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Supersymmetric homogeneous quantum cosmologies coupled to a scalar field
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Recent work on N = 2 supersymmetric Bianchi type IX cosmologies coupled to a scalar field
is extended to a general treatment of homogeneous quantum cosmologies with explicitly solvable
momentum constraints, i.e., Bianchi types I, II, VII, VIII in addition to the Bianchi type IX, and
special cases, namely the Friedmann universes, the Kantowski-Sachs space, and Taub-NUT space.
In addition to the earlier explicit solution of the Wheeler-DeWitt equation for Bianchi type IX,
describing a virtual wormhole Buctuation, an additional explicit solution is given and identified with
the "no-boundary state. "

PACS number(s): 98.80.Hw, 04.60.Kz, 04.65.+e, 11.30.Pb

I. INTRODUCTION

Quantum cosmology is the application of quantum me-
chanics to the earliest Universe. General relativity pre-
dicts that the earliest Universe is dominated by gravity,
which is enhanced above all other interactions, up to a
singularity, by the strong nonlinearity (i.e. , gravitation
of gravity) built into that theory. Quantum cosmology
therefore must contain a theory of quantum gravity. Un-
fortunately a consistent quantum Beld theory of gravity
has not yet been given. However, some of the questions
of quantum cosmology (but, of course, not all of them,
and possibly not the deepest ones) can already be raised
in "toy models" of quantum gravity which bypass the
unsolved problems of quantum gravitational Geld theory
and instead require only the framework of quantum me-
chanics of a system with a Bnite number of degrees of
freedom (see e.g. , [1—7]).

Such toy models can be constructed by quantizing
not the full theory of general relativity (or even larger
theories in which it is contained as some limiting case)
but only certain classes of its spatially homogeneous
solutions. The restriction to spatial homogeneity im-
plies, in principle, a dimensional reduction of the (1+3)-
dimensional field theory of gravitation down to a (1+0)-
dimensional quantum mechanical model. The conBgu-
ration space of the reduced models is no longer the full
function space (called superspace [1])of all three-metrics
on a spacelike three-surface embedded in space-time [2],
but merely the finite-dimensional space (called minisu-
perspace [3]) spanned by the parameters of the consid-
ered class of homogeneous three-metrics. Such reduced
models avoid the unsolved problems associated with the
short-wavelength limit of quantum gravity; on the other
hand they can, of course, also shed no light on these
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problems.
Spatially homogeneous three-metrics evolving along

some trajectory through minisuperspace are special ex-
act solutions of classical general relativity [4,5]. Whether
corresponding exact solutions of quantum gravity exist
cannot be answered with conGdence before such a theory
has been constructed. The dimensionally reduced quan-
tum mechanical minisuperspace models cannot, there-
fore, be considered to be exact solutions like their clas-
sical counterparts, but must be considered as just mod-
els. Their usefulness and interest hinges on the fact that
they provide a comparatively transparent &amework in
which some questions raised by quantum cosmology can
be studied (see e.g. , [1—7]).

The dimensional reduction from a Geld theory down to
a finite number of degrees of freedom can, in principle,
be carried out before or after quantizing the theory, and
the result need not be the same. In the present paper
we shall follow the Brst path: As we consider minisuper-
space as a device to avoid the problems of the gravita-
tional quantum Beld theory it would seem inconsistent
with that reasoning to invoke the quantized Beld theory,
if only formally, in an intermediate step. Even more im-
portant, from a practical point of view, is the fact that
model building is easier and more direct starting from the
classically reduced theory, and, as we have mentioned, we
are not trying to construct solutions of quantum gravity,
but models.

Spatially homogeneous three-geometries are three-
manifolds on which one of the three-dimensional Lie
groups acts transitively [4,5]. Thus, on the three-
manifold there are three linearly independent Killing vec-
tors (, , i = 1,2, 3, satisfying the Lie algebra [(,, (~]
C";i(i, where C";i = —C"~; are the structure constants of
the group. The three-dimensional Lie groups have been
classified by Bianchi [8] into 9 diferent types (see e.g. ,

[5]), according to their structure constants. A complete
list of the structure constants, an invariant basis y; and
its dual basis of one-forms u', i = 1,2, 3, and a complete
set of Killing vectors (; for all Bianchi types has been
given by Taub [9] (see also [5]). The four-metric of a
spatially homogeneous space-time can be written in the
form
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ds = —N (t)dt +g;, (t)cu'~', moving on the surface of vanishing "energy" H,

where the basis one-forms ~' satisfy (1.5)

(1 2)

g. . (t) e2~(~) e2p(~) e2p*p1 1

6' . 6' (1 3)

N(t) is the lapse function which is an arbitrary positive
function of time and reHects the reparametrization in-
variance of the time coordinate t. The elements of the
tensor g,~ of the three-metric in the basis ~' depend only
on time and not on the spatial coordinates. Therefore,
there are at most 6 independent elements of g, ~ (t), span-
ning the space of all allowed three-metrics, the minisu-
perspace. Here we shall restrict our attention to the case
where g,z (t) can be consistently chosen to be diagonal. It
can then be pararnetrized by three parameters a, P+, P
or P, P, P via

0 = -(-p'. + p', + p' ) + v(') (~, P„P )

I (pl ) + (p2) + (p3) 2plp2 2plp3 2p2p3I
2

+V(0) (Pl P2 Ps) (1.6)

In Eq. (1.4) the dot denotes differentiation with re-
spect to a suitable parameter A playing the role of
time. q is the chosen parametrization of the inde-
pendent elements of g;~(t). The p„are the canonically
conjugate momenta. H(q, p) is the Hamiltonian which
generates the required equations of motion. Choosing
dA = /3x/2e N (t)dt = /3m/2e (p +p +p ) N (t)dt,
it takes the form [3—5]

ctH(q, p) . OH(q, p)
pv

pv g
(1.4)

with the diagonal traceless matrix P(t) in Misner's

parametrization [3,10], P(t) = diag (P+ + ~3/, P+-
v 3P, —2P+). Thus minisuperspace is spanned by
merely three coordinates. The spatially homogeneous
form (1.1) of the four-metric can be inserted into the
vacuum equations of general relativity, R„=0, where

R„ is the Ricci tensor associated with the four-metric.
The resulting equations of motion for the independent el-
ements of g,~ (t) are second order in time. For some (but
not all [5]) of the Bianchi types these equations of motion
may be coached into the framework of an unconstrained
Hamiltonian system [3],

with the potential

V~'~ = —12 '~'~g ~'~R (1.7)

where ~ ~g is the determinant and ~ ~R the scalar curva-
ture of the three-metric. The condition H = 0 expresses
the reparametrization invariance of the time parameter
in Eq. (1.4).

In the cases where the unconstrained description (1.4)
is valid it can be obtained most directly [11] from the
Hamiltonian formulation of general relativity [12]. For
later convenience we now list the Bianchi types where the
unconstrained description (1.4 ) applies, together with
their potentials [5]:

type I:
type II:

type VII:

type VIII:

C12: C21: 1 all other C'~g vanish;

v" = -' " -'p+ = -' 'p'
2 6 6

C13 — C31 —C32 — C23 —1
&

all other C";~ vanish;

2 2

Vz
—— ee P+—[cosh(4~3P ) —1] = — e P —e P

7 3 6
3 3 1 1 2 2

C12 21 32 23 31 13

Vs( ———e (2e P+ [cosh(4V3P ) —1] + e P+ + 4e P+ cosh(2~3P ))8

e4P + e4P + e4P + 2e2P (
2P1 + 2P

) 2 2P +2P
6

(1.10)

1 1 2 2 3 3
type n: c23 —-c32 C31 C13 C12 C21

——1,

Vs
———e 2e P+(cosh(4~3P ) —1) + e P+ —4e P+ cosh(2v 3P )

1 4

6

4p 4p 4p 2 2p +2p 2 2p +2p 2 2p +2p
6

(1.12)
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The other Bianchi types and more general cases of type
VII, in general do not give rise to unconstrained Hamil-
tonian systems.

