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There exists an upper limit on the mass of black holes when the cosmological constant A is positive.
We study the collision of two black holes whose total mass exceeds this limit. Our investigation is based
on a recently discovered exact solution describing the collision of Q=M black holes with A&0. The
global structure of this solution is analyzed. We find that if the total mass is less than the extremal limit,
then the black holes coalesce. If it is greater, then a naked singularity forms to the future of a Cauchy
horizon. However, the horizon is not smooth. Generically, there is a mild curvature singularity, which

still allows geodesics to be extended. The implications of these results for cosmic censorship are dis-

cussed.

PACS number(s): 04.20.Cv, 04.20.Jb, 97.60.Lf

I. INTRODUCTION

It is almost 25 years since Penrose first proposed his
cosmic censorship conjecture [I]. Roughly speaking, this
conjecture states that naked singularities do not form
from realistic physical processes. This conjecture is wide-

ly believed to be true and has become the cornerstone of
our understanding of gravitational collapse and black
holes. But despite extensive work over the years we are
still far from having a proof. One appears to need global
existence results for strong-field, nonsymmetric solutions,
which are extremely difficult to obtain.

%hen a proof seems difficult, it may be easier to obtain
a convincing counterexample and show that the conjec-
ture is false. Many attempts have been made. One of the
earliest is the following. Static charged black holes in the
Einstein-Maxwell theory are characterized by their mass
M and charge Q, and exist only for Q ~M. For Q) M
the spacetime describes a naked singularity. One can ask
whether it is possible to start with a black hole with

Q = M, drop in a test particle with charge greater than its
mass, q & m, and turn the black hole into a naked singu-
larity. Wald showed that this cannot happen [2]. In or-
der that a q & m test particle may reach the horizon, it
must be thrown in with sufficient kinetic energy that the
mass of the black hole increases more than its charge.

In the presence of a positive cosmological constant A,
there is a variation of this test. Charged black holes in a
de Sitter background have three horizons, an inner and
outer black hole horizon, and a de Sitter horizon. There
are thus two extremal limits. One corresponds to coin-
ciding inner and outer black hole horizons, and is analo-
gous to the extremal Reissner-Nordstrom solution. The
other corresponds to coinciding outer black hole and de
Sitter horizons. In both cases, exceeding these extremal
cases results in naked singularities. For the first type of
extremal limit, it was shown in [3] that it is again impos-
sible to destroy the black hole by sending in charged test

particles. However, we will show in Sec. II that for the
second type of extremal black hole, one can drop in a
charged test particle and exceed the limiting value. One
thus seems to have a potential violation of cosmic censor-
ship when A&0.

To analyze this situation further, one needs to go
beyond the test particle approximation and include the
back reaction of the test particle on the geometry. Ideal-
ly one would like to have an exact solution describing two
black holes colliding in de Sitter space. Remarkably, a
solution of exactly this type has recently been found [3].
The solution describes an arbitrary number of Q=M
black holes with A&0. The solution is dynamical, and
the black holes collide in the future. (Alternatively, one
can consider the time reverse, which describes white
holes splitting and expanding. ) For small M, the single

Q =M black hole is not extremal and has three horizons.
However, when one increases M, there is an extremal
value where the outer black hole and de Sitter horizons
coincide. One can thus consider two black holes each
with mass less than this extremal value, but whose sum is
greater, and let them collide. The purpose of this paper
is to examine this process and determine whether cosmic
censorship is indeed violated.

In order to settle this question, several preliminary
steps are necessary. Some of these have interesting appli-
cations independent of cosmic censorship. First, one
needs to investigate the global structure of the multi-
black-hole solutions. This requires extending beyond the
coordinate patch in which the solutions were first
presented. Here we find a surprise. The horizons across
which one must extend are in general not smooth, but
have only finite dNerentiability. As a result, the exten-
sions are not unique. This has implications for the insta-
bility of the inner black hole horizon [4,5], and yields a
possible analogy to the lack of smoothness of null infinity
in asymptotically fiat spacetimes [6]. Physically, for cer-
tain horizons, the lack of smoothness can be interpreted
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as the result of electromagnetic and gravitational radia-
tion in the spacetirne which is not smooth at the horizon.
We also study null geodesics and determine the global
event horizon. We find that when the total mass is less
than the extremal limit, the black holes coalesce.

Since A) 0, these solutions are not asymptotically flat,
and the usual definitions of black holes and naked singu-
larities are no longer valid. However, for spacetimes that
asymptotically approach de Sitter, there is an analogue of
future null infinity, and one can define the event horizon
to be the boundary of the past of this null infinity. Since
the singularities of a charged black hole are timelike, they
are always locally naked. However, if they are enclosed
inside an event horizon, there is no violation of weak cos-
mic censorship. We will be interested in whether the
singularity is visible to all observers who start from a
given asymptotic de Sitter region in the past. If so, there
would be no way for these observers to avoid seeing the
singularity, and even weak cosmic censorship would be
violated.

Several properties of black holes in de Sitter space have
recently been studied by Shiromizu et al. , [7]. They dis-
cuss black hole collisions, but without the benefit of an
exact solution. By assuming cosmic censorship, they are
lead to the conclusion that large black holes will not col-
lide when A)0. We will see that the exact solution
behaves quite differently.

By studying this solution we find that the question of
whether cosmic censorship is violated by charged black
hole collisions is rather subtle. Three different issues
must be dealt with. First, since the total mass exceeds
the extremal limit, there is always a naked singularity
"on the other side" of de Sitter space, even before the
black holes collide. Thus, one is essentially starting with
singular initial conditions and should not be surprised if
cosmic censorship is violated. We will show that this
problem can be alleviated by introducing a charged shell
of dust, which will remove the unwanted singularity.
Second, there is always a Cauchy horizon, which we will
show is generically singular. However, the singularity is
rather mild, and geodesics can pass through it. Further-
more, there is a large subset of the initial data for which
the curvature singularity is removed. In these cases, all
observers cross the Cauchy horizon and see a naked
singularity. Cosmic censorship is violated. However, the
known exact solutions do not describe the most general
black hole collision with a positive cosmological con-
stant. It is certainly possible that in the generic collision
the singularity at the Cauchy horizon will be much
worse, and there will be no way to continue the space-
tirne. Finally, the naked singularity appears only for eter-
nal black holes. We will see that one can form these
black holes from regular initial conditions (e.g., using
charged dust). But in this case, the matter forming the
black holes and the rnatter introduced to remove the
unwanted singularity collide before a naked singularity is
reached. We do not have the exact solution beyond this
point, and so do not know if naked singularities wi11 form
in the future.

