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A dynamically preferred quasilocal definition of gravitational energy is given in terms of the Hamil-
tonian of a 2+2 formulation of general relativity. The energy is well defined for any compact orientable
spatial two-surface, and depends on the fundamental forms only. The energy is zero for any surface in
flat spacetime, reduces to the Hawking mass in the absence of shear and twist, and reduces to the stan-
dard gravitational energy in spherical symmetry. For asymptotically flat spacetimes, the energy tends to
the Bondi mass at null infinity and the ADM mass at spatial infinity, taking the limit along a foliation
parametrized by the area radius. The energy is calculated for the Schwarzschild, Reissner-Nordstrom,
and Robertson-Walker solutions, and for plane waves and colliding plane waves. Energy inequalities are
discussed, and for static black holes the irreducible mass is obtained on the horizon. Criteria for an ade-

quate definition of quasilocal energy are discussed.

PACS number(s): 04.20.Cv

I. INTRODUCTION

It comes as a surprise to many that there is no agreed
definition of gravitational energy (or mass) in general re-
lativity. In Newtonian gravity, there is a material density
which may be integrated over a spatial three-surface to
give the mass, and the Poisson equation and Gauss
theorem then yield an expression for the mass inside a
two-surface, measured on the two-surface—a so-called
quasilocal mass. Finding a similar quasilocal expression
for the Newtonian gravitational energy is impossible,
since the energy density, unlike the material density, is
not a total divergence. In general relativity, material
mass is merely one aspect of the energy-momentum-stress
tensor, and gravitational energy, if well defined at all, is
nonlocal, as follows from the equivalence principle. The
gravitational field can be measured by the geodesic devia-
tion of two observers, but a single observer cannot distin-
guish it from kinematical effects. Equivalently, curvature
cannot be measured on a point or line, but requires a
two-surface at least.

In the case of an asymptotically flat spacetime, the
Bondi [1,2] and Arnowitt-Deser-Misner (ADM) [3]
masses are well-defined asymptotic quantities which are
generally accepted as the total mass of the spacetime as
measured on spheres at null infinity and spatial infinity,
respectively. The existence of these ‘asymptotic
definitions, and in particular the Bondi mass-loss result,
indicate that gravitational energy is not meaningless, and
that there is an actual physical process involved in radiat-
ing gravitational energy to infinity in such 4 spacetime.
Since an appropriate definition of this energy cannot be
found locally, a quasilocal definition is sought, where
“quasilocal” is used in the sense originally introduced by
Penrose (4], referring to a compact orientable spatial
two-surface, usually spherical. This is the natural finite
analogue of the asymptotic definitions.

In the case of spherical symmetry, there is a standard
definition of gravitational energy due originally to Misner
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and Sharp [5]. This reduces to the Schwarzschild mass in
vacuum, and is the unique such functional which depends
only on the metric and its first derivatives. It also has the
correct Newtonian limit, yielding the Newtonian mass to
leading order and the Newtonian energy to the next order
[6). This definition can be thought of as the prototype of
quasilocal gravitational energy, defined for metric
spheres.

A rough way to understand the concept is as follows.
A massive body produces a gravitational field which itself
has (negative) energy, which in turn modifies the field and
contributes to a total effective energy in a nonlinear, non-
local way. Quasilocal energy is intended to measure this
effective energy. For instance, outside a source in spheri-
cal symmetry, the gravitational energy is just the
Schwarzschild mass, which is all that can be determined
about the source from measurements of its external gravi-
tational field. More generally, the idea is to determine
the effective energy of a source by measurements on a
two-surface enclosing the source.

It is important to emphasize that quasilocal energy is
supposed to be a functional of two-surfaces rather than of
three-surfaces with boundary, since there is a widespread
tendency to regard gravitational energy as referring to
three-surfaces, presumably by analogy with energy in
Newtonian theory. This is not consistent with the nature
of the Bondi and ADM masses, nor with that of the
spherically symmetric energy. It seems that general rela-
tivity differs from Newtonian theory in that the evidence
suggests that gravitational energy is associated with two-
surfaces, rather than with either points or three-surfaces.
This also has the practical advantage that one can
“weigh” a source by taking measurements at a distance,
rather than having to enter the source, with all the atten-
dant hazards.

