of the energy
which lie on the characteristic lines. In other words, we

deal with only the integral order modified Mathieu func-

tions.
In 3+1 dimensions the situation is quite similar to the

(2+1)-dimensional case. The full solution to the scalar
wave equation is now of the form

v p (g)~ coskg —2h, „sink(, n even
qno qn0

(39)

i/no
u„'0'(g)~ — sink/ —2ic, „coskg, n odd,

where

u(2) (0) u(2)'(0)

„',"(o) ' '" „',"(o) '

(40)

(41)

and q„o are constants while the exact form (see Ref. [1])is
irrelevant for our purpose.

We now have all the essential material to study the
scattering problem in both 2+1 and 3+1 dimensions. It
will be shown that the reflection and transmission
coef5cients depend on the "joining factors" for each of
the cases. In 3+1 dimensions, we are unaware of the ex-
istence of fractional order solutions, stability zones, and
associated characteristics similar to the (2+ 1)-
dimensional case. Also the "joining factors" for 3+1 di-
mensions are not tabulated as they are for 2+1 dimen-
sions.

V. SCATTERING, REFLECTION,
AND TRANSMISSION COEFFICIENTS

g"(l)=(b2+l )' Mc('„'(g, q), (42)

In order to deal with the scattering of scalar waves it is
necessary to go back to the equivalent one dimensional
Schrodinger equations derived from the original l coordi-
nate equation in Sec. III. The relationship between the
functions L (l) and g (l) is given in (12). We know the
solution L (g) which can be written in terms of l using the
inverse relationship g=arcsinh(l/bo). The two linearly
independent solutions to the Schrodinger equations are
therefore given as

v„o (g)~ sink/, n even,qno

k
(33)

where i takes the values 1 and 2. In the previous section
we had discussed the asymptotic forms of Mc2'„' in detail.
The corresponding asymptotic forms for g "(l) are there-
fore given by

u„'I) (g')~ — sink/, n odd,
k

(2) Pn0v„'0'(g)~ — coskg, n even,

(34)

(35)

l ~+ oo.

g"'(l) =
' 1/2

A, cos(col —m. /4), (43)

v„'()'(g)~ — sink/, n odd,
k

(36)

1/2

g(2)(l)— 2
&CO

A, sin( col —m. /4), (44)
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l —+ —oo:

g( )(l)— 2

776)

g (2)( l)
2

1/2

4

' 1/2

A, cos(col vr—/4),

A ) [
—sin(col v—r/4)

(45)

TABLE I. Reflection coefficients for various values of S
and m. S refers to the points of intersection of the line b =m '
with the characteristic curves. f, „ is the joining factor for
Mc,' ' and fo, the same for Ms,' '. ~R~ denotes the absolute
value of the reflection coefficient of a "circular" wave with cer-
tain value ofI and coho (5).

—2f, 2„cos(col vr/—4)], (46)

where

im [g (()( l)+ ig
(2)( I) ] A e

—in/4eiml
)t~ oc

where we now have set

A, = A ((2/neo)'~

(47)

At l~ —~ we have an incident wave and a reflected
wave. Thus,

A, =[cez„(O,q)] '( —1)" g Azt(q) .
k=0

Now, as l ~ ~ we want only a right-moving transmitted
wave. The linear combination of interest is therefore
given by

Indeed

2.25
4.25

18.5 (

7.75
11.25
13.25
12.00
13.75
18.00
33.75
16.75
17.00
25.00
33.00
34.25

(ao)
(aq)
ao, bi )

(a2)
(b, )

(a&)
(a3)
(b3)
(a2)
(a), b~)
(a4)
(b4)
(a3)
(b3)
(a2)

0.2867
0.9280
0.0025
2.099
0.3610
0.1666
5.8009
2.8064
0.5272
0.0059

21.482
18.7585
1.1046
0.1129
0.0835

0.2755
0.6802
0.0025
0.9028
0.3396
0.1644
0.9854
0.9419
0.4663
0.0059
0.9989
0.9986
0.7413
0.1122
0.0832

lim A ( [
—if ~ e '"~t4e —i~(+( I —if q

)e'w/4ei+(]
lim [F„"(g)+iF„' '(g)]~ e'"~,

r~+ oo k
(52)

(48)

Hence the reflection and transmission coefficients are
given by

where q„o are constants given in Ref. [19].
As in the 2+1-dimensional case, for (~—oo we will

have the joining factors coming into the picture. There-
fore,

e, 2n T
1 —if, 2„' 1 if, 2„— (49) ' nO

lim [(1 ih, „)e—'"~+ih, „e '"~] .—oo
(53)

It is easy to see from (49) that

/R '+/T/'=1. (50}

F„"'(g)~ sink/,
k

F„' '(g)~ — coskg .