We add to this list a few special cases where fur-
ther symmetries are present and where an unconstrained
Hamiltonian system with less than three degrees of 6..ee-
dom is obtained.

Friedmann Ro-bertson Wa-Lker (FRW) universe The
closed (k = 1), open (k = —1), and fiat (k = 0) FRW uni-
verses classically, are isotropic special cases of the Bianchi
types IX, V (Cis = —Csi = C2s = —Cs2 = 1, all other
C";~ vanish), and I, respectively, where p+ ——p = 0,
P+ ——P = 0. Thus for the FRW universe without mat-
ter

It should be noted that the closed FRW universe without
matter cannot exist classically.

Kantoisski Sa-chs (KS) modeLs (18]. These spaces
have a four-dimensional symmetry group with a three-
dimensional subgroup which is of Bianchi type IX [5].
However, the latter subgroup does not act transitively
in three-space but only on two-dimensional surfaces fo-
liating the three-space. The space-time metric may be
written in the standard form (1.1), (1.3) with

= dr, ~ = d0, ~ = sin0dy,

2

II FRw = — + VFRw ( )&
(o)

2

(O) k 4a+FRW 2
(i.i3)

(o)+Ks —
2 + 2 + VKs (o L3+) 3plps + 2 (ps) + VKs (P P )

(o) 2 4 2p 2 2(p +p').
KS 3 3

(1.14)

Taub NUT (N-eivman Unti -Tambur-ino) space f1),g, 15,5J. The Taub space [9] is of Bianchi type IX with a rotational
symmetry around one spatial axis. Therefore we may take P = 0, p = 0 and have

&+ (o)
2 2

&~ = ——+ —+ VT (n, P+) = —3pips+ (») + VT (P P )
(o)

2 2 2

g(o) 4a( —sp+ 4
—2p+ ) 4p 4 2p +2p

7 6
(i.i5)

The new parametrization

a+p+

2a —4p+

and the redefinition of the lapse function N (t)
N(t)/g(t) gives rise to the new Hamiltonian

IIT-NUT = 6(gps —~psp~) + 6(g —4~') (1.16)

which describes a dynamical system in which the vari-
able p reinains positive if it is positive initially (see e.g.
[5])and the variable g may pass through zero. The region
g ) 0 corresponds to Taub space [9], the region g ( 0 cor-
responds to NUT space [15], in which ur is timelike and
dt spacelike. As is well known both spaces form diH'erent.
parts of the single Taub-NUT space-time [14,5].

In the present paper we shall be concerned with the
construction of speci6c quantized versions of the dynam-
ical systems (1.4)—(1.7). These quantum models will be
constructed by coupling additional fermionic degrees of
&eedom to the purely gravitational systems (1.4)—(1.7)
in such a way that the coupled system acquires a larger
symmetry, namely supersymmetry. For this to be pos-

sible the potentials (1.8)—(1.16) must satisfy a certain
condition; they must be derivable from an underlying
(usually simpler) potential P. This condition is verified
for all the listed Bianchi types in Sec. II.

A further ingredient in the construction of our quan-
tum models is the coupling of the supersymmetrized
gravity model to a supersymmetric spatially homoge-
neous matter Geld, represented by a spatially homo-
geneous complex scalar 6eld and its supersymmetric
fermionic partner.

A part of the theory we shall describe here for all the
Bianchi types listed has been presented for the Bianchi
type IX in our earlier paper [16] which, in turn, builds on
our earlier work in [17—19]. An application of the theory
to the Bianchi type II (but without coupling to a matter
field) has already been given in [20].

Dimensional reductions from (1+3)-dimensional super-
gravity down to (1+0)-dimensional supersymmetric the-
ories have been presented for the Bianchi type I model
without matter [21,22] the closed Friedmann model with-
out [23] and with matter [24], the Taub model [25], and
very recently also for Bianchi IX [26] and other Bianchi
class A models [27]. From (1+3)-dimensional supergrav-
ity with a single conserved real spinorial supercharge
(N = 1) a (1+0)-dimensional theory with N = 4 con-
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served real supercharges is obtained.
By contrast, the general supersymmetric extension of

the Hamiltonian systems (1.4)—(1.7) we shall consider in
this paper only leads to an N = 2 supersymmetry. In
principle, it may be considered as a subsymmetry of the
larger N = 4 supersymmetry obtained from supergravity,
but we shall not attempt here to make that connection
explicit. The further extension of our models to N = 4
supersymmetry is nontrivial and requires further work.
For the case of the Bianchi type IX model without matter
such an extension is given in [28].

II. SUPERSYMMETRIC EXTENSION OF
BIANCHI TYPES

A. Supersymmetry condition of the Bianchi
potentials

The geometrodynamics of the Bianchi types consid-
ered reduce, formally, to the Hamiltonian dynamics of a
particle in a three-dimensional potential. (Eliminating
the arbitrary time-parameter the description may even
be further reduced to motion in a two-dimensional time-
dependent potential, but we shall not make use of this
possibility here). However, an important nonstandard

feature in this picture is the nondefinite metric G„ in
minisuperspace, whose line element in the parametriza-
tion by n, P+, P or Pi, P, P may be written as

dS —G( ) dq" dq

1 Gpgr
( )

~4 (q) ~4 (q)
2 Oq& Oq

(2.5)

We shall demand that P(q) solves Eq. (2.5) and has the
same symmetries as Ho H. ere G" (q) is the inverse of
the metric tensor in confi. guration space deGned by the
kinetic energy

T(q, q) = 2G, -(q)q"q (2.6)

dq" 0$
Pv vP, dP

(2.7)

We note that Eq. (2.5) is the Hamilton-Jacobi equa-
tion corresponding to Eqs. (1.5), (1.6) in Euclidean time;
i.e. , P(q) is a Euclidean action of classical general relativ-
ity. Depending on the boundary conditions posed, there
are different solutions of the Euclidean Hamilton-3acobj
equation. The physical interpretation of the Euclidean
actions is related to quantum tunneling [37]: They are
the actions required for a system to reach a classically in-
accesible point from a given "initial point. " The choice of
the initial point depends on the physical question posed.
For tunneling out of some equilibrium state the initial
point will correspond to a local or global minimum of
p(q). For example, for cosmology initial points corre-
sponding to minima of P at fixed n in the limit of van-

ishing scale parameter e m 0 are of particular interest.
Once P(q) is given, the most likely path followed in the
tunneling process is given by the solutions of the classical
Euclidean equations

with G„= diag (—1, 1, 1) or G„= —s(l —8„), re-
spectively. In fact, as emphasized by Misner [3], be-
cause of reparametrization invariance with respect to
A, dA = e dA( ), the metric in minisuperspace is fixed
only up to an arbitrary conformal factor, here written as
exp[20(q)]:

20(q) G(0)
PV P, V (2.2)

The inverse of this conformal factor appears in the po-
tential of (1.6) i.e.

V(q) = e '""V.(q). (2.3)

The supersymmetric extension of particle motion in a po-
tential well is treated by supersymmetric quantum me-
chanics invented by Nicolai [29], Witten [30) and devel-
oped further by many authors (see e.g. , [31—36]). In par-
ticular, the particle dynamics in a potential on a curved
manifold (configuration space) of arbitrary dimension
with the metric

d 8 = G„(q)dq" dq (2.4)

has been studied in the (N = 2)-supersymmetric o model
by a number of authors [34-36]. Supersymmetry requires
that the potential U(q) is derivable Rom a globally de-
fined superpotential P(q) via

which must be solved under the condition that the path
q(A) connects the chosen initial point with the given final
point. For a given P solving Eq. (2.5) the solutions of
Eq. (2.?) may be used to give a physical interpretation.

If a final point is accessible from the initial point by a
classically allowed path, P becomes imaginary. While in
Eq. (2.5) this has no immediate consequence, the super-
symmetrically extended Hamiltonian then has unusual
properties which seem to indicate that supersymmetric
extensions cannot be based on imaginary or complex P
[see Eq. (2.30) below].