Hawking [7] defined a quasilocal mass which has
several desirable properties: it reduces to the standard
definition in spherical symmetry, it tends to the Bondi
mass in an asymptotically flat spacetime, taking the limit
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along an affinely parametrized foliation, and it tends to
zero as a sphere in any spacetime is shrunk to a point
[8,9]. Unfortunately, it is nonzero for generic two-
surfaces in flat spacetime. This drawback is easily
corrected by adding a certain term, as is shown subse-
quently.

Penrose [4] emphasized the conceptual importance of
quasilocal mass, and suggested a twistorial construction.
This can be properly defined if the two-surface can be
transplanted into a conformally flat spacetime [10,11],
but generically the transplant cannot be made without
damaging the structure of the two-surface [12]. Bergqvist
[13] reviews various similar spinorial attempts, of which
that of Dougan and Mason [14] comes closest to being a
well-defined functional of two-surfaces, being well defined
generically, but breaking down for the important case of
marginally trapped two-surfaces. Bergqvist also shows
that seven different definitions all give different results in
two simple examples: namely, the Reissner-Nordstrom
solution and the Kerr horizon. This is an unfortunate sit-
uation which indicates the need for a more critical ap-
proach to what constitutes an adequate definition.
Currently, there seems to be no demand for a quasilocal
energy to be even well defined, let alone geometrically or
dynamically natural.

The main purpose of this article is to present, in Sec.
III, a dynamically preferred quasilocal energy which is
essentially the 2+2 Hamiltonian of the Einstein gravita-
tional field. This is a well-defined functional of compact
orientable spatial two-surfaces, and is geometrically natu-
ral in the sense of depending only on the fundamental
forms of the two-surface, introduced in Sec. II. The ener-
gy is shown to vanish for any surface in flat spacetime in
Sec. IV, to tend to the Bondi mass at null infinity in Sec.
V, and to tend to the ADM mass at spatial infinity in Sec.
VI, if the spacetime is asymptotically flat. Uniqueness on
purely geometrical grounds is considered in Sec. VII, ex-
amples in Sec. VIII, energy inequalities in Sec. IX, and
criteria for an adequate definition in Sec. X.

II. GEOMETRY OF TWO-SURFACES

It is appropriate to begin with a review of the geometry
of a compact orientable spatial two-surface S embedded
in spacetime, according to the 2+2 formalism developed
by the author [15], which describes null foliations of such
surfaces. In this formalism, a basis (e{,e9) for S is com-
pleted to a spacetime basis (1 %,v%e{,e9) by Lie propaga-
tion: (L,,L, u%v%e{,e§)=0, where L denotes the Lie
derivative. The commuting vectors (u“v? are referred
to as the evolution vectors, since Lie propagation in these
directions enables the spacetime in a neighborhood of S
to be developed. (This is analogous to the Cauchy prob-
lem, where the single evolution direction may be decom-
posed into a lapse function and a shift vector.) The
choice of evolution vectors is partially fixed by demand-
ing that the three-surfaces (£,S,.£,S) are null,
u®l,=v%,=0, where the null normals (/,,n,) satisfy

V[alb]:V[anb]zo, Ialaznanazo,

lan'Z:“em N hablb:habnbzo,

8ab :hab _e*m”anb—*_nalb) ’

and g,, is the spacetime metric, h,, the induced two-
metric of S, and m is called the scaling function. The
remaining freedom in the evolution vectors is given by
the shift 2-vectors r*=hfu® and s*=hfv®. The metric
then decomposes into

¢ c_,—m
r.r r.s e ry

— c__,—m c
8ap = TS e S.S Sp
Tq Sa hab

in the above basis. Note that the null normals are
uniquely defined only up to interchange (/,,n,)—(n,,1,)
and boosts (I,,n,)—(Al,,A"'n,). This freedom is left
open.

The dynamically independent first derivatives of the
metric consist of the expansions

Gz%h Cd“[u —rhcd ’ é:%h Cd‘Lv *:hcd >
the (traceless) shears

O ap :h;th hcd - %habh Cdl: hcd ’

u-—r u—r

6017 =hachl;1‘=£v -shcd —';‘habh“div *shcd >

the “inaffinities”

v=L m, v=L,_m,

u-—-r

and the “twist,” or “anholonomicity,” or commutator of
the null normals,

w,=Le™h gy (L, s"—L,r’—L,s) .

