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Strings in cosmological and black hole backgrounds: Ring solutions
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The string equations of motion and constraints are solved for a ring-shaped ansatz in cosmological and
black hole spacetimes. In FRW universes with arbitrary power behavior [R (X )=a ~X ~ ], the asymp-
totic form of the solution is found for both X ~0 and X ~ ~ and we plot the numerical solution for all

times. Right after the big bang (X =0), the string energy decreases as R (X )
' and the string size

grows as R(XO) for 0&a &1 and as Xo for a &0 and a& 1. Very soon [X -1],the ring reaches its oscil-

latory regime with frequency equal to the winding and constant size and energy. This picture holds for
all values of a including string vacua (for which, asymptotically, a = 1}. In addition, an exact nonoscilla-

tory ring solution is found. For black hole spacetimes (Schwarzschild, Reissner-Nordstrom, and strin-

gy), we solve for ring strings moving towards the center. Depending on their initial conditions (essential-

ly the oscillation phase), they are absorbed or not by Schwarzschild black holes. The phenomenon of
particle transmutation is explicitly observed (for rings not swallowed by the hole). An effective horizon
is noticed for the rings. Exact and explicit ring solutions inside the horizon(s) are found. They may be
interpreted as strings propagating between the different universes described by the full black hole mani-

fold.

PACS number(s): 98.80.Cq, 04.70.Bw, 11.27.+d, 97.60.Lf

I. INTRODUCTION

The systematic investigation of string dynamics in
curved spacetimes started in [1] has shown a variety of
new physical phenomena [2]. These results are relevant
both for fundamental (quantum) strings and for cosmic
strings, which behave in an essentially classical way [3].

String propagation has been studied in nonlinear gravi-
tational plane waves [4-6] and shock waves [7,8], conical
spacetimes [9,10], black holes [11], and cosmological
spacetimes [2,12,13].

Among the cosmological backgrounds, de Sitter space-
time occupies a special place. On one hand, it is the
relevant in6ationary geometry, and on the other, string
propagation turns out to be special there [1,12,13].
Moreover the classical string equations of motion (plus
the string constraints) happen to be integrable in D-
dimensional de Sitter universe [16—18]. More precisely,
they are equivalent to a cr model on the Grassmanian
SO(D, 1)/O(D) with periodic boundary conditions (for
closed strings) or Neumann boundary conditions (for
open strings).

For generic Friedmann-Robertson-Walker (FRW)
cosmological spacetimes, the propagation of strings is
certainly a nonintegrable problem. Therefore, one is
faced with a rather formidable set of coupled nonlinear
partial differential equations. Analogous difficulties arise
in other nonintegr able backgrounds, such as
Schwarszchild black holes. To grasp basic physical prop-
erties, we consider in the present paper solutions for the
motion of classical closed test strings for which the ~ and
cr dependence are separated. (Hence, we have to solve
just nonlinear ordinary differential equations. ) That is, we

make separable ring-shaped ansatze sharing the symme-
try of the background geometry.

As is well known, the effective action for string theory
corresponds to a modification of Einstein-Hilbert action
(see for instance the review [20] for the tree-level effective
action). This leads to cosmological spacetimes that are
solutions of the variational equations for this action. It is
therefore interesting to investigate ringlike solutions in
these stringy cosmological spacetimes as well, and to
compare their features with those encountered in our
study of FRW spacetimes.

%e consider cosmological spacetimes with the metric

D —1

ds2 (dXO)2 R(Xo)2 g (dXi)2

for FRW universes R(X )=a ~X ~, where a is a con-
stant, a is 1/2 for radiation-dominated universes and 2/3
for matter-dominated universes. However, we shall con-
sider arbitrary real values of a. In particular, for a= 1

we have a tree-level string vacuum [23]. String vacua
may give more complicated functions R(Xo), but R(Xc)
usually grows as X for large X [20]. In terms of the
conformal time g,