The new potential P(q) is called the superpotential and
appears like a potential in the superspace version (in the
sense of supersymmetry) of the Lagrangean of the [(1+0)-
dimensional] supersymmetric 0 model. In order to ex-
tend the Hamiltonian (1.6) to a supersymmetric Hamil-
tonian we therefore have to solve Eq. (2.5) after inserting
the potentials (1.8)—(1.16) and to identify a superpoten-
tial P(q), in each case. It follows from Eqs. (2.2), (2.3),
and (2.5) that a superpotential P(q) is independent of the
conformal factor. It is therefore sufhcient to examine the
case O(q) = 0, where the metric G„„=G„ is flat and(o) ~

V(q) is given by V~ i(q).
We shall now solve Eq. (2.5) and construct the super-

potentials for the Bianchi types of Sec. I. In the case
of Bianchi type I, P(q) should preserve the invariance of
Ho under arbitrary shifts ba, SP+, 8P or SP, BP, bP
which requires
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i=0 (2 8)

(a constant can always be subtracted from P).
For Bianchi type II only the invariance under indepen-

dent shifts bP, bP remains, which restricts the allowed
solutions of Eq. (2.5) to a function of P which is ob-
tained as

P7 ———e + P+ [cosh 2~3P —A(a+ P+)]3

= -' "&'+.*' —2~t-', (p, + p. )~.&"&')
6
~I I 2 ~ «2I I 2

I 2
(2.1o)

where A is an arbitrary function of its argument.
For Bianchi type VIII the Hamiltonian Ho is invariant

merely under P~ e+ P . This symmetry is respected by
the solutions

2a —4P+ 2P—e
6 6

(2.9)

For Bianchi type VII the symmetry operations are
P' ~ P', P' ~ P'+bP', or P ~ P , P-+ ~-P++bP+,
a -+ n —bP+. These are respected by the solutions and

Ps = —e 2e P+ cosh2~3P —e 4P+1

6
2p + 2p 2p

6 )
(2.ii)

Ps ——e 4e P+ sinh ~3P —e P+ P 4ie P+ cosh ~3P
6

= —
~

e p +e p —e p —2ep +p p2i(ep +ep )ep
6

(2.i2)

However, the latter solution is complex indicating that
the underlying trajectories are, in part, classically al-

lowed. This corresponds to the fact that Vs is not a(o)

binding potential.
Finally, for Bianchi type IX we have the three symme-

tries P' ~ P~(i g j ) . They are preserved by

1
(ts ———e 2e p+ cosh2~3P + e p+

6

2P + 2P + 2P
6

(2.13)

~(0}
~

o' P+ P
2' 2 2 j

e2P' + e2P' + e2P' 2eP'+P'

This is the superpotential chosen in Ref. [17,19,27]. As
a solution of the Euclidean Hamilton Jacobi equation it
was obtained in Ref. [38]. As was also shown there a
further solution with the required symmetry exists, which
is given by

I"RW universes.

1 2a
2 )

O' FRW
2a

2

k= 1,
k=0',
k= —&,

(2.i5)

10—
Oiy' 3

(2.i6)

Taub space. We only consider solutions obtained by
restrictions of the Bianchi type IX solutions to axial sym-
metry. In the variables n, P+,

G(}
~

~. y (2 P + —P
)

p & 101 1 2 2 —4

01) 6

(2.17)

As the open FRW universe expands classically even if it
is empty P becomes imaginary in this case.

Kantomski Sachs space. The Hamiltonian Ho is invari-
ant under P~ ~ P~ + bP, Ps ~ Ps —bP i.e. P can only
depend on P~ + Ps. Thus, in the variables n, P+,

—2ep'+P' —2ep'+P' (2.i4)
and

2a —4P
(t T = —e (e + —4e p+).

6
(2.18)

Further solutions have been given in [38] but they break
the permutation symmetry P* F+ P~ and are therefore
not considered here.

B. Supersymmetry condition for important special
cases

Taub-NUT space.

G =
~ ~; p T NUT = —(2p + g), (2.19)
(12g —6q~

(—6po )' 6

and

Now we determine Euclidean actions for the special
cases (1.13)—(1.16) listed in Sec. I.

1
O'T —NuT = 6(g —4o~g). (2.2o)
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As p and q'1 are invariant against conformal changes of
the metric in minisuperspace the expression for Taub-
NUT space follow from those for Taub space by a direct
substitution of the coordinate change after Eq. (1.15).

where the spin connections w, are functions of the q"
and defined by

(2.28)

C. Supersymmetric quantization

Having established the supersymmetry condition (2.5)
in all cases we wish to consider, we are now in a position
to quantize all models in a way which renders them (X =
2)-supersymmetric. We simply apply to this purpose the
quantization rules of the supersymmetric 0 model. These
quantization rules may be stated as follows [34,35]:

A classical Hamiltonian system with the Hamiltonian

1 „f' cjoy 0/1
Ho ——2G" (q) I p.p, +

~Bq1" Bq")
(2.21)

is quantized by associating with Ho a quantum Hamilto-
nian H, reducing to Ho in the classical limit h ~ 0, of
the form

Here e ". denotes the Riemann-covariant derivative of the
vielbein fields. The ur, vanish identically if the G" (q)
are independent of the q . If the metric G„(q) is con-

formal to a constant metric G„= e (~)G~ as in Eq.
(2.2) with the parametrization (n, P+, P ) then

b ~rbA Ab~~c=~ p (& &cv &c &v
Oq

(2.29)

We note that the special operator ordering in Eq. (2.24)
with (2.27) is crucial to ensure that Q and Q are mu-

tually adjoint (with respect to the invariant measure

gdet(G„„)d q) if G„ is Riemannian [34,35].
The explicit form of the Hamiltonian (2.22) follows

from (2.24). In the special case where the metric (2.25)
is flat and constant it takes the form

2H = QQ+ QQ,

where Q, Q are linear operators satisfying

(2.22)
h' „„0 8 1 „„Br|119$

2 Oq Bq& 2 Oq Oq~

h „02$
(2.30)

Q2 0 Q2 (2.23)

If the matrix G„(q) is positive definite, i.e. , the met-

ric G„Riemannian, Q and Q are mutually adjoint. If
the metric G„ is pseudo-Riemannian (as it is in mini-

superspace) then Q and Q cannot be mutually adjoint,
but become so, if a suitable Wick rotation is performed
rendering G„„Riemannian but keeping P fixed. The op-

erators Q and Q have the explicit form [H, Q] =0= [H, Q]; (2.31)

The last term in Eq. (2.30) makes it difficult to ac-
commodate imaginary or complex P which appear in the
Bianchi type VIII case (2.12), the open FRW case (2.15)
and the NUT case (2.20), where g ( 0. We shall therefore
not consider these cases here further.

The Hamiltonian (2.22) commutes with Q and Q:

Q=@ e "(q)
i

1r„+i( . BP'i
Bq" )

Q = 0 e "(q)
I

~ —i
( . 0&)

~q")
(2.24) 0 m 0+ [B,eQ]+ [Qe, O], (2.32)

i.e. , the theory is invariant under the supersymmetry
transformation

Here the following new quantities have been introduced.
e "(q) is the vielbein associated with G "(q) and sat-

isfies

where t and e are arbitrary parameters, anticommuting
among themselves and with all fermionic variables and
commuting with bosonic variables.

e- (q)eb" (q)n' = G "(q) (2.25) D. Application to cosmological models

where g is the unit tensor, if G~ is Riemannian, and
the Minkowski tensor q = diag (

—1, 1, . . . , 1) if one
eigenvalue of G„ is negative. Latin indices are raised
and lowered by the use of rt and g b. The Q and their
adjoint g are fermionic operators satisfying

The Schrodinger equation is called the Wheeler-
DeWitt equation [1—3] in the present case and is the
quantum analog of (1.5). It reads

H]@) =0. (2.33)

The vr are operators

1r = i h + i h—cu, gbg',c
Bq

(2.26)

(2.27)

Like Eq. (1.5) it expresses the local reparametrization
invariance of the arbitrary time parameter, which does
not appear in (2.33). Supersymmetry is a local symmetry
in supergravity, i.e. , invariance under the transformation
(2.32) must be required for arbitrary time-dependent e(t)
and e(t) [39,18]. This imposes the constraints Q = 0,

Q = 0 on the state vector ~vtr):
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(2.34) Then, a general state with F = f takes the form

These constraints imply the Wheeler-DeWitt equation
(2.33), but they are not equivalent to it, as Q and Q are
not mutually adjoint.