The linear combination at g~ oo which gives us a purely
right-moving transmitted wave is F„"(g})iF+„)(g().

A similar analysis can be done for the (Mc 2'„'+ „Mc(z„)+,)

and the (Ms'", Ms' '} functions. Thus for certain
specific values of the energies obtained by intersecting the
characteristic curves with the lines a+2q =I we have
the R and T given by (49). Using the tables given in Refs.
[17, 18] we can now evaluate the R and T for those values
explicitly. A short table of values is given in Table I.
The values of ~R

~
there suggest that both "near-perfect"

reQection as well as transmission are possible.
In 3+1 dimensions the solution of the scattering prob-

lem is similar. We shall only be dealing with the case for
which n is even. The relationship between L (g) and F(g)
is given in (22). The asymptotic forms for F("(g) and
F„' )(g ) as g~ 4 oo are given below:

The reflection and transmission coefficients turn out to be

+ih, „
1 —ih, „' T=

1 —ih, „
(54)

Once again it is clear from (53) that ~R ~
+

~
T~ = l.

VI. DISCUSSIONS AND CONCLUSIONS

We may summarize the results of the paper as follows.
(i) The primary motivation of this paper has been to

use scalar waves as a method of studying the properties
of the wormhole. To this end we have exactly solved the
massless Klein-Gordon equation in a wormhole back-
ground both in 2+1 and 3+1 dimensions. The plots of
the effective potentials in Figs. 1 and 2 have shown us
that these are barrier-type potentials. Hence we have
studied the "reflection" and "transmission" of incident
"circular" and "spherical" waves. In 2+1 dimensions,
the properties of the solutions of the modified Mathieu
equation has enabled us to evaluate the "reflection
coefficient" for specific values of the quantity ~ho. In
fact, we have also seen that unless cubo lies within certain
ranges and satisfies a+2q =rn we are unable to write
down explicit solutions. For this specific range of values
of cubo the scattering of scalar waves can be understood
using the known solutions to the wave equation (which
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are finite at infinity). The values of ~R~ given in Table I
confirm the physically obvious fact that for higher values
of co (bo fixed) the reflection is less whereas there is more
transmission. The opposite happens for lower values of
co. If coho is outside the regions between a; and b;+, ex-
plicit solutions are not known and we are unable to ana-
lyze the problem. A similar situation also exists in 3+1
dimensions.

It is important to note the difFerences between our
analysis and the one due to Clement [15]. Clement's
basic motivation was to demonstrate the fact that the
"wormhole geometry" is a "particlelike" object. In order
to do that he used the scattering of scalar and elec-
tromagnetic waves as probes. By analyzing the "phase
shifts" due to the scattering of incident phase waves he
arrived at certain interesting conclusions supporting the
conjecture that "wormholes" are, in fact, like "particles. "
His work is essentially an important one in the context of
the Wheeler-Misner concept of visualizing classical phys-
ics as manifest in just the geometry of spacetime. As
mentioned in the introductory sections of this paper the
context in which "wormholes" are discussed in recent
times is somewhat difFerent.

(ii) One can also visualize the reflection and transmis-
sion of scalar waves in the following alternative way. The
wormhole has two asymptotic regions (l~~, l ~—00 ).
Suppose we have an observer in the l ~—00 region. He
sees a certain wave being sent in through the throat. As
he is totally unaware of the existence of another asymp-
totic region he can think that the incident wave is, in a
sense, partially "absorbed" and partially reflected. In
fact, he can, in principle, use his intellectual abilities to
predict that he is in a wormhole geometry and not just in
flat space. The existence of a "tunnel" to the "other
universe" is a primary cause of certain characteristic
properties of the reflection and transmission of scalar
waves of specific values of m and p (as well as robo) in
2+ 1 and 3+ 1 dimensions, respectively.

(iii) The obvious question that one can ask is "What
happens if we send in a massive scalar wave?" The
answer to this is a1most trivial. If one response is co by
co +m =co' one can repeat the same analysis as for the
massless case without any modifications. The parameters
a and q will have their values in terms of co' . Hence the
possible values of mbo will change when viewed relative
to the massless case. In 3+1 dimensions also a similar
situation arises. The complete study of "perturbation" of
a wormhole geometry would actually require understand-
ing the "reflection" and "transmission" of "electromag-
netic waves" as well as "spin-halP' waves (the Dirac
equations) as well as the problem of general gravitational
perturbations. Work along these lines is in progress and
will be communicated in the future.