Analysis of the global structure of the multi-black-hole
solutions is complicated by the fact that, in general, they

II. THE Q =M REISSNER-NORDSTROM-de SITTER
SOLUTION

The Reissner —Nordstrom —de Sitter (RNdS) solution is
static and spherically symmetric, and its global structure
can be analyzed by general methods. This has been done
by Brill and Hayward [8]. (For further discussion of the
properties of this solution see [9].) Here we will briefly
recount their results for the case Q =M. We also discuss
briefly the motion of test particles in Q =M RNdS back-
grounds. We show that one can add q =m test particles
to an extremal black hole, causing it to exceed the ex-
tremal limit.

A. Static coordinates

The static form of the Q=M RNdS metric and elec-
trornagnetic potential is

dR
ds = —V(R )dT + +R dQ

V(R )
2

M A-2 M
V(R )= 1 — ——R, AF=-

R 3 R

(2.1)

We assume A) 0, and will interpret M as the mass of the
black hole. There is a curvature singularity at R =0.
Horizons occur where V(R )=0 and R )0. The number
of horizons depends on the mass and cosmological con-
stant. For M A & —,'„there are three horizons: inner and
outer black hole horizons and a de Sitter horizon. If the
mass of the black hole is increased, the outer black hole
and de Sitter horizons move closer together. They coin-
cide at the extremal mass given by

M 3
ext =

16A
(2.2)

For M )M,„,there is only a single horizon. We will call
this the "overmassive" case.

The Penrose diagrams for these three cases are shown
in Figs. 1 —3. Figure 1 shows the case M &M,„,with its

are neither static, nor spherically symmetric. In light of
this we begin in Sec. II by discussing the special case of a
single black hole. This is described by the
Reissner —Nordstrom —de Sitter solution. We will show
that, in the test particle approximation, a Q=M black
hole can have its mass increased past the extremal limit
of coinciding black hole and de Sitter horizons. In Sec.
III we start our discussion of the multi-black-hole solu-
tions by examining the basic features of their geometry.
By locating the trapped surfaces, we see here the first evi-
dence that some of them describe coalescing black holes.
In Sec. IV we investigate extensions of the solutions and
discuss the lack of smoothness at the horizons. Sec. V
contains a discussion of the event horizon and establishes
that (when the total mass is less than the extremal limit)
its topology indeed changes, showing that black holes do
combine. In Sec. VI we consider the introduction of
charged dust. Finally, in Sec. VII, the possible coun-
terexample to cosmic censorship is studied. Section VIII
contains some concluding remarks.
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past de Sitte
horizon

FIG. 3. Penrose diagram for the Q =M RNdS geometry with
M & M,„t.The notation is the same as for Fig. 1.

oularitx
B. Cosmological coordinates

FIG. 1. Penrose conformal diagram for the Q =M RNdS
geometry with M &M,„,. The maximally extended spacetime
continues indefinitely in all directions. The region covered by
the cosmological coordinates (r, ~) lies inside the bold lines.
Two horizons are labeled. The inner horizon is the extension of
the line labeled r= ~ to the region between the singularities
(also see Fig. 5). The solid curves represent ~=const surfaces
and the dotted curve shows a typical r=const surface. The
dashed line denotes ~=0.

M 1
U =H~+ r' ' U'

(2.3)

where H=+&A j3. The transformation from the static
coordinates to cosmological coordinates is given by

The Q =M RNdS solution can also be expressed in iso-
tropic or "cosmological" coordinates:

d"
ds = — +U (dr +r dQ )

U2

three horizons. Notice that 2—are spacelike when A )0.
The overmassive case is shown in Fig. 3, and clearly has
naked singularities. However, these singularities exist for
all time, and hence this is not a violation of cosmic cen-
sorship. The extremal limit, Fig. 2, is rather unusual.
This solution has singularities, which are visible from J+,
and also a nonsingular spacelike surface to their past.
(By making an appropriate identification this surface can
even be compact. } However, there are complete timelike
geodesics along which the singularity is never visible.
(These reach the point p in the figure). Thus, one can
view the point p as a future timelike infinity and define a
horizon to be the boundary of its past. This illustrates
the difficulty of defining a naked singularity when the
cosmological constant is nonzero. As started earlier, we
will call a singularity naked if it is visible to al/ observers
originating from a given asymptotic de Sitter region in
the past. So the extrernal limit is not naked in our sense.

R =Hwr+M,

T= —InHr —h(R ),l

0
dh HR

dR (R —M }V(R )

(2.4)

Since (2.3) is the form of the solution that is easily gen-
eralized to several masses, it is useful to understand how
these cosmological coordinates cover the spacetime. In
Fig. 1 a single patch of (r, r) coordinates with H (0 cov-
ers the region enclosed by the bold lines. Some constant-
~ surfaces have been drawn in this region. Below the
dashed line ~ is negative. The left-hand end of the con-
stant r surfaces is r = ~. The right-hand end is r =0 (but
we will soon see that this is an "infinite throat, ' not a
regular origin of polar coordinates). Above the dashed
line ~ is positive. In this region, the right-hand end of the
constant-~ surfaces is still r =0, but the chart ends on the
left at a finite r, where U vanishes and the geometry is
singular. Note that this coordinate patch covers a past
de Sitter horizon and the inner and outer black hole hor-
izons. The future de Sitter horizon corresponds to r = ~,
-=0, and the region beyond this horizon, where 2+ lies,
is not covered by these coordinates, but it is covered by
(2.3) with H &0.

The extremal limit and overmassive cases, Figs. 2 and
3, are similar. Again we have drawn some constant-~
surfaces and again ~=0 is shown as a dashed line. The
geometry of the spatial slices for ~(0 is regular, but for

~ &0, r again extends only to a finite maximum value at
the singularity.

C. Paths of test particles

FIG. 2. Penrose diagram for the Q =M RNdS geometry with
M=M,„,. The notation is the same as for Fig. 1.

Consider a q =m test particle with conserved energy
F =m moving in a Q =M RNdS spacetime. It was
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shown in [3] that the radial motion, in static coordinates,
is given by

dR — dT 1

dA,
'

dA, yR
M
R

(2.5)

III. GENERAL PROPERTIES
OF THE MULTI-BLACK-HOLE SOLUTIONS

where A. is the proper time along the path. There are two
possibilities for the motion depending on whether the
signs in (2.5) are chosen to be the same or opposite. The
other choices of sign in (2.5) reverse the flow of time
along these paths. It is simple to check, using (2.4), that
choosing both plus signs in (2.5) gives a path of constant r
in cosmological coordinates. Similarly, we can define a
new set of cosmological coordinates (r', r') by reversing
the sign of the static time coordinate T in (2.4). The
paths (2.5), with opposite choices of signs are then paths
of constant r'. These paths of constant r' will be impor-
tant to us in Sec. VI when we discuss the collapse of
charged shells.