The fermion number with completely antisymmetric f„, „f.,. where

(2.37)

(2.35)

is conserved by H, [H, F] = 0, and [Q, F] = Q, [Q, F] =
—Q. Therefore the sectors with fixed fermion numbers
F = f(0 & f & n, where n is the dimension of mini-

superspace) can be considered separately. We define the
fermion vacuum by

(2.38)

In this representation vr„ is proportional to the covariant
derivative operator x„=—iV„

(2.39)

g Io) = 0 for all a. (2 36) Thus,

Qlgy) =,g~' ' g~~ 'lo)
I

iM7p+—i
I f

(2.4o)

Ql@g)=,@"' .@"~ 'Io)
I

—ih —i
I f„, „~,+.. .cyclic permutations"~+'

The constraints (2.34) therefore reduce to f e(eq) =
g,

..(.detGe, (ee, eee, , e„ge.e.. '-'""....(2.46)

P2 P f+1
(2.41)

g In) =0 for all a. (2.42)

Thus,

(2.43)

in the f-fermion sector.
A similar representation can be built on the 61led

fermion state In) defined by

Thus if the solutions in the sectors f = 0, . . . , [n/2] have
been determined those in the other sectors can be in-

ferred.
If a Wick rotation is performed in the Hamiltonian

to render the metric in minisuperspace Riemannian but
keeping P fixed, then the classical Hamiltonian Ho,
Eq. (1.6), becomes positive definite. Furthermore, then
)7 " = diag (1, 1, . . . , 1) holds and e " = e ". Thus Q
and Q are then mutually adjoint and H is self-adjoint.
In this case a nontrivial state lgy) satisfying QIii2f) —0,

Q I'lPf ) —0 cannot be written as Ipy) = Q If' i) with
another state lgf i) (which would necessarily be in the
F = f —1 sector), or as lgy) = QIgf+i) with another
state lgy+i) (which would necessarily be in the F = f+1
sector), because otherwise

In this representation the state l@„y) takes the form (~f Ilf) = Wf ilQI@y) =-o (2.47)

f) =
(g44 —."64' (&)&

' ' & ln)
1

The constraints (2.34) now take the form

(2.44) or

(&xi%) = (&x+ilQI&s) = o (2.4S)

g»" &f+1 2A
gq&1 ' gq&1 ~@2 P f+1

~ ~
~

~ 8$ p,
2AVP 2 g gP Pf

(2.45)

i.e., they have the same form as Eqs. (2.41) with lgf) ~
f), f„, ,„~g„, ~ and P ~ —P interchanged.

Comparing with Eq. (2.41) we find, possibly up to an
irrelevant sign,

would follow (where now the scalar product also includes
an integration over the q with their invariant measure in
minisuperspace) .

On the other hand, if G„„is pseudo-Riemannian these
conclusions do not hold because then neither (Q)+lg)
nor (Q)+lq((2) need to vanish. A Wick rotation in mini-

superspace therefore severely restricts the possible solu-
tions in supersymmetric quantum cosmology.

Formal solutions in the sectors f = 0 and f = n can
be immediately written down:
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o) = const x exp( —p/h) lo),

I@ ) = const x exp(+P/bin}.
(2.49)

(2.5o)

we obtain the system of equations

hf „—2P, .f" =0

These solutions are the only ones in these sectors. They
apply to all the cosmological models we have described in
the previous sections and exist independent of whether or
not a Wick rotation has been performed. However, they
are formal, because no boundary conditions have been
posed so far and no criteria have been given allowing to
decide whether these solutions are physically acceptable
or have to be rejected. Such criteria could only be de-
rived from a definite physical interpretation of the wave
function. Unfortunately this point is far from being well
understood and shall be discussed further below. How-

ever, for the time being we shall demand that a physically
acceptable state (2.49) is normalizable for fixed a. (scale
parameter) [17].

As G„ is pseudo-Riemannian (no Wick rotation), it is
possible to construct solutions in all other fermion sectors
as well [19]. This is diff'erent from N = 4 supersymmetric
minisuperspace models [22,26—28], in which an additional
internal rotational symmetry inherited from the Lorentz
invariance of supergravity rules out all states except those
in the empty and filled fermion sectors.

As in all examples so far we have n & 3, it is enough to
consider the sector with f = 1. With the general ansatz

fore be present, but is then not needed in our models.
Two complex supersymmetric partners of the scale pa-
rameter are, of course, automatically present in N = 4
models.

The remaining condition Ql@i} = 0 now leads to the
condition

I

M7„—2
I

G" f(q) =0
Oqi') Oq

(2.53)

which is a version of the Wheeler-DeWitt equation. All
its solutions f (q) g const give rise to states in the one-
fermion sector. The ansatz (2.52) automatically solves
one of the supersymmetry constraints, but it also sacri-
fices the first-order form of the resulting wave equation.
One advantage, however, remains: there are no ambi-
guities about the appropriate operator ordering in the
second-order wave equation. Such ambiguities have al-
ready been resolved in the explicit expressions for Q and

R. Physical meaning of the superpotentials

In the preceding section we have seen that simple so-
lutions (2.49) of the supersymmetry constraints (2.34)
exist in the empty and filled fermion sectors. The semi-
classical form of these solutions overs the possibility to
discuss the meaning of the two diferent choices of the
superpotential P and P found in Secs. IIB and II C. We
shall give this discussion first for the case of Bianchi type
IX, where the solutions (2.49) are

Of Of„
QlqP Qq V

(2.51)

and

lgo} = const x exp( —Ps/h) Io),

I@0}= const x exp( —$9/h) I0), (2.54)

Because of the second equation there is a function f (q)
by which f can be represented as f = ih&~„. Then-Bq" '

the ansatz (2.50) takes the form

I tj/3} = const x exp(+Ps/5)
I
3),

lgs} = const x exp(+$9/h) I3). (2.55)

(2.52)

which automatically satisfies Qlgi} = 0. As we have al-

ready mentioned in Eqs. (2.47), (2.48), this form of lgi}
is not permitted if G„„has been Wick-rotated to a Rie-
mannian form. It is permitted, however, for the pseudo-
Riemannian minisuperspace metric. If f (q) = const,

lgi} vanishes identically; i.e. , this case has to be ex-
cluded.

Why Wick rotation (i.e. a complexification of the scale
parameter) should lead to the same restriction of physical
states as the requirement of the rotational symmetry in
the X = 4 supersymmetric models is not clear. However
it seems suggestive in this context that the scale param-
eter in our models must in fact have two complex super-
symmetric partners as soon as a massive matter field is
added (see Sec. III A). This would seem to make it nat-
ural to treat the scale parameter as a complex variable.
If no matter field is present, the second supersymmetric
partner of the scale parameter decouples and may there-

do!

dA

d/3+"+

OP

Bo.'