(iv) Finally, we mention the following analogy. The
fact that the geometry used in this paper has a
"catenoidal" spacelike section when embedded in R im-
plies that it is a "minimal surface" (a surface of zero
mean curvature). Such surfaces occur when one studies
soap films formed between rings. Thus, our study of sca-
lar waves is in principle a study of the vibrational modes
of the soap film modulo the fact that appropriate bound-

ary conditions have to be employed for the latter. Using
exactly the same analysis (2+1 case) one can actually
comment on the stability of such films. A detailed under-
standing of this analogous problem will be dealt with sep-
arately later.
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APPENDIX: MODIFIED MATHIEU FUNCTIONS
AND RADIAL OBLATE SPHEROIDAL

WAVE FUNCTIONS

1. Modi6ed Mathieu functions

Several authors have discussed Mathieu and modified
Mathieu functions in great detail [17, 18, 20, 21]. In this
appendix we collect some of the relevant material, in or-
der to make this paper self-contained.

The original Mathieu equation which Mathieu had
studied is of the form

+(a —2q cos2z)y =0 .
dz2

(A 1)

Replacing z by iz we arrive at the modified Mathieu equa-
tion

3' —(a —2q cosh2z)y =0 .
dzz

(A2)

1)ng 2n oo

2kcz„= g A z„(q)cosh2kz,

(A3a)

We shall not go any further into discussing the solu-
tions of (Al). Rather we shall concentrate on the solu-
tions of (A2). It is worthwhile to mention that (Al) and
(A2) appear when the Helmholtz equation (V +k )/=0
is separated in elliptic-cylindrical coordinates.

Solutions to (A2) are dependent on the values of a and
q (or b and s). In fact, the b splot show-n in Fig. 3
demonstrates this fact clearly. The solid lines (marked
ao, a, , b„etc.) on the plot are known as the characteris-
tic lines. Values of (a, q) lying on these lines yield solu-
tions to (A2) known as Mathieu functions of integral or-
der. These are the functions Mcz'„', Me&'„'+„Ms&'„', and
Ms2„'+, for a values lying on the a2„, a2„+„b2„,and

b2„+, curves, respectively. These functions can be
represented by infinite series in various ways. The most
common of these representations are the cosh or sinh
series, the Bessel function series, and the one in terms of
products of Bessel functions. The first one of these repre-
sentations is given below:
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1 )n+ 1 g 2n+ 1 ~
MC2n+1

(1)

ce 2„(1r/2, q) [ce2„+1(o,q) ]

where

f, „=—Mc„' '(0, q) /Mc„' "(0,q),

X g A2„"+,'(q)cosh(2k+1)z,
k=0

1 )n B2n
Ms&'„1= g B2„"(q)sinh2kz,

se'2„(0,q)Se2„(n/2, q) k-0

1 )
n + 1B2n + 1 g

(1)
MS2n+1

se 2„+1(0,q)se 2„+,(~/2, q )

X g B2„"+,'(q)sinh(2k+1)z .
k=0

(A3b)

(A3c)

(A3d)

z=0

The asymptotic forms for the functions Mc"', Mc' ',
M$'", and M$' ' have been discussed earlier, and there-
fore are not repeated here.

Apart from the integral order solutions the Mathieu
equation as well as the modified Mathieu equation has a
solution of real fractional order. The regions between a;
and b,. +, in the plot correspond to the region of stability.
Within these regions and away from the characteristic
lines we have these fractional order solutions. The func-
tions Ce2„+& and Se2„+& are not basically periodic and
can coexist for the same value of a2„+&.

Mc,'„'=[ce,„(O,q)] ' g ( —1) +"22k(q)
k=0

XZ(2~k(2&q coshz), (A4)

Ms(2'„'=[sez„(O, q)] 'tanhz g (
—1)"+"2kB2k(q)

k=1

XZ(2jk(2&q coshz) .

(A5)

The Mc2n', Mc2n'+1 M 2n& and M$2n+1 form the "basi-
cally periodic" solutions of the Mathieu equation. Mc2'„'
and M$2'„' or any such pair cannot coexist for the same
values of (a, q). Thus we require a second solution to the
modified Mathieu equation. These second solutions are
the Mc' ' and Ms' ' corresponding to Mc"' and M$"',
respectively. The Mc" and M$"' are even and odd solu-
tions, respectively. A theorem due to Ince [18] says that
the Mc' ' and Ms' ' are functions which are neither even
nor odd. The Bessel function series representations are
given below. The series involving the J Bessel functions
are valid for all z. On the other hand, the series involving
the Neumann ( F Bessel function) functions are valid for
z)0. We shall discuss later in this Appendix how to
analytically continue the Mc' ' or M$' ' for z (0:

2. The radial oblate spheroidal functions

If we separate the Helmholtz equation in oblate
spheroidal coordinates the radial equation has the form
given in (24). However, we are concerned with only the
m=0 case, i.e., the functions vo„. Once again, as in the
Mathieu case, we have a set of solutions which are even
or odd according to whether n is even or odd. These are
known as the first solutions and we denote them by vo„'.
The second solutions are neither even nor odd and corre-
spond to a second set Uo(21. Both Uo(1„) and vo(2) exist for the
values of A,o„which lie on the characteristic lines shown
in Fig. 4. The analytical continuation to values of z (0 is
based on the same analysis as for the case of modified
Mathieu functions. (Unfortunately we are not aware of
the existence of tables for the joining factors in this case.
Therefore, we have to remain satisfied with the analytical
expressions only. )