Now consider a test particle on a path of constant r,
such as the one shown in Fig. 1. At early times the test
particle is outside both the de Sitter and black hole hor-
izons. As time progresses, it enters first the de Sitter and
then the black hole horizon. Nothing in the above dis-
cussion relied on the black hole being undermassive. If
the black hole is an extremal one, the description is
roughly the same, with the test particle passing through
the degenerate horizon. It follows immediately that there
is no barrier to such a test particle entering the horizon.
One can exceed the extremal mass limit by dropping in
test particles. Furthermore, since the charges on the
black hole and test particle provide a repulsive force, we
expect that this phenomenon will be generic for black
holes and test particles with charge less than their mass.

Near the origin of these coordinates, this metric becomes

M.
dl = dr +MdQ

r
(3.3)

which is the metric for a cylinder of infinite spatial extent
having cross-sectional area 4m.M; .

The curvature of (3.1) can be singular at zeros of the
metric function U. This can be seen from the square of
the Maxwell field strength:

F2 F—F
U4

(3.4)

where V denotes the usual gradient with respect to r. If
U=0 and VU does not vanish like U or faster, then F
diverges and the curvature is singular. The metric is reg-
ular everywhere else, but it is incomplete as discussed in
Sec. IV.

Assembling these elements we get a picture of how the
spatial geometry develops in cosmological time. We will
start with one black hole first. Consider the spatial sur-
faces for a single black hole with mass M & M,„„which
are sketched on Fig. 1. The metric function is
U=Hr+M/r. For x&0, U is positive everywhere and
the spatial surfaces are nonsingular. They are asymptoti-
cally flat and have the cylindrical form of an infinite
throat near the origin. For ~=0, the spatial metric is
regular and has the cylindrical form everywhere. As ~ is
increased slightly, a singularity appears near r = 00. As ~
increases further, the singularity cuts off more and more
of the cylinder. In Fig. 1 this is shown by the way the
singularity intersects the spatial surfaces.

The generalization to more than one mass is then
straightforward. For ~&0 the spatial surfaces are non-
singular and asymptotically fiat at large radius. Near
each "point" r;, the spatial metric has the form (3.3) of a
throat. These surfaces are depicted in Fig. 4(a). For

A. Geometry of spatial surfaces

The solutions of Ref. [3] depend on a number of pa-
rameters that correspond to several different masses at
arbitrary positions (but not arbitrary velocities). The
metric and gauge field for mass parameters M; and posi-
tions r; are given by

ds = — +Udrdr, A =—,2 dH 2 1

U2 U
'

M,-U=Hr+g, H=+v A/3 .
/r —r, /

'

(3.1) a)

Unless otherwise stated we will assume H &0. It is only
for this case that the spacetime describes black hole col-
lisions. In terms of H, the extremal limit (2.2) is

M 1
ext

4/H[
(3.2)

The surfaces of constant ~ are spacelike everywhere.
Near each r, the geometry resembles the infinite throat
familiar from the asymptotically flat extremal Reissner-
Nordstrom solution. This can be seen by expressing the
spatial metric in spherical coordinates centered at r=r;.

(c)
FIG. 4. Qualitative representation of the geometry on space-

like surfaces of constant ~: (a) ~ & 0, (b) &=0, (c)
0 & r « gM, /Ha, where a is the typical coordinate distance be-

tween the centers, (d) M; /Ha (&~.
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~=0, the surface is nonsingular, but spatial infinity is
now also asymptotically cylindrical. This surface is de-
picted in Fig. 4(b). As r is increased slightly above zero,
a singularity moves in from spatial infinity as shown in
Fig. 4(c). As r continues to increase, the singularity splits
and eventually surrounds each of the throats individually.
The spatial surface is then composed of a number of iso-
lated throats, as depicted in Fig. 4(d). This description is
independent of the size of the masses, and hence applies
to both the overmassive and undermassive cases.

B. Trapped surfaces

The causal structure of the multi-black-hole solutions
is rather involved. To gain some understanding we begin
by considering trapped surfaces. The expansions 0,„,
(8,„)of out-going (in-going) null rays normal to a two-
surface X in a spatial hypersurface are given by

0=D;n' —E; n'n~+E, (3.5)

R =—Hrw, (3.6)

which is simply related to the static R coordinate by
R =R —M (2.4). The expansions are

0OU(
=2H +

2 0jll
=2H

(R+M) (R+M)
It will be useful to define

a =—&1+4MH

(3.7)

(3.8)

and

where h;, E;- are the metric and extrinsic curvature on
the spatial hypersurface, D, is the covariant derivative
compatible with h;, E =h, E'~, and n

' is the outward (in-

ward) directed normal vector to X. A surface X is called
outer trapped if 0,„,& 0, and inner trapped if 0;„)0. Sur-
faces for which 8,„,(8;„)vanish are called outer (inner)

apparent horizons. For the surfaces of constant z in the
metric (3.1), the extrinsic curvature is simply given by

K; =Hh;.
In the case of a single black hole of mass M, one can

calculate the expansions exactly for spheres centered on
the origin. The result depends only on the quantity

In Fig. 5 we have drawn the coordinate patch covered
by (r, r). The coordinate patch is divided into four re-
gions, labeled I—IV, by various horizons. These horizons
coincide with the boundaries of the regions of trapped
surfaces, RBn, R~s, R;„,given in (3.10)—(3.12). Spheres
in region I are outer trapped, and the boundary between
regions I and II corresponds to Rzs. Spheres in region
III are also outer trapped and the boundary between re-
gions II and III is given by RB~. Spheres in region IV
are both inner and outer trapped.

We now consider the two-black-hole solution where
each mass is less than the extremal limit M, &M,„,. The
main difference from the one-black-hole case, or the mul-

tiple black holes with zero cosmological constant [10], is
that these solutions are dynamical. The apparent horizon
will evolve in time. Of course, with two black holes an
apparent horizon will no longer be precisely spherical,
but it will be approximately spherical in limiting cases.
Hence we consider

0,„,=0, (3.13)

evaluated on appropriately centered spheres. (Trapped
surfaces have been found for initial data describing two
uncharged black holes with A )0 in [11].)

Spheres of suSciently small radius, centered at r;, are
always trapped. At early time, for ~ &&0, there is a solu-
tion for 8,„,=0 at ~r

—r, ~
=Rau [M, ]/Hr, since the equa-

tion is identical to that of RNdS with mass M, [Here
Ra~ [M; ] is defined as in (3.10), with M replaced by M, .]
So, around each throat there is a region of outer trapped
surfaces, surrounded by an external region. Actually,
around each mass there is also the second solution to
8,„,=0 at

~
r —r, ~

=R zs [M; ]/Hr. These two solutions
correspond to the black hole horizon and the past de Sit-
ter horizon in the RNdS spacetime.

Spheres of constant r (where r is much larger than the
coordinate distance between the two masses) resemble
spheres in the RNdS solution with mass equal to the total
mass M =+M;. If M (M,

„„

then at late times, as r ap-
proaches zero, one again has two (outer) apparent hor-
izons at r=RB~/Hr, and r=R~s/Hr. This suggests
that the black holes coalesce. If M )M,

„„

then there are
no apparent horizons at late time for large r. We will

g—=&1—4MH .