Op

OP+
'

Op

OP

(2.56)

For the choice P = Ps, these equations can be integrated

The state lgo} was first obtained in [51] and [17]. The
states l@s) and lgs} both diverge for I@~I m oo at fixed
o. and are therefore ruled out as acceptable physical so-
lutions. The two remaining solutions (2.54) can be inter-

preted semiclassically: P& and Ps are two different, clas-
sical extremal Euclidean actions of two diH'erent regular
Riemannian space-times, both having the three-geometry

g,i of Eq. (1.1) with given parameters n, P+, P as a,

boundary. As discussed in Sec. II A it is possible to recon-
struct these Riemannian space-times from their extremal
action, using the canonical relations
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in order to determine n, P+, P, N as a function of a suit-
able affine parameter (denoted by p below) and three
constants of integration [40]. The result is the Bianchi

type IX space-time [40]

ds' = + p'Q— F(p)
F(p) 4

dn dP+—= —2/2, = —4/2, P = const
dA

'
dA

and A is related to Euclidean standard time by

dA Rr—e
dt 2

(2.59)

(2.60)

with

~1~1 ~2 2 ~3~3
4 4 4 4 4 4 )

p —
a& p —a2 p —a3

(2.57)

The solutions yield the Riemannian metrics

ds = dt' yt'
~

c', (ur') +c,(u)')'+ —(u) ) ~

(2.61)

a4il f a42) ( a4s)
F(p) =

I

1 ——,'
I I

1 ——,'
I
I1 ——,' I.p') 4 p') &

(2.58)

Here a&, a2, a3 are constants of integration. They have to
be chosen in such a way that the given three-metric of the
Bianchi type IX space-time with parameters n, P+, P
becomes the three-metric of Eq. (2.57) for a suitable
choice of the parameter p, with p ) max(ai, a22, as2). The
four-metric (2.57) is regular for p2 ) max(a2i, a22, as2) and
becomes Hat Euclidean for ~p~

-+ oo. Therefore, the given
three-metric must form the inner boundary of the four-
metric (2.57). These boundary conditions correspond to
a wormhole [41,26] with the given three-metric arising by
a quantum fluctuation from an asymptotically Euclidean
metric. The associated wave function vanishes rapidly
in the same limit of three-geometries (wormholes), with
large volume (n ~ oo), i.e. , the probability amplitudes
for paths of all three-geometries larger than and collaps-
ing to the given one, whose sum builds up the wave
function exp( —Ps/h) in a path integral, interfere de-
structively for large three-geometries but constructively
for small three-geometries (on the Planck scale). Be-
cause of the singularity of the four-metric (2.57) for small

p [p = max(ai, a2, as)] it is not possible to choose the
given three-geometry with n, P+, P as the outer bound-
ary of (2.57). Therefore the state exp( —Ps/h) cannot
describe a cosmological quantum state arising by a sum
over probability amplitudes of paths of three-geometries
expanding into the given one.

Now we turn to the state exp( —Ps/5), where we have

to choose P = Ps in Eq. (2.56). The integration of these
equations (see [52]) now gives rise to Riemannian space-
times with three-metrics which are regular for small
three-geometries, and the given three-geometry must be
imposed as the outer boundary of these space-times. This
corresponds to a cosmological solution, a quantum fluc-
tuation "from nothing. " In fact, in a construction via a
path integral the wave-function exp( —gs/h) may be seen
as the result of a sum over the probability amplitudes
of all paths of compact three-geometries evolving from
a point to the given three-geometry. This is precisely
the prescription given by Hartle and Hawking [6] for the
no-boundary state. Thus we arrive at the remarkable
conclusion that the no-boundary state for the Bianchi
IX model has an explicit and very simple form (see Note
added in proof).

Let us now discuss the solutions fer the ether Bianchi
types in a similar manner.

For type II Eqs. (2.56) become

which describe the collapse &om a disc-shaped to a
pencil-shaped and the expansion back to a disc-shaped
three-geometry from t = —oo to t = 0 to t = +oo. The
quantum fIuctuation of cosmological interest described by
this solution is therefore the expansion of a pencil-shaped
three-geometry with vanishing three-volume at t = 0 to
a given Bianchi II three-metric forming the outer bound-
ary.

For type VII Eqs. (2.56) are

= —2/7 ——e +A (n+ p+),
dn dP+ 2cx+2P

dA dA 3
(2.62)

e + ~+ sinh2~3P
dA

From the first equations it follows that n + P+ ——const.
The last equation yields

P = arctanh [Ce
"'

],
3

do. 2 dA—=e2
dA

' dt

which gives the metric

3% -3—e
2

(2.63)

ds =dt + —t [(~') +(~ ) +(~ ) ]
1 2

4
(2.64)

describing a tunneling solution from vanishing scale pa-
rameter (at t = 0) to a given final value of the scale pa-
rameter. It also describes the fluctuation from an asymp-
totically Euclidean three-metric at t = —oo to the final
value of the scale parameter. The first case may lead to

where C is a constant of integration. Therefore the value
of n + P+ is determined by the initial condition and any
given value of P can be reached after making an appro-
priate choice of C. However, the trajectories of n and P+
depend on the unspecified function A(n + P+), i.e., the
general solution still permits a large variety of different
behavior.

Ps could be discussed similarly. However, it does not
seem possible to construct a wave function of the form

exp(pPs) which is normalizable for fixed n. Therefore
we do not enter that discussion here. In fact, of all the
Bianchi types discussed only the Bianchi type IX appears
to give results which are of real physical interest.

Turning to the special cases, we note first that for the
closed FRW model Eq. (2.56) reduces to
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the quantum initiation of an isotropic universe. The sec-
ond case may again be interpreted as a virtual wormhole.

The Taub case may be discussed as the special case of
the Bianchi type IX solutions for P = 0. Thus aq ——a2
in Eqs. (2.57), (2.58). It is then apparent that the (0,0)
and the (3,3) components of the Euclidean metric both
change sign when p drops below a . This signals the
transition from the Taub regime to the NUT regime.
This transition occurs in the regime where Eq. (2.57)
is applicable only if aq ——a2 ) a3. In the NUT regime
the analytic continuation from the pseudo-Riemannian
to a Riemannian space-time metric has to be changed,
because the t coordinate becomes spacelike and is not
rotated in the complex plane, while the ~ direction be-
comes timelike and must be analytically continued to the
Riemannian regime. Thus, Eq. (2.57) in the Taub-NUT
regime becomes

dp2

a4, a43

Q...= i/2]A]y',
Q...= pi/2]AIBA, (2.68)

where the upper (lower) sign applies to positive (nega-
tive) A, and where Q and its adjoint QA anti-commute
with the other g „g and satisfy

(~ )'=0=(4.)',
[O, O.]+ =1 (2.69)

There is still a conserved fermion number F which is now

given by

F = 0 0" +AN (2.70)

A state in the sector with F = f can be written as

I&x) = —,'. &'.' (&)@"' "&"'I0)
+ (g

',
) fu,

'
p, , (v) 4~0"' . . 4 "'-' Io)

(2.71)

The constraint QIgy) = 0 is expressed by the equations

1+—
4

—G3 QJ (d

(2.65)

for p ) max(aq, as). This solution corresponds to an
axially symmetric virtual wormhole.

For P T Eq. (2.56) becomes
and QIQy) = 0 takes the explicit form

(2.72)

do. - dA—24 T
dA

' dt

3% -3—e
2

~a+
I

g + ~ y(~)
/qadi clqui )

d~ 1 0
lnIe ~+ —4e ~+I

dCl' 2 Bp~

(2.66) p/2]A[f"'„, „, = 0 (2.73)

where the doubled sign refers to the choice in Eq. (2.68).

F. Inclusion of a cosmological constant

A cosmological term with a cosmological constant A

may be included in the supersymmetric models, as was
shown in [18]. The Hamiltonian acquires the additional
term

Hcos (2.67)

and the argument of the log vanish for P+ ———2'"2.
It follows from the last of (2.66) that an initial point at
n = —oo, P+ ——0 may either tunnel to positive P+ with
increasing o. to approach a finite positive limiting value of

g = e ~+ while o. keeps increasing, or it may tunnel
to negative values of P+ with a increasing until P+

and decreasing afterwards, if P+ tunnels to values

below — ~s . Thus P y is the solution of cosmological
relevance corresponding to the Hartle-Hawking state. It
appears that the NUT region cannot be reached in this
state.