These fields encode the extrinsic curvature of S, or
equivalently the momenta conjugate to the configuration
fields (h,,,r%s%m). In [15], the vacuum Einstein equa-
tions are written in a first-order from in terms of
(hab,r“,s",m,0,(7,0‘,,,,60,,,1/,"17,0)“), which constitutes a
2+2 analogue of the ADM 3+ 1 formalism. The initial
data for the associated characteristic initial value prob-
lem can be taken as (h,,m,0,0,0,) on S, (g,,v) on
L,S, and (7,,7,5° on LS, with r? being prescribed
over the whole four-dimensional patch. Of this data, r¢,
s? m, v, and v represent coordinate freedom on the
respective surfaces, and will be set to zero henceforth.

The remaining dynamical variables are, in traditional
language, the first fundamental form h,,, the (null)
second fundamental forms o, +6h,, and &, +6h,,,
and the normal fundamental form w, [16], with the null
normals fixing a preferred basis for the fibers of the nor-
mal bundle, up to boosts and interchange. These funda-
mental forms are the only geometrical invariants of a
two-surface in spacetime, and are also the dynamically
independent parts of the gravitational field referred to a
two-surface. It is therefore most natural to seek a
definition of quasilocal energy in terms of these forms. In
fact, of the previous definitions, this is the case only for
the Hawking mass:
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where p is the area two-form and R the Ricci scalar of
hab-

II1I. DEFINITION OF THE ENERGY

To measure the energy of a field on a spatial three-
surface, the Hamiltonian of a 3+1 formulation is usually
taken. On a compact orientable spatial two-surface .S,
the analogous dynamical object for the Einstein field is
the Hamiltonian two-form, which may be quoted from
[15] as

8rFH = —pu(R+00— 10,5 —20,0° ,

where the notation and choice of evolution are as in Sec.
I1, and the 87 has been inserted to agree with the units
G =1 used in most papers on quasilocal energy. Thisis a
preferred dynamical quantity in the sense that variation
of the (full) Hamiltonian yields the Einstein equations in
a form adapted to null foliations of spatial two-surfaces.
The Hamiltonian is obtained from a Lagrangian which is
the Einstein-Hilbert Lagrangian in 2+2 form, up to a to-
tal divergence. In a 3+ 1 context, the energy is defined as
the integral of the Hamiltonian over the three-surface,
but in a 2+2 context, [ (# needs to be multiplied by a
length to give energy units, and the only natural length
scale is given by the area

A=fsu.

The proposed definition of the gravitational energy of a
two-surface, or its quasilocal energy, is then
172

J7#

where the factor has been chosen for agreement with the
Schwarzschild mass. Thus
172
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It should be noted that the expression is valid for any one
two-surface, but that when considering the variation of
energy between surfaces, the quasilocal coordinate free-
dom cannot be fixed as in Sec. II and the full Hamiltoni-
an should be used.

Various immediate observations concerning E can be
made. First, the total energy of two surfaces §=S5,US,
is greater than the sum of the individual energies, as-
sumed positive, since A=A;+4, and E/VA
=E,/V A\+E,/V A,. More generally,

>3 E(S))

if E(S;)=0. Second, the term in the Ricci scalar may be
integrated by the Gauss-Bonnet theorem [16]:

fspji’=81r(l—g) ,

where the genus g is a topological invariant representing
the number of handles of S: g =0 for a sphere, g=1 for a
torus, etc. Third, E reduces to the Hawking mass M in
the shear-free, twist-free case, and hence reduces to the
standard definition in spherical symmetry. Finally, the
shear term in E is precisely the addition to the Hawking
mass required to yield zero in flat spacetime, as follows.

IV. FLAT SPACETIME

Recall first the contracted Gauss equation [16]:
ﬁ + 95— %o-abb"-ab:h “h bdRabcd s

which is a purely geometrical equation describing the
embedding of S, with R,,.; being the Riemann tensor of
g4+ In flat spacetime, commutativity of the null normals
means that the twist vanishes, o, =0, and the Gauss
equation becomes

R+60—10,0%=0,

so that # and E vanish.
Alternatively, note that the expansions and shears can
be taken as equal and opposite, 6=—0, 0, =—7,,, by

fixing the boost freedom of the normals. For a two-
surface which lies entirely in one Euclidean three-plane,
Euclidean surface theory [16] can be applied. Here, the
Ricci scalar is twice the Gaussian curvature, and so is
defined by 2 =2« k_, where the principal curvatures k.
are the roots of the eigenvalue equation

1
V2

since the null second fundamental form is V2 times the
Euclidean second fundamental form. This yields

\/iki=9i\/%aaba“b R
and so

R —92+%0ab0“b=0 ,

det (O'ab +9hab)_Khab =0 N

so that # and E vanish.