0,„,vanishes at

R = — (1+2MH —a)1

(3.9)

(3.10)

ancl

Rqs = — (1+2MH+a),1
(3.11)

which correspond to the black hole and de Sitter hor-
izons. The in-going expansion 0;„vanishes at

(3.12)

which corresponds to the inner horizon. The quantities o.'

and /3 will play an important role in what follows.
FIG. 5. Regions of trapped surfaces and the horizons that

separate them for the RNdS geometry.
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have more to say about this case in Sec. VII.
One can understand the behavior of the apparent hor-

izon as follows. For the RNdS solution, the horizon is at
fixed R, which corresponds to r CC 1/Hr. So when r is
large and negative, the horizon is at small T, and when
z=O, it is at large T. In both of these limits, the two
black hole solution resembles the one black hole solution
(although with different masses). RBH

IV. EXTENSIONS

A. Locating the horizons

ds=0 .

As one might expect from the RNdS solution, the re-
gion of spacetime described by the metric (3.1) (with ~, r
taking all real values) is incomplete, even away from the
curvature singularity. It is bounded by the analog of the
de Sitter horizon at large T and the inner black hole hor-
izon and past white hole horizon at small ~r

—r; . In
both these regions the metric becomes approximately
spherically symmetric. We will establish the incomplete-
ness by considering radial null geodesics in these asymp-
totic regions.

We first derive an equation for the affine parameter s
along a radial null geodesic from the variational principle

2

(4.1)

FIG. 6. A plot of the function F(R)=R+H(R+M) . In
determining the motion of radial null geodesics, one is lead to
inequalities of the form dR/dy (F(R) or dR/dy )F(R). In
the former case, it is clear that if R (RzH initially, it will con-
tinue to decrease and become negative. These curves must hit
the singularity. In the latter case, if RzH &R &R&s initially,
then it must remain positive. These curves reach the de Sitter
horizon. If equality holds, then R approaches R&s.

S SH+CT (4.8)

where SH is the horizon value of s and c is a constant of
integration. Thus s remains finite as T~ ao. Asymptoti-
cally for large T, it follows that

Vary ~ and use the outgoing null condition
r -(s —sH ) ', r-(s —sH )' (4 9)

dr/dr = U

to find

2d r +2HU
ds ds

2

=0.

(4.2)

(4.3)

This not only shows that these quantities reach their hor-
izon values at a finite s, but also that 1/r and v are not
smooth functions of s (unless 1/a happens to be integral).

For each mass M;, we can find similar results for in-
going null geodesics near the inner horizon, in coordi-
nates centered about M;. In the limit of small T, in-going
null geodesics satisfy

If a null geodesic is known as r=r(r), the affine parame-
ter is given by quadratures:

s =f exp 2H f U[r(r), r ]dr dr . (4 4)

In the limit of large T, the function U takes the simple
form

U-+H~+ M
T

(4.5)

=R+H(R+M)
dT

(4.6)

We need only the asymptotic form of the solution. If
M &M,

„„

then the right-hand side has two roots at RzH
and Rzs. Starting with R &RzH one Snds that the solu-
tion always approaches R~s as r ~ 00 (see Fig. 6}. Thus

R~s+M
U(r(r), r )~ (4.7)

where M =g M;. In this case, the null condition (4.2) is
integrable when rewritten in terms of the variable R of
(3.6):

d7
dT

2
M; M= —U = —Hr+ +g-

jAi j
(4.10)

The last term on the right is a constant which can be re-
moved by shifting the origin of ~. We then obtain an
equation similar to (4.6) whose solution has the limiting
form

R;„[M;]+M
R ~R;„[M~], U(r(r), r)~

T

Equation (4.4) now implies that as r goes to zero:

P;s —sI+ CT

(4.11)

(4. 12)

1/P, - —1/Pw-(s —sI) ', r-(s —sI ) (4.13)

B. Extending beyond the horizons

where SI denotes the value of the affine parameter at the
inner horizon, C is a constant of integration, and
P;:—+1+4M; ~K~. So the affine parameter is again finite
at the inner horizon. It follows that

Using this in (4.4), and noting from (3.11} that
R&s+M= —(1+a)/2H we find that

We now consider extensions across the horizons. We
begin by introducing new variables. For the single black
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hole, the static R coordinate is good on the horizons.
The closest analogue for the solutions (3.1) is R =Hrr in-
troduced above, where r =0 is chosen to correspond to
the location of one of the masses. We also set

y =lnr, 8'=rU . (4.14)

In (R,y ) coordinates, the metric (3.1) takes the form

dR —R d
ds = — +W (dy +dQ ) (415)

H W
We have seen that the metric approaches the solution

for a single black hole both in the limit of large and small
r. However, in determining the behavior of the geometry
across the horizon, the rate at which the metric ap-
proaches the single-black-hole solution is crucial. We
first show that all curvature scalars remain finite as one
approaches these horizons. The (R,y) part of the metric
(4.15}has constant determinant. Thus the inverse metric
has a similar form, with only W appearing in the
denominator. A general curvature scalar will involve
terms consisting of derivatives of the metric and its in-
verse, multiplied by powers of the metric and its inverse.
All of these terms reduce to derivatives of 8'and R divid-

I

ed by powers of 8'. But all derivatives of W remain
bounded as y ~k (x}, and since 8'is finite on the horizon,
these terms cannot blow up. (By simply shifting the ori-
gin of r, one can apply this argument to the horizons near
each of the masses. )

It is tempting to conclude from this that the metric is
smooth across the horizon and can be analytically contin-
ued as in the single-black-hole case. However this is in-
correct. We will see that, in general, the horizon has only
finite differentiability. The curvature can even be singu-
lar at the inner black hole horizon, but the singularity is
"null, " and so all curvature scalars remain finite. ' To es-
tablish this result we will introduce coordinates that are
good in a neighborhood of the horizon. It will turn out
that R is a good coordinate but that r=e« is not. [We
have already seen in (4.9) and (4.13) that r is not a smooth
function of the affine parameter along null geodesics. ]
For the single-mass solution, 8'=R+M, so the metric
(4.15) depends only on R, and therefore is smooth. How-
ever, the effect of the other masses is to modify the
single-black-hole metric by a power series in r, so the ex-
act metric is no longer smooth across the horizon.

The metric (4.15) can be rewritten in the form

ds = [dR+(HW R)dy]—[ —dR+(HW +R)dy]+W dAl

H 8
(4.16)

U=Hr+ + ' +O(r ),
70 r3

(4.17)

where M is the sum of the individual masses. In terms of
(R,y) coordinates the metric takes the form (4.16) with

W=R+M+f(8, $)e «+ (4.18)

We saw in Sec. IV A that R approaches the value Rds at
the horizon. Expanding HR' about Rds yields

HW = —Rds —(1+a)[R—Rds+fe «] .