G. A new conserved probability current?

One hope connected with supersymmetric quantiza-
tion is to repeat the success of Dirac's construction of
a conserved probability current which became possible
after taking t,he "square root" of the Klein-Gordon equa-
tion. This hope may be idle; in any case, it has not
yet been satisfied. In order to shed some light on the
problems one encounters we shall discuss here some at-
tempts at the construction of a conserved current with
a positive density. For simplicity we shall consider the

case G„= G„= g„and P real. Furthermore we(o)

shall put h = 1. It will be useful to consider, together
with the state vector Ig), also its adjoint with respect to
the fermionic variables, (but not the q variables), which

we denote by (gI. The scalar product (gIg) then in-

volves only a summation over the discrete fermionic com-

ponents, not an integration over the variables q, i.e. , by
construction (@I/) is positive and q-dependent. The su-

persymmetry constraints are written as

where A is the cosmological constant. We assume that
the conformal factor in G~ has been chosen in such a
way that (2.67) is just constant [18,19]. The supercharges
(2.24) get additional contributions

(Q+Q)I4) = 0

(Q —Q)I@) = o.

We introduce fermionic operator (, y by

(2.74)
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("=0 +0,
x =i(W" —0 )

with the properties

B or any linear conbination cannot be positive.
Chosing A = B = 1 we obtain the balance equations

&o&@l&) + ~~( &&-14'E.'I&)) = i&ioW I&'x'I@) (2»)

and

(2.76)

(-~.+ ('5'&, + ('x"0 ~.) IW) = o

(-~.+x'x ~, -'x'~"&~.) I&) = o (2.77)

Multiplying Eqs. (2.74) by (0 and Xo from the left, re-

spectively, we obtain

~, (4 IN'(' —x'x') l0) = 0. (2.87)

~o&@l&) + ~~(—&@Ix'x'I@))= i4~o&41('x'l0). (2.86)

The n dependence of P is seen to spoil the conservation
laws with a positive probability density. Thus, if P = 0 as
in Bianchi type I models, one has conserved currents with
a positive density. On the other hand, subtracting Eqs.
(2.85), (2.86) we find the general transversality condition

and the adjoint equations

-4&41- ~, &4 I( ('+ '4 ~.&~I(x ) (' = 0,

-~o&yl —~ &qlx'x' —4 ~-&Ol((")'x' = o (2.78)

Here 80, 8~ and $~0, P~„denote derivatives. Multiplying
the first of Eqs. (2.77) with &QIA from the left and the
first of Eqs. (2.78) with Alp) from the right, where A
is any operator which is independent of the coordinates,
and adding both equations we obtain

-~.&&IAIDO) + &41A4'&'~, I4)

+(~~ &&I)&'&'AI@) + i&(o&&l[» t!'x'1+ I@)

+id(, &41[A, ('x']-I&& = o (2.79)

In order to obtain a conservation law the operator A must
satisfy the conditions

[A, ee] =0=[A,ex] =[A, ~'x']+ (2.8o)

For example, the choices A = ix, or A = i( ( ( x x
satisfy these conditions.

The conservation law following from Eq. (2.79) then
reads

A&41AIV ) + ~, (—&4'IA('('l0)) = o. (2.81)

Similarly, a second class of conservation laws can be de-
rived from the second of Eqs. (2.77) and (2.78). It reads

Bl@)+~, (-&@IBx'x I&)) = o, (2.82)

with an operator B independent of the coordinates sat-
isfying

[B,x'x']- = [B,x'(']- = 0 = [B,x'(']+ (2.83)

Tr A = —Tr (x ( A( x ) = —Tr A, (2.84)

and the same equation for B; i.e., the operators A and

Possible choices are here B = i( or B = iX X X ( $ .
Unfortunately, among all these conserved currents there
is none with a positive density &vPIAI@) or &@IB~vP) be-
cause Eqs. (2.80) and (2.82) imply

H. Interpretation of the wave function

In order to make contact between the equations of mo-
tion and physical reality it is necessary to Gx a physi-
cal interpretation of the wave function. Unfortunatley,
there is as yet no generally accepted interpretation like
the usual statistical intepretation of the common quan-
tum mechanics. Instead several alternatives have been
proposed in the literature (see e.g. , [1—7,42—44]), some of
which we now discuss brieHy.

Semiclassical interpretation

As always in quantum mechanics the wave function
can only be intepreted with respect to a given setup for a
measurement whose role is, among others, to lift the mea-
sured phenomenon &om the microscopic quantum level
to a macroscopic level which can be treated classically.
In the case where the wave function refers to the entire
(microscopic) Universe there is no separate measurement
device, and the only possibility is apparently that the
Universe itself acts as its own measurement device. In
this view, therefore, a direct physical meaning can be
given to the wave function of the Universe only after it
has reached a form in which the classical features of the
universe have become apparent. By contrast, the role
of the wave function in the genuine quantum domain is
reduced to a mere mathematical device allowing to calcu-
late the interpretable semiclassical wave function. This
is perhaps the most conservative attitude towards the
problem. of interpretation. It is contained, in the semi-
classical limit, in all alternative and stronger proposals
trying to give some meaning to the wave function even in
the quantum domain. The desire to do this arises from
the fact that not all solutions of the Wheeler DeWitt
equation reach the semiclassical regime.

2. Probability car rent frons the tim, e-independent
Wheeler-De R'itt equation

The (usual time-independent) Wheeler-DeWitt equa-
tion based on the (non-supersymmetric) quantization of
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H, Eq. (1.6), allows to define a conserved current, like
in the Klein-Gordon equation, with generally nonpositive
density [2,3]. It can be argued [3] that sufficiently close
to the semiclassical limit the conserved density is posi-
tive to a very good approximation and can therefore be
made the basis of a statistical interpretation. This in-
terpretation has often been used (e.g. , [2,3,7,48,49]). In
the supersymmetric framework of the present paper there
are also fermionic degrees of freedom on which the wave
function depends. The definition of the conserved current
of the Wheeler-DeWitt equation must then be extended
and reads

=
—,&""(q) ((Mlq „14)—

) q „(@1)0)I, (2»)

III. SUPERSYMMETRIC COUPLINC TO A
SCALAR FIELD

A. Expressions for the supercharges in one
conformal gauge

Matter can be introduced into the models we are con-
sidering by adding to the Hamiltonian (1.6) a matter
term HM. For the case of a spatially homogeneous com-
plex field z(t) with a conventional form of the kinetic en-

ergy TM = Izl the form of the Hamiltonian HM is fixed
by supersymmetry up to an arbitrary potential W(z)
which is an analytic function of z. HM takes the form

with the scalar product (Qlg) taken with respect to the
fermionic variables only, as defined in Sec. II G. Accord-
ing to Misner [3] the direction (with the unit vector n„) of
the How of time in minisuperspace should be defined by
the condition n„j ) 0 which can be satisfied, close to the
semiclassical limit, at least for states with a well-defined
classical limit (i.e. states not containing superpositions
of macroscopically different quantum states).

[45]

HM = lp, l'+ vM(z, "),
(IDIO'(z) I' —31~(z)I') (3.1)

8. Probability current from the time depende-nt
Wheeler-De Witt equation

It is possible to introduce a cosmological time T into
the time-independent Wheeler-DeWitt equation with a
cosmologial term. To this end one chooses the conformal
gauge in which the cosmological term is constant [cf. Sec.
IIF)] and then interprets this term as a constant of inte-
gration, i.e. , an energy eigenvalue in a time-independent
Schrodinger equation. It is then natural to look at the
associated time-dependent equation

(2.89)

Here p, = z* is the canonically conjugate momentum of
z, and DW(z) =

q + z"W.
For the closed Friedmann universe an N = 4 supersym-

metric minisuperspace model obtained from supergravity
with matter has been studied in [24], where the coupled
system of equations satisfied by the wave function was
obtained. Here we shall treat N = 2 supersymmetric
anisotropic models whose greater simplicity allows us to
obtain some explicit solutions in a Born-Oppenheimer
approximation.