The metric (1.1) takes the form

D —1

ds =R(g) (dq) —g (dX')

where R(q) = Ag" and k =2a/(1 —a).
The ring-shaped ansatz for the string solution is
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defined by

Xo=XO(r),

X' =f(r)coso,

X =f(~)sinu,

X'=const, i ~ 3,

(1.2)

X ~0
1E(X ) —const X

a'R {Xo)

and the invariant size grows as follows

(1.3)

const XR (X ) for X ~0 when k & 0,S='
const XX for X ~0 when k &0 .0 0 (1.4)

Notice that in the second case (power inflation) the string
size is proportional to the particle horizon (-X ). In the
first case (FRW cosmologies), the string grows as the ex-
pansion factor. This is exactly like the case of strings fal-
ling into a singular plane wave [4—6]. Stringy universes
are special {a= 1}and we find (Sec. III) that

S=R(X )ln
1

R(X )
for R(X ) —+0. (1.5)

Very soon [X -1],the ring string solution reaches an os-
cillatory regime with [see Eqs. (2.23), (2.33), and (3.4)]

X ~+co
f(r) — C cos(r+y)

~Q
(1.6)

with X proportional to C' ~. Here, C and y are arbi-
trary constants, amplitude and phase, respectively. This
describes for large X a string of constant invariant size
that oscillates with unit frequency. Quantum mechani-
cally, Eq. (1.6) corresponds to an excitation of graviton or
dilaton type. Multiple winded ring-shaped strings oscil-
late with arbitrary integer frequency [see Eq. (2.33)]. No-
tice that simple string oscillatory behaviors such as (1.6)
are absent in inflationary cosmologies as the de Sitter
universe.

In conclusion, when the Universe expands as any finite
power of X, the ring string oscillates similarly to flat
spacetime. Only the oscillation amplitude varies with
time in such a way that the invariant size, S(~), and the
energy remain constant. Near the big bang (or big
crunch) singularities the string collapses [Eqs. (1.4), (1.5)].

We find in addition an exact ring solution with radius

and leads to two coupled ordinary nonlinear differential
equations on two functions: the ring radius f(r) (in
comoving coordinates) and the cosmic time X =X (r).
The other relevant physical quantities here are the invari-
ant string size S(r)=—f(r)R(X (~)) and the string energy
E(X ) =(1/a')X (r). Here r stands for the proper string
time and u' for the string tension.

%e can summarize our results as follows for all power
J —++ oo0

expanding universes [R(X ) — a ~X
~ ]. At the time

X =0 singularity (big band and/or big crunch), the
string energy is infinite, and its size is zero. Right after
that, the energy redshifts as:

f(r) proportional to conformal time:

rt(r}=Ke*' " ' f(r) = ~,/V'-I -i
e—k

where K is an arbitrary constant. This solution is real for
k+ 1 &0. For —1 & k &0, it is real for imaginary ~. For
k & 0, this solution is real for imaginary conforrnal time g
and imaginary string time ~. Hence, it can be considered
as an instanton for k ) —1.

Since Schwarzschild black holes are asymptotically flat
spacetimes, we consider these ring string solutions start-
ing very far from the black hole. They asymptotically
behave as Minkowski solutions with a momentum p
directed towards the black hole center, an oscillation am-
plitude m and an energy e with e =p +m . This energy
is in fact proportional to the string energy at all times t,
E(t)=e/a'. Notice that the oscillation amplitude coin-
cides with the classica1 string mass. For ring strings
wounded n times, the mass turns to be nm. When the
ring string approaches the black hole, its oscillations do
not qualitatively change, as can be seen from Fig. 14.
Then, the ring is swallowed or not by the black hole, de-
pending on how much the string approaches the singular-
ity. There exists an effective horizon within which the
ring string is always absorbed by the black hole. %e find
that the sphere r= —,'Rs (where Rs=Schwarzschild ra-
dius) is completely inside this effective horizon. Numeri-
cal results indicate that the effective horizon here is
close to the effective horizon for massless geodesics

,'v'3' =2. 59—80 Rs.
Absorption by the black hole may occur for any value

of the initial amplitude and momentum. The oscillation
phase determines whether or not the ring will be swal-
lowed. %hen the ring is not absorbed it gets out after
turning an even or odd number of m's around the center.
For an even (odd) number we have back- (forward)
scattering. The outgoing oscillation amplitude, m is
generically different from the initial amplitude m. This is
an explicit illustration of the phenomenon of particle
transmutation noticed in Ref. [14].