Since aab&‘“bSO, it also follows that the Hawking mass
is nonpositive in flat spacetime, My <0, vanishing only
for shear-free surfaces. A similar argument shows that
the Geroch mass [17] is also nonpositive in flat space-
time, since the Geroch mass is never greater than the
Hawking mass [9]. This problem with the Hawking mass
was well known, and its solution is simple: add the ap-
propriate term in the shear, as determined by the Gauss
equation. In this sense, E can be regarded as a
modification of the Hawking mass which provides a more
realistic measure of gravitational energy.

Note that the vanishing of E in flat spacetime also
guarantees that E tends to zero as a sphere in any space-
time is shrunk to a point. Indeed, by following the
small-sphere approximation of Horowitz and Schmidt
[9], it can be seen that the leading-order asymptotic
behavior is the same as for the Hawking mass, essentially
because the shears and twist contribute at a lower order.
Namely, E =0(r?) in terms of an area radius r, with the
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coefficient determined by the energy tensor of the matter.
In vacuum, E =0(r®), with the coefficient determined by
the Bel-Robinson tensor.

V. NULL INFINITY

Asymptotically flat spacetimes were first studied in the
axisymmetric case by Bondi et al. [1], and in general by
Sachs [2]. They defined an asymptotic mass My on slices
of null infinity, and showed that it decreased to the fu-
ture, which is interpreted as a loss of mass due to gravita-
tional radiation. Briefly sketching the approach: on a
foliation of null surfaces labeled by u, spherical polar
coordinates (7,1, ) were introduced, such that each sur-
face S of constant (u,r) had area form
u=r?sinddd Adp, and hence area A =47r2. Asymp-
totic expansions in negative powers of r were assumed,
and the Bondi mass My was defined as the integral over
sind dd Adg of a certain coefficient, giving a generaliza-
tion of the Schwarzschild mass. In the Appendix it is
shown that the Bondi mass may be written as
172

S 1 h Copeq

r

1
M,=lim —
5= 10 167

r—ow 8

where C,, ., is the Weyl tensor of g,,. Here r labels the
surfaces S,, with area 4, =4xr?, and dependence on u
has been suppressed. The expression shows that the Bon-
di mass may be described as the average asymptotic
Coulomb part of the gravitational field. The advantage of
such an invariant expression in the present context is that
the radius r does not appear explicitly except as the limit
parameter, so that the limit could simply be removed to
yield a quasilocal mass corresponding to M. Using the
vacuum Gauss equation

R+00— 10,0 =h"h%C,,, ,

the Bondi mass may be rewritten in terms of the funda-
mental forms as
1/2

[ R+66—10,5") .

r

167

. 1
Mp=lim —
B r er:o 87

Comparing with the quasilocal energy E, the asymptotic
behavior of the various terms may be translated from the
spin-coefficient expressions in Sec. 9.8 of Penrose and
Rindler [18]:

R=2r"24+0(r3), 60=—2r2+00r"?,
opT=00r"%, 0,0°=0(r"°).
Hence the asymptotic limit of E exists, E=0 (1), and
equals the Bondi mass:

r— o0 r— o

My = lim E(S,)=—1 lim r [ #,

since the twist term tends to zero. Thus E satisfies the
criterion of tending to the Bondi mass asymptotically, if
the latter exists.

Note that the expression for Bondi-Sachs mass given
by Penrose [19-21] is an asymptotic limit of the Hawk-
ing mass:

My= lim My(S,),

which appears to differ from the previous expression by a
term in the shears. This is due to a different limit being
taken, using a foliation based on an affine parameter
?=r+0(r"), as is explained in detail in the Appendix.
The affine expression for the Bondi mass is used in most
work on asymptotic flatness [18,22-26], though other ex-
pressions also exist [27,28]. Note also the “linkage” for-
mulation of asymptotic mass and angular momentum
[29-33]. Most positive-mass proofs use the affine version
[34-36], as can be seen by comparing the expressions for
mass with the previous definitions [37,38]. A positive-
mass proof has been given by Schoen and Yau [39] using
the original approach.

VI. SPATIAL INFINITY

Arnowitt et al. [3] defined an asymptotic mass M ppym
at spatial infinity, which is interpreted as the total mass
of an asymptotically flat spacetime. The definition may
be written in a more coordinate-independent way [40-42]
as
1/2

f Sr'uh “h bdcabcd s

r

167

MADM - rhnc}o 8

with r now denoting the area radius of a family of spheres
S, which approach spatial infinity in a spatial three-
surface (Appendix). As at null infinity, the twist term in
E disappears in the limit, so that

Mpy = lim E(S,)=—1lim r fsrif .