In the following we shall choose that conformal gauge
of the minisuperspace metric in which the prefactor
exp(6n+ Izl ) in the potential term of Eq. (3.1) is can-
celled. Thus

which is the time-dependent Wheeler-DeWitt equation.
It has been shown that T is given by the elapsed space-
time volume (see [42] and references given there). Equa-
tion (2.89) has a positive conserved invariant measure

[42]:

dP = (@lg) I
det(G„„)ld"q, (2.90)

with the scalar product (Qlg) again taken with respect
to the fermionic variables only as defined in Sec. IIG.
dI is therefore a natural choice for a probability mea-
sure (see e.g. , [44]). It applies also to solutions of the
time-independent Wheeler-DeWitt equation to which we
shall confine ourselves in the present paper. This sta-
tistical interpretation is also frequently used as, e.g. , in

[6,43,44,46—48]. A discussion of conditional probabilities
and entropy in quantum cosmology based on this inter-
pretation has been given in [44]. In view of the possibility
to define a consistent unitary "single particle" theory of
wave equations of Klein-Gordon type based on this type
of interpretation [43] it appears to be the most convincing
one, at present.

Ho = -G" (q) I p.p, +
B .B I

+ e '
lp. l

By BP l
2 ( Bq Bq)" )
+ (ID~(z) I' —31~(z)I') (3.2)

Q = Qo + Qsc + Qs,
Q = Qo+ QR + Q~. (3 3)

Here Qo, Q() is the pure gravitational term (without cos-
mological constant) considered up to here, and reads, ex-
plicitly,

6 ' (o)with G„„(q)= e + '~ G„. In this case the supercharges

Q, Q may be extended by matter terms preserving their
property Q = 0 = Q, so that again a supersymmetric
quantization (2.22) is obtained for the matter-extended
Hamiltonian. The construction of Q, Q has been given in
Ref. [16] in the context of the Bianchi type IX. However,
as the explicit form of P never had to be used there,
the same construction immediately carries over to the
general case. Thus, we can simply state the result. To
be explicit we shall take the case with configuration space
(cr, P+, P, z). The supercharges may be written as
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Q, =;.-'-- —' O'
I

-~ +
I
+, ( 8 8 l , ( 8

Bi2 Bn) ), BP+

8 8&1 — ( 8
Qo ——ie —go I

—h —
I
+pi

I

—h
8~+

—3&0,4'+
8
Blt) l

8 ) ]

-3~go@' —
I

. (3.4)
BP

Bg 'i — ( 8
I
+ &2 I

—
&BP

—3h@pv)

»0i0'+ 8 I+I'I -~Bgl, ( 8
8+)

Q~, Q~ in (3.3) are kinetic terms due to the scalar field.
Qa- contains a first new fermionic field X associated with
z, and its adjoint yq with fermionic commutation rela-
tions, the derivative operators 8/Bz, and spin-connection
terms following &om the extension of minisuperspace by
z and the fact that in our conformal gauge G„„depends
also on z (while z" merely plays the role of a parameter
in Qa). Thus,

QP =z&2X ([DW(z))*+ e X X )3

+i~6Xo [W(z)]',

i~2X2
I DW(z) + e ' X1X

3

+i~6XpW(z). (3.6)

( 8 o zX'
I
-V»——3~XiV' —~

Bz ~g )
'

There is still a conserved fermion number

+ = 4o4' + X'Xo+ Xix'+ X2X', (3.7)

( 8 — i z
Qlc = ie ' ~ Xil —A&, —3&goX' —&Bz* ~2 )

but now there are seven sectors I' = f with f
0, 1, 2, 3, 4, 5, 6.

Nontrivial solutions in the sectors f = 0 and f = 6
exist only if W(z) = 0 and are then given by

(3.5)
I@p) = f(z)e ""Io)
I@) =g( ') ""I ) (3.S)

Finally, Q& and Q& in (3.3) are potential terms due to
the scalar field. Q~ contains a second new fermionic field
X2 associated with z and Q~ contains its adjoint X2. In
addition a new second fermionic variable y associated
with q = n also appears in Q~, together with its adjoint

It is made necessary by the negative term in the
matter potential of (3.1). Explicitly,

with arbitrary analytical functions f(z), g(z').
The other fermion sectors can be considered like in Sec.

IID. Thus it is sufficient to consider f = 1, 2, 3.
In the Appendix we show that all solutions in the

one-fermion sector are of the form (2.52). The ansatz

I@i) = Qf(q, z, z')e 4'2'"IO) satisfies Qigi) = 0, and the
remaining condition Qigi) = 0 leads to the Wheeler-
DeWitt equation for f(q, z, z')

g2 f
g&"

I
h, 2

I
3' + 5 " + 5Hz' "

e +I I'(IDWI2 3IWI2) fBq" Bq~ ) Bq" Bn BzBz* Bz' (3.9)

For f = 2 the ansatz

1@2) = Q (f"4» + giXi + g X2) Io) (3.10)

Q (f 4@ + gl 422Xi + g2 P22X2 + g12X1X2) I0)

(3.11)

can be made, with five undetermined functions f",gi, g2.
Terms with QXp have been eliminated from (3.10) by sub-
tracting the vanishing state 0 = Q h(q) IO) with appropri-
ately chosen h(q). We obtain a system of four Wheeler-
DeWitt equations, i.e., second-order wave equations, and
two auxiliary equations which are of first order. One of
the auxiliary equations is not independent, however, and
may be dropped. These equations look tedious, and we
shall not record them here.

Similarly for f = 3 the ansatz

can be made with 10 undetermined functions f""
f"i', gi, g2, gi2. A—gain we made use of Q = 0 to elim-

inate the five terms involving QXp. Now a system of 6
second-order wave equations is obtained together with 9
auxiliary equations of first order, five of which are not
independent and may be dropped.

These systems of wave equations are similar in their
general form to Eq. (3.9) and also to the system of
wave equations obtained in [24] for the supersymmet-
ric Friedmann universe with matter. In the latter case
there also appear two fermionic partners for the scale
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parameter and two fermionic partners for the complex
scalar field. However, a detailed comparison of our wave
equations imposing N = 2 supersymmetry constraints in
anisotropic models with those of [24] imposing 1V = 4 su-
persymmetry and rotational invariance in isotropic mod-
els would be dificult.

The wave equation (3.9) is the simplest one obtained
in any of the nontrivial fermion sectors. To avoid the
singularity for P -+ oo we demand that Of/Oq" ~ 0 in
the same limit. The semiclassical limit h m 0 coincides
with the limit e + I

I' ~ ~ in dimensionless units. In
the semiclassical limit one may write

iS(q, z, z')/h
) (s.i2)

to obtain

which is the Hamilton-Jacobi equation of the classical
model. Thus for o. ~ oo a wave packet moving along
trajectories of the classical system is obtained.

The classical trajectories will start with "initial" con-
ditions in that region of configuration space where the
wave function makes its transition from an exponentially

decaying or growing behavior e ~/ " or e ~/ to an
oscillatory behavior ( e' /") [6,46,7]. For example, if

1 „ OS OS OS t9S +V(,P, P )+V (, *) =0
2 Oq~ Bq Bz Bz*

(s.is)

a Bianchi type IX space is considered (without invoking
supersymmetry this was done in [47—50]), and if the po-
tential W(z) is chosen in such a way that the transition
from exponential to oscillatory behavior occurs for suK-
ciently large e )) 1, then the corresponding classical
initial values of P+, P and OP+/On, O/3 /On will be very
small, providing a possible explanation for the observed
isotropy of the Universe.