Define new coordinates

(4.19)

2Rds 2Rqs(a+2)

u= — R —R+e«eds
Q 2

(4.20)

The metric near the horizon becomes

2Rds
ds du dv+ W dQ

aH W
(4.21)

So u, v are good null coordinates near the horizon, which

Our procedure for studying the extensions of the space-
time is to introduce new coordinates (u, v) in the neigh-
borhood of each horizon, such that the first quantity in
brackets is proportional to du and the second is propor-
tional to dv at the horizon.

We first consider the de Sitter horizon (y ~ oo ). If we

choose the origin of coordinates to be the center of mass,
the metric takes the form (3.1) with

now corresponds to u =0. The curves v =const cross the
horizon. The metric (4.21) depends on W which in-

volves factors of (R —Rds} and e . In addition, there
are corrections to the leading order behavior (4.21) that
involve these same factors. To express these terms as
functions of u and u we need to invert (4.20). Near the
horizon we have u =e and

R —Rds= —[ue «+{a+1)fe «/{a —2)] .

But since a =& I 4M~H~ & 1, a—s long as vAO the second
term is negligible compared to the first as y ~ 00, and we
have R —Rds= —uv. Thus corrections involving only
powers of R —Rds will be smooth at the horizon. How-

ever, e ~=u' is not smooth in general. Since the
corrections start at order e =u and a & 1, we see
that the metric is always at least C in these coordinates.
Since the metric is C, there is no curvature singularity.
But one can show that in general, certain components of
derivatives of the curvature diverge at the horizon, so
there are no coordinates for which the metric is analytic.
As a result, the extension across the horizon is not
unique. One can match onto essentially any solution of
the form (3.1) with the same total mass. (Similar
behavior of finite differentiability across a horizon in an
exact solution was found in [12].)

The differentiability at the horizon can be increased in

two ways. If the total mass M is chosen so that 1/a is an

~The above argument shows that all components of the

Riemann tensor in (R,y) coordinates stay bounded, but this

coordinate basis is not well behaved at the horizon.
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integer n, then e is smooth and the metric is C . This
occurs when

4MIH
I

=1—
n

(4.22)

For these values, the smooth continuation consists of
matching the spacetime onto one with the same positions
and magnitudes of all the masses so that all multipole
moments agree, but with the opposite sign of H. We do
not understand the physical significance of these special
masses.

The second way to increase differentiability is to ar-
range the masses so that their first n multipole moments
vanish. Then the perturbation will begin at e " . These
solutions may provide a simple model of smoothness of
null infinity in asymptotically Hat spacetimes. It has been
suggested [13] that the behavior of fields at null infinity

may depend on their fall-off near spatial infinity. If the
unconstrained part of the initial data falls off more quick-
ly in spacelike directions, then perhaps the evolved fields
will be more differentiable at null infinity. This is very
similar to the behavior we find in the multi-black-hole
solutions.

We now consider the inner horizon associated with one
mass M; which we choose to be located at the origin.
Near r =0 we have

M,U=Hr+ +c+g(8,$)r+
r

(4.23)

HW =R;„[M;]+(1—P, )(R —R;„[M;]+ge «), (4.24)

where, as before, P; =+1+4M; 1H1. Define new coordi-
nates by

1 —P,
u = R —R;„[M;]+ 2—

l

ge~ e
—P;z

(4.25)

v = 1 — (R —R;„[M;])
in i

2R;„[M;](P;+2)

Then the leading order behavior of the metric near the
horizon takes the simple form

in[ i ] du dv + W2dgg
2R. rM

P;H W
(4.26)

(The leading factor in parentheses is just a constant). So
u, v are again good null coordinates near the horizon,
which now corresponds to v=0. Near the horizon we
have v =e ', and R —R;„=ue ' +(P;—1)ge «/(2 —P,. ).

13;s P;y

But since P; =Q 1+4M;1H1, every black hole with
M; &M,„,has P; &2. Thus as long as uAO the second

where c is a constant that can be removed by the chang-
ing the origin of ~. Thus 8'=R+M, +gr + . We
showed in Sec. IVA that R approaches the constant
R;„[M;] at the inner horizon. Expanding HW near
R =R;„[M,] yields

term is negligible compared to the first near the horizon,
and we have R —R;„[M,. ]=uv. Corrections involving

only powers of R —R;„[M;]will again be smooth at the
horizon. However, r =e =v '~~', and 1 & P; & 2. Thus r is
not smooth at the inner horizon. Since the corrections
start at order r, the metric is C' but not C in these
coordinates.

To see that there are no better coordinates for which
the metric is smooth, we compute a component of the
curvature. Let I =8/Bv and r) = i) /B8. Then
R„e„&=R&„l"g'1«rl contains several terms that are
finite at the horizon. But it contains one term which is
infinite there. This is g&&,„,which involves two deriva-

2/P, .
tives of v '. This divergence is null since it only occurs
at v =0. We will return to the physical interpretation of
this singularity shortly.

Unlike the case of the de Sitter horizon, there are no
special values of the mass for which the inner horizon be-
cornes smooth. However one can still increase the
differentiability by carefully arranging the other masses
so that the first n powers of r cancel in the expansion of U
in (4.23). In particular, one could remove the curvature
singularity this way. However, the inner horizon associ-
ated with the other black holes will still be only C'.

It is interesting to compare this situation with the case
of zero cosmological constant. There, it was shown [14]
that the spacetirne describing several Q =M black holes
has an analytic extension across each inner horizon,
which simply corresponds to letting r become negative.
In other words, when A=O, r is smooth at the horizon
and there is no analog of the singularity we find above.
This is consistent with our results since A=O implies

P; = 1 for all i, so r = v at the inner horizon.
The remaining horizon is the past white hole horizon

r=0, ~= —00. One can show that the situation here is
similar to the de Sitter horizon. The metric is always C
and can be made C" if the individual mass M; takes one
of the discrete values (4.22). Notice that if more than one
mass has one of the discrete values, the total mass
exceeds the extremal limit (3.2).