Thus My and M ,py are null and spatial limits of the
same quantity E, or equivalently of the average asymptot-
ic Coulomb part of the gravitational field. This agree-
ment has apparently not been noticed previously.
Indeed, in relating M,p\ to the limit of Mp, it was
thought necessary to require the vanishing at spatial
infinity of the shear term that apparently distinguishes
the area-radius definition from the affine version [42,43].
Note that it is not clear whether M ,p), is the limit of the
Bondi mass M at spatial infinity, since the limits are
from different directions and may not coincide. The situ-
ation is simply that if Mz or M ,p\ exist, then they are
the appropriate limits of E.

VII. ON UNIQUENESS

The results of Secs. IV-VI indicate that the freedom to
choose a sensible quasilocal energy, even on purely
geometrical grounds, is quite limited. More precisely, as-
sume that the energy can depend only on the fundamen-
tal forms of the two-surface, including invariance under
interchange and boosts between the null normals. As-
sume also that the energy is second degree in g, i.e., a
linear combination of second derivatives and quadratic
first derivatives, cf. the discussion in Sec. 11.2 of Wald
[24]. Then the only such functions are linear combina-
tions of R, 68, 0,5 and w,w®. The coefficients of 7
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and 00 are determined by consideration of metric spheres
in flat spacetime and in the Schwarzschild solution, and
the coefficient of aab&"b is determined by demanding that
the energy vanish in flat spacetime, as in Sec. IV. This
automatically yields the Bondi mass at null infinity, as in
Sec. V, and the ADM mass at spatial infinity, as in Sec.
V1. This leaves only the coefficient of w,®°, which is not
so clearly determined, but which can be interpreted as a
contribution due to angular momentum [44]. The above
assumptions are hardly compulsory but seem quite plau-
sible, and it is sensible at least to exhaust such possibili-
ties before resorting to more radical suggestions. It is
certainly remarkable that E automatically satisfies these
desiderata.

VIII. EXAMPLES

In calculating the energy for particular spacetimes, it is
often most convenient to use the full Hamiltonian. Alter-
natively, in simple cases a transformation may be sought
in which the line-element, evaluated at the two-surface S
in question, takes the form

ds’=—2d&dn+h,dxdx®

where (x!,x2) are coordinates on S and (£,7) are affine
parameters; this is referred to subsequently as the stan-
dard form. The fundamental forms may then be calculat-
ed by noting that L, =9/3§ and .L,=09/37 in the basis
used. Also useful are the expressions u6=p, and
po=p,.

In the particular case of spherical symmetry, a sphere
of symmetry has zero twist and shears, and the same re-
sults are found as for the Penrose mass according to Tod
[10] or the Hawking mass. Here sphencal polar coordi-
nates (7,3, ) may be taken such that u=r2sind dd A d<p,

and consequently A=47r?, R=2r"% 0=2r" r§,
0=2r" and SO
=r(r§r,,+%) .

This is the standard definition of gravitational energy in
spherical symmetry, which was originally given in a
different form by Misner and Sharp [5]. A few examples
follow, with interpretive comments.

The Schwarzschild black-hole solution
-1

dr?

d2=— 1_2_m

+r2(d9*+sin*3 d ¢?)
can be put in standard form by taking

12
1 2m ]

ré——_r ==

K V2

r

-172
. 1

=ty

and so E=m. It should be emphasized that an interior

solution matched to the Schwarzschild exterior need not

have total material mass m as measured on a spatial

_2m
r

three-surface. In this sense E is not sensitive to the distri-
bution of matter inside .S, being only a single number, but
rather measures the effective active gravitational energy
as felt on S. Another way to see the necessity of consid-
ering the effective energy is to note that the maximally
extended Schwarzschild solution has zero material mass,
being a vacuum solution.
The Reissner-Nordstrom charged black-hole solution