B. Choice of flat minisuperspace metric

1 „„/ O$ O$'I
Ko = n""

I p,-p +
O O. I+KM,

2 i Oqr Oq j (3.14)

where KM is given by Eq. (3.1). The supercharges are

again written as in Eq. (3.3). The expressions for Qp, Qp
are now simpler than in Eq. (3.4) because no connection
terms appear for a Hat metric. Thus

The choice of a prefactor in G„ is just a matter of
convenience [3]. Therefore it is of interest to explore other
choices than the one made in the preceeding section. The
simplest and most obvious one seems to be the choice

G„(q) = G„=g„. In the present section we consider(p)

the coupling to a scalar field for this case and derive
expressions for Q, Q corresponding to Eqs. (3.3)—(3.6).
The Hamiltonian Ho now takes the form

Qp —-i O'I -~ + /+O'
I

-~ + I+M'
I

-~ +o( O Ogl, /' O OP) 2/ O OPl
O(1Ocz j'( O + O +) ( O O )

t' O OPl — 1' O OP ) — f O OP )
Qp =i O'O

I
& + 1+0'~

I

—& — /+A I

—"
Ocx Oo!) ( O i O + ) ( O O )

(3.15)

Also the kinetic matter terms QIi. , QIi now lack all three-
fermion terms, because the extension of minisuperspace
by z and z* leaves the extended metric flat. Thus

where T and T denote three-fermion terms. They can be
found by compensating all terms in Q2 = 0 = Q2.The
result is

, ( O)
Qsc =i~2X'

~

-~—I,
Oz)

O l
Qsc = iv2Xi

~

—&
Oz )

(3.16)

XOX'X' + 3X20'X' + 3XOO'X'

z*
+ (XOX'X'+ X2X'X'),

2
However, the potential terms Qp, Q~ now become more
complicated. The additional dependence of HM on o.
and ~z~ entails the necessity of more three-fermion terms
which do not have any obvious interpretation in terms of
spin connections. Thus we write

X2X&X 3X200X 3X000X

z+ (X.X X' + X.X X') .
2

(3.18)

Q~ = ice +I'I / (X [DW(z)]*

+V3Xo[W(z)]'j+ ihT,

Qy = iv2e +I I'/ ( X2[DW(z)]

+v 3Xp[W(z)]) —ihT, (3.17)

In the zero- and one-fermion sector the three-fermion
terms do not contribute. Proceeding as in Eqs. (3.8)
and (3.9) the wave-equation in the one-fermion sector is
obtained as
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1 „„( 0 Bp) Bf 2 02f
—hg""

I
5 —2 +&

gqi" Bq& ) Bq" OzBz*

= e +i i (IDWI —3IWI )f. (3.19)

field. The assumption of adiabaticity is satisfied if the
retatiee change of the frequency ~(a) = 2lcles +~" ~

~2 of
the scalar field over a period 2vr/~(a) = T remains small.
Using a itself as a parameter to measure time we have,
for the change Ao. of a over one period,

It is somewhat simpler in form than Eq. (3.9) but leads
to the same conclusions. In particular, the semiclassical
solutions (3.12), (3.13) are the same.

ha
u)(n)dn = 2m,

Q

—3'—~sp~ /2 (3.28)

C. Approximate solutions in the one-fermion sector and the adiabatic condition becomes

For o. negative and sufBciently large the right-hand side
of Eq. (3.19) is negligible and also P approaches zero.
Then

(3.20)

36m &(1, (3.29)

which will be satisfied in the limit of a large scale-
parameter.

The total wave function in this limit then is approxi-
mately

with
f(z, z', q) = f(z, z'I~)g(~ P+ & )- (3.30)

kp2 = Ik I' + k,' + k,' (3.21)

and

lgg) e ~e' " +~&~ '+ ' l(hk„g" y hk'gg)IO).

(3.22)

For sufficiently large n (see below) Eq. (3.19) may be
solved in a Born-Oppenheimer approximation assuming
that the scalar field adjusts itself quasi-instantaneously to
the gravitational field. We consider the case where W(z)
has a quadratic stationary point zp with W(zp) = 0, or

Og 2 Og+he =Epe g for /=Ps
2 OA 00!

(3.31)

where f solves Eq. (3.25) and g solves Eq. (3.27). For
concreteness let us assume now that we are dealing with
the Bianchi type IX case. In the limit where the adiabatic
approximation is valid the prefactor e ~~" or e ~~" of
f will then be very sharply peaked at P+ ——0 = P
Therefore we may put P+ ——P = 0 in f and Eq. (3.27)
is reduced, respectively, to

Thus

C 2W(z) = —(z —zp) +
2

DW =c(z —zp)+, c$0. (3.23)

—he = Epe g for P = Pg. (3.32)
Og 2 Bg

2 |90.' 00,'

In the semiclassical limit the solutions are given by

g (2@pcs~ —e4~) ~~2

VM e +I oI'
(Icl Iz —zpl + .) . (3.24)

a
x exp —e —i du(2Epe —e ) ~

2
(3.33)

For this potential and for fixed o; we can solve the eigen-
value problem

+ VMf = E(o')f (3.25)

in terms of eigenfunctions and eigenvalues of the two-
dimensional harmonic oscillator. The energy E depends
on o. like

for P = $9 or

g (2Epes~ —e4~) ~~2

a
x exp ——e —i dn(2Epe —e ) (3.34)

2

for P = Pp, which are both outgoing waves as long as

E(o.) = Epe (3.26)
e ( 2Eo. (3.35)

The constant prefactor Eo depends on the two quantum
numbers of the harmonic oscillator which will not change
in the adiabatic regime. It then remains to solve the
reduced problem

h „„/' 8 0$) Bg—g"" h —2
2 q Bqi' Bq&p Bq" Eoe g (3.27)

where the right-hand side gives the energy of the matter

This condition in the present model defines the maxi-
mum radius of the Universe, where the outgoing wave
is reHected to become a standing wave. In the physical
Universe, long before this event happens, the coherence
of the wave function has been spread over so many de-
grees of freedom (not contained in our minisuperspace)
that this coherence becomes completely irrelevant for any
conceivable physical process and a classical description is
required.
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Note added in proof. After this paper had been finished
the state lies) of (2.54) was obtained as a solution of the
quantum constraints of N = 1 supergravity restricted
to homogeneous spatial three-geometries of Bianchi type
IX and homogeneous Rarita-Schwinger 6elds transform-
ing according to the spin-2 representation of the homo-
geneity group [R. Graham and H. Luckock, "The Hartle-
Hawking State for the Bianchi IX Model in Supergrav-
ity, " report (unpublished)].
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f q„lo} = Q,FIo}. (A8)

Next we consider the conditions that the coefFicients of
y„y„vanish. They take the form

i~2hOO, g +i~6Wg' = 0,

iv 2DWg + iv 6Wg = 0,

Here F and F are yet undetermined functions of
n, P+, P, z, z*. Equation (A6) implies

APPENDIX
—iy 26AO, .g +iv 2DWg' —i Mg = 0. (A9)

In this appendix we examine the general form of the
solution of Qlgi) = 0 in the one-fermion sector with

Q = Qo + Qz + Qp given by Eqs. (3.4)—(3.6). With
IOi} = (f"4~ + g y~)IO) we obtain that the 15 coeffi-
cients «g Q„, g g& and y g& must vanish. Using the
abbreviations

—3cd ———-

=�ee

DW o

W
(Alo)

and the last of Eqs. (AQ) is then automatically satisfied.
With

From the first two of these equations it follows (for W g
O) that

6 0
g ~ W z g )

D = hO —OP-/Oq", (Al)

the conditions that the coefficient of Q g„vanish read

0 2 1 0

~6W
(All)

D f' —Dp —f +3hf' = 0,

D f —Dp —f +3hf =0,
Dp f —Dp f'=0. (A2)

Eqs. (Alo) imply

g"~-Io} = (Q~+ Qp)g'Io). (A12)

Finally we equate to zero the coefficients of yog which

yields

O f1 +O fo

f2 + O fo

Op f —Op f'

=0,
=0
=0

Defining the functions f by

gv —3a —@/h gv
J e J )

Eqs. (A2) become

iBD g —iv 6Wf" = 0

(A3) and implies with Eqs. (All), (A6) that

D (g —F)=0.
Hence, we may rewrite Eq. (A8) as

f O. lo} = Qog'Io),

(A4) and Eqs. (A12), (A15) together imply

(A13)

(A14)

(A15)

I@ ) = (f @ +g"x )lo) = (Q +QK+Q~)g'Io) = Qg'lo). (A16)

Because of the form (A16) of I/i) the coefficients of the remaining terms y„g, (p g 0) now automatically vanish.
Nontrivial solutions in the one-fermion sector therefore must all have the form (A16), which is permitted only for a
nonde6nite signature of the metric in mini-superspace. For a Riemannian signature of the metric there are no states
in the one-fermion sector.
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