C. Physical interpretation of the lack of smoothness

We now consider the physical interpretation of the
lack of smoothness we have found at the horizons. Con-
sider the solution with two black holes and take the limit
where one mass becomes much less than the other. In
this limit we can think of the small mass as a test particle
moving in the background of the large black hole. The
single black hole solution is, of course, smooth every-
where. But the perturbation in the metric and Maxwell
field obtained in this limit involves a function of r (or
1/r), which is not smooth at the horizon. This seems
rather unphysica1. We mould expect a q =m test particle
to radiate as it falls into the black hole, and the field it
produces should remain smooth at the de Sitter horizon.
This can be made more precise in terms of initial data.
To avoid singularities associated with point particles, we
can model the test particle by a small ball of q =m dust.
Let us take our initial surface to be the T=O surface in
the RNdS metric. One can certainly find smooth initial
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ds '- = (y1( ) ( dx +dy +dz ),
A =v in(y/i)'j),

y= 1++a, /r, , 1(=c+g b; Ir, ,

(4.27)

where v is a unit normal form to the initial surface and
a, , b,-, c determine the wormholes' masses and charges
(approximately, M, =a;Ic+b, , Q,.= —a, Ic+b;). Equa-
tion (4.27) satisfies the A=O Einstein constraints if the
extrinsic curvature K, - vanishes; therefore it satisfies the
AAO constraints if we put [11]

X,, =+Hg, , H=&A/3 . (4.28)

Special cases of (4.27) are initial values of the known
dynamical solutions, as follows. The general Q WM
RNdS geometry in cosmological coordinates [8],

data for the linearized Einstein-Maxwell field equations
that satisfy the constraints with the ball of dust as a
source. The evolution of these initial data must be
smooth everywhere in the domain of dependence, which
includes both the de Sitter horizon and past white hole
horizon. The fact that the multi-black-hole solutions are
not smooth at these horizons can be interpreted as saying
that they describe more than colliding black holes. In ad-
dition, they contain a distribution of electromagnetic and
gravitational radiation which is not smooth everywhere
in the spacetime. We expect that there are other (un-
doubtedly more complicated) solutions describing collid-
ing black holes that do not suffer from this lack of
smoothness.

The singularity at the inner horizon is qualitatively
different. This is because it is on the boundary of the
domain of dependence of the initial data surface de-
scribed above. The behavior we find is reminiscent of the
instability of the inner black hole horizon which has been
extensively studied for A =0 [4]. (When A )0 it has been
argued that the inner horizon might be stable [5].) A key
difference, however, is that the previous analyses were
based on a perturbation expansion, while the solution
(3.1) treats the eff'ect of the other masses exactly. One
unusual feature of these solutions is that only half of the
Cauchy horizon becomes singular. The other half lies in-
side the (r, r) coordinates and is C". Perhaps this is re-
lated to the extra radiation in the spacetime that is re-
sponsible for the lack of smoothness at the de Sitter hor-
izon.

The idea that the finite differentiability at the de Sitter
and past white hole horizons is a result of additional radi-
ation is supported by the fact that one can construct ex-
act initial data for multiple charged black holes with

Q (M. These initial data are smooth at the white hole
horizon. This construction relies on the A=O initial
value solutions of Brill and Lindquist [15] for time-
symmetric, arbitrarily placed wormholes of general mass
and charge, and on the method of Nakao et al. [11] to
turn such a solution into one with a cosmological con-
stant. The three-metric and electromagnetic potential of
[15] are

ds

M —
Q1—

4e 2Ht 2

dt +e 'U (dr +r dO )

M—
1 — (dR —R dy)

4R

H 8'
+ W~(dy +dQ ),

M- M—U=l+ + Q, W=R+M+
Htr 4e 2Htr 2 4R

(4.29)

has the form (4.27) with a, = (M —Q) /2, b,
=(M+Q)/2, a;=O=b; for i&1, c =1, on the surface
t =0. The solutions (3.1) have the form (4.27) with a; =0,
b, =m;, and c=H~.

We also note that the geometry of the surface ~=0 of
the solution (3.1), as well as that of the surface
R =M+V M2 —Q in the general RNdS geometry (in
static coordinates) can be generalized by initial values of
the type (4.27) with c =0.

V. EVENT HORIZONS

All of the extensions considered above have a J'+

beyond the "de Sitter horizon, "which corresponds to the
limit (r, r)~( ~,0), but R —+Rds finite, in our original
coordinates (3.1). In these original coordinates we can
therefore identify null curves that can go to J+ as those
that reach this horizon. By contrast, the black hole hor-
izon as defined in the Introduction (see, also, Ref. [7]) is
contained entirely within the original chart: it is the
boundary of the region of events that can be causally con-
nected to the de Sitter horizon. Thus we identify events
from which outgoing null geodesics must reach the U =0
singularity as lying inside the black hole horizon.

In this section we establish several properties of null
geodesics that have implications for the black hole hor-
izon. For simplicity we confine attention to the solution
(3.1) for two centers with identical mass parameter M/2
with M (M,„„separatedin the three-dimensional (3D)
Euclidean base space by distance 2a. The origin of the
Euclidean coordinate system is at the midpoint between
the two centers. The Euclidean line connecting the two
will be called the axis and the perpendicular plane at the
origin is the midplane. We show that for each sufficiently
late (but negative) time r there is a sphere of radius r(r)
such that all outgoing null geodesics from the sphere will

reach the U =0 singularity —hence, no causal curve from
inside can reach r = ~; but that there are points outside
the sphere from which causal curves reach r = ~ in finite
affine parameter. That is, the sphere lies within the event
horizon. We also show that at sufficiently early times, all
points in the midplane can be connected to r = ~ by
causal curves; in other words, at early times the horizon
does not meet the midplane. Finally, we will show that at
sufficiently early times the event horizon consists of a
sphere centered on each mass. Taken together these re-
sults prove that the black holes coalesce. The event hor-
izon at early times has two disconnected pieces, but at
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U2
(5.1)

A lower limit on the "potential" U is obtained by pre-
tending that the total mass M is concentrated at the
greatest possible distance, r +a, so that

'2
d~)U2) P + M
dr r+a (5.2)

In terms of new variables R, =He(r +a), y, =ln(r +a )

the inequality simplifies to

late times it has only one.
We first consider the region inside the horizon. Every

outgoing null geodesic must satisfy

dR„/dy, &R, +H(R, +&2M) (5.7)

Arguing as before (see Fig. 6) we find that if R,
&Rs&[v'2M] is satisfied initially for some r, then R,
will stay positive for all larger r. But this means that ~
will remain negative as r increases, avoiding the singulari-
ty.

For exam~le, if the null curve starts at any r, but with
r &Rsii[~2M ]/Ha, it satisfies the initial inequality and
hence will be able to escape to r = ~. Thus at early times
no point in the midplane is within the horizon (provided
of course that a real Rsii[i/2M] exists; if M is close to
the extremal limit, a more accurate investigation of the
null geodesics is needed).

Similarly, for any 7 (0 we can find a sufficiently large

dR, &R„+H(R,+M) =H(R,——Rqs)(R„—Rsii) .
r & (Rsii[v 2M]/Hr) a— (5.8)

(5.3)

The slope of the function on the right-hand side (RHS) is
positive at its smaller zero, Rsii (Fig. 6). Suppose that in-

itially R, &Raii, i.e., a & r & (Rsii/Hr) a. Th—is can be
satisfied if r & —Rsii/2a H~. Then R, decreases with r
and becomes negative at a finite r. But then ~ is positive,
and as it increases further with r, the singularity at U =0
is reached at a finite r. Thus, as r approaches zero (from
below), there exist spheres of constant r enclosing both
masses such that all outgoing null geodesics hit the singu-
larity.