-1
2
ds?=— 1—2"'+ ary [1-2R e g
roor
+r2(d02+sin20d¢>2)
can be put in standard form by taking
172
re=-—r =——L 1__2_m e_2
£ K V2 ror? ’
: 5 -1/2
m e
ty=t,=—— [l——+— ,
£ n \/i [1 r r2

and so E=m —Le?r~!. Tod [10] obtained the same re-

sult for the Penrose mass, and noted that the term in e
agrees with the linearized limit. If this is regarded as a
correction to m which yields the effective energy, then
there is the interesting result that the field becomes repul-
sive close to the » =0 singularity, a result which is also in-
dicated by the behavior of geodesics, as in Sec. 5.5 of
Hawking and Ellis [45]. For a nonextreme black hole,
e2<m?, such negative E occurs inside the inner horizon,
which is widely regarded as unstable due to an “infinite-
blue shift” effect, in which case the inner region would
not exist in practice. Nevertheless, the example indicates
that a negative energy could be interpreted in a quasi-
Newtonian way as a net repulsion of the two-surface, cf.
[46].

The Robertson-Walker cosmological solutions are given
by

ds?= —dt’+a[dP*+ fUd P +sin*Fd¢?)] ,

where a (t) and

siny for k=1,
fW)= 1y for k=0,
sinhy for k=—1,

where k labels the spherical, flat, and hyperbolic cases,
respectively. This may be put in standard form with ra-
dius r=af by taking

'l’ ¢7I te=t,= 72 .

The field equation a 3ma’p—k, where p is the density,
then yields E = $mr p Recalhng that A =4xr? E is just
the product of density and the ‘“area volume” associated
with the area radius 7, rather than the actual volume of a
three-surface inside S. Again, this leads to the interpreta-
tion of E as the effective energy felt at S. Note that E is
independent of the pressure, which could for instance be
negative, as in the de Sitter and anti—de Sitter solutions.

aVE

238
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Although quasilocal energy is usually considered only
for spheres, the definition of E applies to any compact
orientable two-surface, and it is interesting to compare
the results obtained for a flat torus in a plane-symmetric
spacetime with topological identifications. The general
plane-symmetric line-element is given by Szekeres [47] as

ds’=—2e Xdu dv+e Pe%oshW dx>—2sinh W dx dy
+e " CoshW dy?) ,

where (K, P,Q, W) are functions of (u,v), and the toroidal
identifications are

(x,y)=(x+x4,y +yg) .

The metric may be put in standard form by taking

Ug=v,=e y Uy T U 0,

and it is straightforward to calculate pu=e Fdx

Ady, A=e Pxpp,, R=0, 60=eXP,P,, 0,5°
=2¢%(Q,0,cosh’W+W,W,), w,0°=0, and hence

372

X
Yo | oK=3P/2(p p —0 O cosh’W

4

1
4
-W,W,).

Plane-wave spacetimes are given by the above metric
depending only on u, or only on v, so that E=0. This re-
sult is not surprising if E is interpreted as a measure of
nonlinear gravitational energy, since plane waves propa-
gate linearly.

Colliding-plane-wave spacetimes were introduced by
Szekeres [47,48] and reviewed by Griffiths [49]. These
have nonzero E, with no definite sign. As an example,
the solution of Khan and Penrose [50], describing the col-
lision of two impulsive gravitational waves, has E <0
after the collision, with E becoming unbounded at the
singularity formed by the collision. (The exact expression
is long and unilluminating.) The usual interpretation is
that the two incoming waves interact nonlinearly, pro-
ducing scattered radiation W, whose magnitude grows
without bound, a property dependent on the plane sym-
metry. The energy E provides a measure of the nonlinear
interaction, being zero before the collision and becoming
unbounded at the singularity. This illustrates both that E
is not a preserved quantity, and that it is sensitive to
gravitational interactions in vacuum. Similar results are
obtained for generic colliding plane waves, and for
asymptotically plane waves [51,52]: E equals Re¥, up to
a factor, with W, generically becoming unbounded after
the collision.

IX. ENERGY INEQUALITIES

It is sometimes suggested that quasilocal energy should
be manifestly nonnegative. However, negative-energy
matter can be described quite consistently in general rela-
tivity, and it seems reasonable to allow the quasilocal en-
ergy to become negative in such a situation. Additional-
ly, a basic requirement of quasilocal energy is that it yield
the Schwarzschild mass for the Schwarzschild solution,

and this may be negative. The examples of Sec. VIII
show that E is positive for certain physically familiar
gravitational fields, but that negative E may occur
in other circumstances, such as the negative-mass
Schwarzschild solution. From purely quasilocal argu-
ments, the fundamental forms are freely specifiable on
any one two-surface, and so it is easy to construct two-
surfaces with negative E. Nevertheless, it may be possi-
ble to find a positivity theorem based on global assump-
tions, such as asymptotic flatness, global hyperbolicity,
etc., together with a local energy condition on the matter.
A weaker possibility would be positivity for spacetimes
sufficiently close to flat spacetime [25], or for sufficiently
round spheres [53]. Conversely, £ may be a suitable
quantity to control the gravitational field in the context
of global existence theorems or cosmic censorship. In
this context it is interesting to note that in the two-
dimensional dilaton gravity theory of Callan et al. [54],
positive gravitational energy is associated with trapped
spatial singularities, and negative energy with naked
singularities [55]. In spherical symmetry, there is a simi-
lar relationship between the sign of E and the signature
and trapping of singularities [6].