It is useful to make the correspondence between the
v'" and the v' ' and the Mc"', Mc' ' Ms'" and Ms' '

IOO

The formulas for a2„+, and b2„+, are exactly identical
with 2n~2n+1 and 2k~2k+1. Zz~& denotes a J
Bessel function for j= 1 and a Y Bessel function of J=2.

We now move on to the analysis for z&0. This is
based on Sec. 20.6.18 of Ref. [17]. Consider two com-
binations

8Q

I

40&

X, =Mc,' '(z, q)+Mc„' ( —z, q),
X2=Ms,( '(z, q) —Ms„( '( —z, q) .

(A6a)

(A6b)
20

Mc( '( —z, q)= Mc„' '(z, q) ——2f, „Mc„' '(z, q),
Ms„( '( —z, q) =Ms„' '(z, q) —2g, „Ms„'(z,q),

(A7a)

(A7b)

X, is even and therefore proportional to Mc„"'(z,q). X2
is odd and proportional to Ms,("(z,q). The proportionali-
ty factors are evaluated by using the values of the func-
tions at z=0. It turns out that

40

&on

80 IOO

FIG. 4. The ko„versus k plot for the characteristic lines for
the oblate spheroidal wave functions with m=O. (i), (ii), (iii),
(iv), and (v) refer to the straight lines A,o„=—k +p(p -+1),
where p=2, 3, 4, S, 6, and 7, respectively.
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clearer. vo'„' for n even is the analogue of Mc"' and vo'„'

for n odd is similar to Ms"'. vo„' (n even) and vo„' (n
odd) correspond to Me' ' and Ms' ', respectively. The
series representations for the vc'„' (i=1,2) are given in

Refs. [19, 22]. Leitner and Spence [19] have discussed
the oblate spheroidal wave functions in great detail. The
reader interested in spheroidal wave functions in general
is referred to Refs. [22—25].

[1]M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395
(1988).

[2] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.
Lett. 61, 1446 (1988).

[3]H. Epstein, V. Glaser, and A. Jaffe, Nuovo Cimento 36,
2296 (1965).

[4] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793
(1948).

[5] D. Hochberg and T. W. Kephart, Phys. Lett. B 268, 377
(1991).

[6] D. Hochberg, Phys. Lett. B251, 349 (1990).
[7]J.W. Moffat and T. Svobada, Phys. Rev. D 44, 429 (1991).
[8] B.Bhawal and S. Kar, Phys. Rev. D 46, 2464 (1992).
[9]M. Visser, Phys. Rev. D 39, 3182 (1989); Nucl. Phys.

B32, 203 (1989).
[10]J. Friedman, M. S. Morris, I. D. Novikov, F. Echeverria,

G. Klinkhammer, K. S. Thorne, and U. Yurtsever, Phys.
Rev. D 42, 1915 (1990); J. Friedman and M. S. Morris,
Phys. Rev. Lett. 66, 401 (1991).

[11]S.Y. Kim, Phys. Rev. D 46, 2428 (1992).
[12]T. A. Roman, Phys. Rev. D 47, 1370 (1993).
[13]D. Hochberg and T. W. Kephart, Phys. Rev. Lett. 70,

2665 (1993).
[14]Sayan Kar, Phys. Rev. D 49, 862 (1994).

[15]G. Clement, Int. J.Theor. Phys. 23, 335 (1984).
[16]H. Ellis, J. Math. Phys. 14, 104 (1973).
[17]Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1965).

[18]National Bureau of Standards, Tables Relating to Mathieu
Functions (Columbia University Press, New York, 1951).

[19]A. Leitner and R. D. Spence, J. Franklin Inst. 249, 229
(1950).

[20] F. M. Arscott, Periodic Differential Equations (Macmillan,
New York, 1964).

[21] N. W. MacLachlan, Theory and Applications of Mathieu
Functions (Dover, New York, 1964).

[22] C. Flammer, Spheroidal Wave Functions (Stanford Univer-
sity Press, Stanford, CA, 1957).

[23]J. A. Stratton, P. M. Morse, L. J. Chu, and R. A. Hutner,
Elliptic Cylinder and Spheroidal 8'ave Functions (Wiley,
New York, 1941).

[24] P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953).

[25] Higher Transcendental Functions (Bateman Manuscript
Project), edited by A. Erdelyi et al. (McGraw-Hill, New
York, 1953), Vol. 3.