We now show that at early times, a similar result holds
for small spheres centered on each mass. For simplicity,
let us shift the origin of spherical coordinates to be at one
of the masses, and assume r (a. Then the "potential"
from the other mass is at least M/6a, so that instead of
Eq. (5.2) we have

dz) 2 M M
dr 6aH 2r

(5.4)

Introducing the new variable R + =Hr ( r+ M /6aH )

leads to an equation analogous to (5.3):

dR+ /dy &R++H(R++ —,'M) (5.5)

(5.6)

In terms of the variable R„y,introduced in Eq. (5.3)
this becomes

Analyzing (5.5) in the same way as (5.3) we then find that
events satisfying R+ &Rsii[M/2] are inside the horizon.
This inequality is satisfied at any early (negative) r by all
sufficiently small r & R Sir [M/2]/(Hr+M/6a)

To explore the outside of the black hole horizon, we
ask under which conditions some causal curves from a
given event can reach r = ~. We first confine attention
to the midplane and obtain an upper limit on the inverse
speed of purely radial null curves:

2 2
dr q M V2M=U = Hw+ H~+
dr Qr2+a~ r+a

so that R, &Rsii[v'2M] and null geodesics can escape
to infinity. In fact, for sufficiently large r the argument
leading to the increase of R, is valid also for points not
on the midplane. Thus outside the sphere of events that
must causally lead to the singularity there are events
from which causal escape to infinity is possible. At early
times, therefore, the event horizon surrounds each mass
separately, and expands approximately according to
r =Rsii[M/2)/Hr. At r=R8ii/2aH the event horizon
enters the midplane, and thereby changes its topology to
a surface surrounding both centers.

VI. CHARGED SHELLS AND DUST

As stated in the Introduction, in our test of cosmic
censorship, we will need to introduce a shell of charged
dust to remove an unwanted singularity. The dynamics
of these shells is also of interest in its own right. For ex-
ample, one can ask whether it is even possible to form
Q=M RNdS black holes from collapsing matter. For
A=O, Boulware [16] studied the dynamics of spherical
charged shells. The general solution for spherical
charged dust was later found by Ori [17]. Boulware
found that a shell having charge density equal to its rest
mass density and also equal to its total mass density does
not collapse. Rather, as one might expect, it stays at con-
stant area. For A) 0, on the other hand, we find that a
simple extension of Boulware's calculation does give col-
lapse to form Q =M RNdS black holes.

A. Shells

Consider a spherical charged shell in an otherwise
empty spaeetime with A) 0. Inside the shell BirkhoFs
theorem guarantees that the metric is de Sitter. Outside
the shell we match the metric to RNdS. In order to
determine the motion of the shell, one integrates
Einstein s equation across the shell to obtain jump condi-
tions on the curvature. Working in static coordinates,
one finds that a shell having charge Q equal to its rest
mass M also equal to its total mass (i.e., no kinetic ener-

gy) follows the same path (2.5) as the radially moving

q =m test particle discussed in Sec. II C. In cosmological



850 BRILL, HOROWITZ, KASTOR, AND TRASCHEN 49

coordinates then, the shells stay at constant comoving ra-
dius.

The physical picture of the shell collapse is then quite
simple. The metric has the form (3.1), with U=H~ for
r (r, and U=Hr+M/r for r & r, . The comoving radius
of the horizon however, changes with time. For
M &M,

„„

there is a horizon at R =Hr~~=RBH. For
large negative ~, rH is inside the shell and hence does not
correspond to a horizon. As ~ increases toward zero, r&
sweeps past the shell, which is now contained within the
black hole. The same process can be used for a number
of Q =M shells to form the multi-black-hole solutions, if
the shells are located at an equipotential of U and have a
mass and charge distribution appropriate to a constant U
in the interior. Then the metric is de Sitter inside each
shell, and the multi-black-hole metric outside. All the
shells stay at constant comoving radius, and eventually
become black holes which later merge. Spacetime dia-
grams for a single collapsing shell are given in Figs. 7(a)
and 7(b} for undermassive and overmassive shells. The
shells take a finite cosmological time to reach the singu-
larities, but an infinite proper time.

The shells in Fig. 7 all start on the right side of the
Penrose diagram and collapse to the singularity on the
left. We can also introduce shells on the left which col-
lapse to the singularity on the right. This follows from
the T~ —T symmetry of the RNdS solution in static
coordinates. The motion of these shells is simple in the
(r', r') coordinates defined in Sec. II C. The shells stay at
constant r'. For r'(r, ' the metric will be de Sitter, and
for r'& r,

' the metric will be RNdS. These shells will be
useful for us in Sec. VII in constructing our potential
counterexample to cosmic censorship.

metric and gauge field of the form

1 1
ds = — dr +U dr dr, A, =—,

7 7 U
7 (6.1)

where i3U/B~=H. For matter consider charged, comov-
ing dust. The matter stress-energy and current density
are given by

~dust
~ ab Pdust~a ~b &

~ a pcharge~a (6.2)

V' U
U3

UB U 6H~
U4 ' J

6~(pdust+PMaxwell+Pcosmo) (6.3)

The third term on the second line is just the cosmological
term. The second is equal to the energy density of the
Maxwell field. Thus, the first term must be compensated
by the energy density of the dust. For a solution then,
one requires

V U mpdu tU (6.4)

The Maxwell constraint gives the same equation (6.4), if
p,h„,=pz„„.The evolution equations require that
TJ'" =0 and that t},( U pz„st)=0. The first requirement is

satisfied for comoving dust. The second condition re-
quires that the function p(x) = U p~„„beindependent of
r The cons. traint equation (6.4) is then

where u'= U(t}/Bt )' is the four-velocity of the dust. The
Hamiltonian constraint is given by

1&=—' 'R+ (m.'—m ——'n. )
h v

B. Dust
V U= —4' . (6.5)

It turns out to be easy to handle arbitrary con-
figurations of q =m dust as well. Consider a general

We see that we can freely specify the function p. This,
together with t}U/t}r=H, and the boundary condition
U~H~ as r~~ determine a unique U. The physical
dust density pd„„is then derived from p and U. Note that
the volume element &h =U for the spatial metric, so
that the total mass of a dust cloud is constant and given
by

M= f d x&h pz„„=f d xp . (6.6)

Other measures of the dust cloud, e.g. , its volume, are of
course time dependent and consistent with the picture of
a collapsing cloud.

(a}

FICx. 7. The motion of a Q =M shell in a RNds geometry, (a)

undermassive, (b) overmassive case. The shell follows a curve
r =const=ro. In the exterior region, r & ro (unshaded part of
the diagram) the geometry is RNdS. In the interior (shaded, in-

cluding the origin r =0) spacetime is homogeneous de Sitter
space. The shell eliminates the singularity that would otherwise
be present in the right half of the diagram (cf. Figs. 1 and 3).
Shells that replace the singularity on the left by a de Sitter inte-
rior follow a curve r'=const. The corresponding Penrose dia-

grams would be rejections of (a) and (b) about a vertical axis.