A related question is that of monotonicity, e.g., wheth-
er E increases as A increases along a foliation of two-
surfaces. Here it may be useful to consider well-oriented
surfaces such that 88 <0, which have an orientation
determined according to which expansion is negative and
which positive. For such surfaces, the Hawking mass de-
creases internally and increases externally [8], which can
be interpreted as a quasilocal generalization of the Bondi
mass-loss result. A similar result for E would be of in-
terest, but seems more difficult to obtain.

Similar comments apply to energy inequalities such as
the Gibbons-Penrose isoperimetric inequality [56,57] and
the Thorne hoop conjecture [58] for trapped surfaces.
For a marginally trapped sphere, 80=0 and g =0,

167E? 2

A

1 ~ a
=1—§;T~fs,u(%oaba“b+2waco ),

and consequently the isoperimetric inequality 167E*> A4
can be violated by a suitable quasilocal choice of shears
and twist. Again, global assumptions may be relevant.
Note, however, that the twist and internal shear vanish
on a Killing horizon [11], so that a static black hole
satisfies the isoperimetric equality 16mE>= A on the hor-
izon, a more precise result than hitherto obtained
[11,59-61]. The very triviality of this result suggests that
E may be an appropriate definition for such purposes.
Expressed equivalently, E is the irreducible mass [62] on
a static horizon, i.e., the mass of a Schwarzschild black
hole with the same area.

X. CRITERIA FOR QUASILOCAL ENERGY

As noted in the Introduction, there is now a plethora
of suggested quasilocal energies, which disagree even in
the Reissner-Nordstrom and Kerr cases [13]. The ambi-
guity can only be resolved by settling on generally agreed
criteria, and I would like to make a few such suggestions.
Most fundamentally, the energy should be well defined on
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any compact orientable spatial two-surface, or at least for
the case of spherical topology. This firm but fair require-
ment disqualifies almost all of the contenders, which de-
pend on particular symmetries [46,63-65], a preferred
three-surface [17,66,67], global requirements [68,69] or
the existence of solutions to particular equations
[4,14,70]. To the best of my knowledge, this leaves only
E and the Hawking mass as unambiguous quasilocal
definitions.

The other basic criteria are that the energy vanishes in
flat spacetime, reduces to the standard definition in
spherical symmetry, and yields the Bondi mass at null
infinity and the ADM mass at spatial infinity. It would
also be of interest to investigate the Newtonian and
linearized limits. Eardley [8] and Christodoulou and Yau
[52] give a comparable list of criteria, of which positivity
and monotonicity remains as open questions for E.
Bergqvist [70] also gives a list of criteria, and shows that
there are infinitely many possibilities which satisfy it.
The problem here is that many of the suggested quasilo-
cal energies are based on the introduction of spinor fields
satisfying various particular equations, such as the twist-
or or Sen-Witten equations, and there is no natural way
to choose between them. The embarrassment of possibili-
ties can be reduced by disallowing spurious fields and in-
stead demanding that the definition depend directly on
the fundamental forms, as these are the only purely
geometrical quantities associated with a two-surface. The
fundamental forms are also the dynamically independent
parts of the gravitational field on a two-surface, or
equivalently the free gravitational data.

Even with such criteria, the arguments of Sec. VII
show that a unique “correct” quasilocal energy will re-
quire further justification, presumably of a dynamical
sort. The main point of this article is that the 2+2 Ham-
iltonian ¥ is a dynamically preferred quantity which can
justifiably be interpreted as the energy density of the Ein-
stein gravitational field referred to a two-surface element.
The fact that the associated quasilocal energy E has the
agreeable properties described herein may be taken as
firm supporting evidence. In view of this, are there any
objections to using the 2+2 Hamiltonian of a field to
define its quasilocal energy? Is E the long-sought gravita-
tional energy?