VII. TESTING COSMIC CENSORSHIP

Having developed the necessary properties of the
multi-black-hole solution we now turn to our test of cos-
mic censorship. Consider two black holes, each with
mass less than the extremal limit, but whose sum is
greater. Since the multi-black-hole solutions are not
spherically symmetric, it is difticult to describe their glo-
ba1 structure completely. It is therefore convenient to
focus on a two-dimensional slice of the spacetime. Con-
sider first a curve which comes up one throat and down
the second on a constant ~ surface. Evolving in time, we
obtain a two-dimensional subset of the spacetime which is
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nonsingular for ~(0, but develops a timelike singularity
between the two throats at a certain time rp & 0 (when
U=O). This appears to be a violation of cosmic censor-
ship in which a naked singularity evolves from regular in-
itial conditions. However, since this subset of the space-
time does not include the asymptotic region, one does not
know if the singularity is hidden behind an event horizon.

A better choice is to consider the curve which starts at
infinity and goes down one of the throats on a constant ~
surface. Evolving in time we obtain a two-dimensional
slice of the spacetime whose Penrose diagram is shown in
Fig. 8(a). For small r, the solution looks like a single sub-
critical black hole, except that S+ has been pushed off to
the future of the region shown. For large r, it resembles
the overmassive case with its singularity. This singularity
is naked and exists for all time. It is independent of
whether the two black holes have collided or not, and is
just a reflection of the fact that the total mass always was
greater than the extremal limit. Fortunately, this singu-
larity can be removed by adding a shell of charged
matter. This follows from the fact that the solution, at
large r, reduces to the overmassive RNdS solution, and
we saw in Sec. VIA that the singularity in this solution
could be removed by a shell. The Penrose diagram for
the solution with the shell added is shown in Fig. 8(b).

In the absence of a cosmological constant, one usually
requires that a counterexample to cosmic censorship have
nonsingular data on a surface that is asymptotically flat
outside of a compact set. In the presence of a cosmologi-
cal constant, the analogue would be nonsingular data on
a compact manifold. Our example does not have a com-
pact surface, but it has what might be considered "the
next best thing. " Consider the surface S shown in Fig.
8(b). This surface is defined by r equal to a negative con-
stant outside the shell, and any spacelike surface inside
the shell that continuously joins to it. The initial data on
this surface is nonsingular everywhere. The surface is not
compact, but has two infinite throats (only one of which
is shown on the figure). However, each of these throats is

surrounded by a trapped surface. So one would not ex-
pect that the asymptotic regions down the throats could
influence the solution in the interior.

The initial data on S uniquely determines the solution
up to the Cauchy horizon. As we have discussed in Sec.
IV, the solution past the horizon is not unique but all ex-
tensions have a curvature singularity shown at the right
in Fig. 8(b). It is clear from the diagram that all ob-
servers originating from 2 reach the Cauchy horizon,
and if they extend beyond, they will see the singularity.
We have also seen in Sec. IV that the horizon is not
smooth. Generically, for the class of solutions (3.1), the
horizon is C' but not C . If we end the spacetime at the
horizon then, of course, there is no violation of cosmic
censorship. But one can find choices of parameters such
that the Cauchy horizon associated with one of the
masses is at least C and there is no curvature singularity.
Furthermore, even in the general solution, geodesics can
be extended beyond the horizon. So it seems reasonable
to conclude that cosmic censorship is violated in these ex-
amples.

It is clear that this violation is associated with the
infinite throats in the initial data. One way to see this is
that in cases when the horizon is C or smoother, it is
homogeneous. There is no point where the curvature is
becoming large, associated with the beginning of a naked
singularity. The singularity seems to "come in from
infinity. " The fact that the asymptotic regions are hidden
behind trapped surfaces in the initial data, does not seem
to be sufficient to prevent the violation of cosmic censor-
ship. In a sense, all of space collapses down the throats
carrying all observers with it.

In light of this, it is natural to ask whether cosmic cen-
sorship would be violated if one first formed the black
holes from regular initial conditions. We have shown
that one can, in fact, form the black holes using shells of
charged dust. If one also removes the singularity at
infinity with another shell as we have discussed above,
one has compact initial data. The problem now is that
the two types of shells collide in the spacetime before any
singularities have formed. We do not know the solution
explicitly after this occurs. However, even if naked
singularities were found later in the evolution, one would
not know whether they were fundamental, or artifacts of
the dust approximation. It is well known that naked
singularities can form in spherically symmetric dust col-
lapse [18]. These shell crossings or shell focusing singu-
larities can also occur in the absence of gravity and hence
have nothing to do with cosmic censorship

VIII. CONCLUSIONS

(a)
FIG. 8. (a) Penrose diagram for a two-dimensional subspace

of the two black hole solution. Each hole is undermassive, but
their sum is overmassive. Near r = ~, the left part of the dia-
gram is similar to Fig. 3 (single mass with M )M,„,), and near
r =0 the right half resembles Fig. 1 (single mass with M & M,„,).
(b) Similar to (a) but with a shell replacing the singularity on the
left.

Motivated by a new test of cosmic censorship, we have
studied the global structure of the multi-black-hole solu-
tions (3.1). We have found that, if the total mass is less
than the extremal limit (3.2), then they describe black
holes which coalesce. It is remarkable that an analytic
solution describing coalescing black holes can be ex-
pressed in such a simple form. Somewhat surprisingly,
we have also found that these solutions contain radiation
which is not smooth at the de Sitter (and past white hole)
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horizon. Perhaps the presence of this radiation is related
to the simplicity of the solution.

The test of cosmic censorship was based on the fact
that there is an upper limit to the mass of a black hole
when the cosmological constant is positive. We have
seen that colliding two black holes which are each less
than the extremal mass, but whose sum is greater, does
produce naked singularities.

However, we cannot yet claim that this is a serious
violation of cosmic censorship for two reasons. The first
concerns how generic the violation is. As we have seen,
the most general of the exact solutions has the naked
singularity protected by a Cauchy horizon with a weak
singularity. However, the exact solutions only describe a
subset of black hole collisions with a positive cosmologi-
cal constant. The initial position and masses can be
specified arbitrarily but not their initial velocities. And,
of course, one cannot specify arbitrary graviational and

electromagnetic radiation. It is not clear whether the
most general solution has a Cauchy horizon with a
stronger singularity. If so, then cosmic censorship would
be preserved.

The other reason concerns the fact that the example in-
volves eternal black holes and not ones which formed
from compact initial conditions. It is not yet clear how
physically reasonable collapse would affect the formation
of naked singularities.
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