Note added. Another desired property of quasilocal
energy is that it should be related to the Hawking tem-
perature in the context of black holes. For the
Schwarzschild solution with mass m, Hartle and Hawk-
ing [76] obtain the temperature 1/87m as measured by a
constant-r detector. It is therefore desirable that a quasi-
local energy coincide with m for constant-r spheres in the
Schwarzschild solution, as would be the case for any
quasilocal energy that coincided with the standard
definition in spherical symmetry. It has been suggested
that one might instead expect to obtain a different tem-
perature, taking into account the blueshifting from
infinite to finite radius [67]. However, one must also take
into account the Unruh effect for an accelerating detec-
tor, since constant-r detectors are accelerating. The
answer obtained from quantum field theory is that the
temperature measured by such a detector is 1/87m [76].

In other words, the blueshift effect and acceleration effect
cancel in this case. This is discussed after Eq. (8.85) of
Birrell and Davies [77].
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APPENDIX: THE BONDI MASS

When defining the Bondi mass as a limit of a quasilocal
energy along a null foliation of two-surfaces S, there is an
important subtlety, namely, that the limit depends on the
foliation used, and in particular whether the foliation is
based on an affine parameter or a luminosity parameter
(area radius). Conversely, different quasilocal integrals
must be used in order to obtain the same limit [71,72].
The following is based on a calculation of Frauendiener
[71].

Assume a parameter s which is related to the area ra-
dius r by

r=s+1lfs71+0(s7?)

for some f. Take a spin basis (/,n,m,m) such that m
spans S and / =3/3ds. The Newman-Penrose convergence
p is then given by p=—s "1+ fs 3+ 0(s ~*).

The Bondi mass [1,2] was originally defined using the
Bondi coordinates (u,7,¢, @), where u is null and the area
two-form of a constant-(u,r) surface is
p=r2sinddd Ad. Namely, the definition is

M3=ﬁstim‘}d19/\d<p,

where the mass aspect M is defined by the expansion

rr

gm=—1+2Mr'1+O(r_2),

g
or equivalently by

rr

g
4

+1

M=] lim r

r— oo ru

This may be translated in terms of the parameter s by
grr___gSS(1_%fs—2)2+gsufus—l+0(s—2) ,
gr=g™(1—1fs7H+0Gs 7).

Consider two special choices of s. First, take s to be the
affine parameter 7 used in Sec. 9.8 of Penrose and Rindler
[18], for which

f=—06%"°, gh=1, g"=—1-2Re¥%P '+0(>?7?}),
where Re denotes the real part,
6=6%24+00¢7%, ¥,=9p3+00 7,

A
and & and ¥, are the Newman-Penrose shear and com-
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plex “Coulomb” term, respectively. Hence the mass as-
pect is given by

M=—Re¥)+1f,
= —Re($0+5%, )= —Re($9—5%) .

Alternatively, taking s to be the area radius 7,

rr

f=0, §;= —1—2Re¥r '+ 0(r7 ),
and so simply
M=—ReV¥) .
There are various equivalent expressions [43], since
hh%C . =2¢ " "h*I*n?C,, 4
=—2e "% n?C,, ., = —4Re¥, ,

using the null normals /¢ and n ¢ (Sec. II).
The above calculation shows that the ‘“Coulomb”
terms for the spin bases adapted to r and 7 are related by

Re¥)=Re(¥)—5%") ,
essentially because

r=p—15%%"14007?).

Consequently, the Bondi mass can be expressed in either
of the forms

172
_ 1| 4
Mp=—lim = | T6r fs,“R"’\l'2
172
A
. 1 » ~
=— lim — |—— ARe(¥,—66") .
?Ln:o 2w | 167 f¢# e(¥,=58")

These are limits of the quasilocal energy E and the
Hawking mass My, respectively:

Mp=lim E(S,)= lim Mg(S,) .
r—> P— oo
Thus the Bondi mass is the limit of the Hawking mass
along the affine foliation used by Penrose and Rindler
[18], and is also the limit of the quasilocal energy E along
a foliation parametrized by area radius. The area radius
or luminosity parameter was the original choice [1] and
an affine parameter is used in most other work
[18,22,26,73-75]. The area radius is in many ways the
most natural choice, for instance from purely geometrical
considerations, or from the link with the ADM mass
(Sec. VI). Additionally, note that other affine parameters

would also require different expressions, with the particu-

lar affine parameter ? being chosen to agree with the area
radius to the highest possible order.
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