Several black hole perturbative string vacua are now
known (for a recent review, see [15]). In particular there
exist rotationally invariant solutions which are generali-
zations of Reissner-Nordstrom spacetime.

%e show how a generic rotationally symmetric space-
time admits ringlike solutions to the string equations of
motion, and apply this to the aforementioned black hole
solutions. The analysis of the possibility of collapse of
the string onto the singularity is radically different from
the behavior present in Schwarzschild's background.
Whenever the region close to the singularity is static (as
would be the case for Reissner-Nordstrom spacetime},
the singularity is strongly repulsive of the strings, similar-

ly to what happens with point particles. Only if the usu-

ally present inner horizon is absent or coincides with the
singularity wiB we get collapsing string with the world
sheet lacking analyticity at the collapse point. The
asymptotic region r »~8~, which corresponds to the

asymptotically Minkowskian region of all these space-
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times, does indeed reproduce the expected oscillatory
behavior.

An exact solution for the string equations of motion is
obtained for Reissner-Nordstrom and stringy black holes.
It can be understood as the propagation of the string
from one asymptotically flat region to another, crossing
both the outer and the inner horizon present in these
black holes. This is clearly analogous to the possibility
that timelike curves can connect the different asymptoti-
cally flat regions.

The corresponding solution for Schwarzschild's back-
ground does exist, but remains always inside the horizon.
Thus no violation of causality can be caused by the ring-
like strings under consideration.

eric k. We shall therefore proceed to analyze a simple
ansatz where variables 0 and ~ separate. We choose a
ring configuration whose radius depends on ~:

Xo=X'(~),
X'=f(r}coso,

X =f(v)sino,

X'=const, i ~3 .

(2.8)

We then find from Eqs. (2.6) and (2.7) the following set of
ordinary difFerential equations for X (w) and f(w):

II. STRINGS PROPAGATING IN FRIEDMANN-
ROBERTSON-WALKER COSMOLOGICAL

SPACETIMES

We consider in this section closed test strings propaga-
ting in FRW spacetimes with the metric

D —1

s = (dx )2 R (XO)2 y (dX i)2

" R~df +R2f=o,
d~ di

dX' —R2(f +f )=0,

d X +R (f —f )=0,
dH dX'

(2.9)

D —1

=R(ri) (dg} —g (dX') (2.1)

where f stands for df Idw.
The string energy can be easily computed from the

spacetime string energy-momentum tensor:

where X stands for cosmic time and g for conformal
time. These times are related by

~' dX'"=I .( )

The function R (g) will be assumed of power type:

R(ri) = Ay",

(2.2)

(2.3)

X=—'[(8 X } —R(X ) (8 X') ] (2.5}

where B„are derivatives with respect to the world sheet
coordinates x„,xo=r, and xi =cr (we use the conformal
gauge throughout}. This yields the equations of motion

dR$2XO R (XO) y (i} Xi)2 0dx',
(2.6)

where A is a constant. For k= —2 we have de Sitter
spacetime, for k =2 a radiation-dominated FRW
universe, and for k =4 a rnatter-dominated universe [21].

For kA —2 we get, from Eqs. (2.2) and (2.3),

X = 2v a ~(k+2)/2 and a = k
k+2 k+2

The Lagrangian function for a bosonic string in the
geometry (2.1) takes the form

1 dXE(X }=Jd 'X& GT (X—)=
cx dv

(2.11)

For the restriction to power-type metrics, Eqs. (2.3)
and (2.9} take a particularly simple form for the confor-
mal time ri =q( w):

riij+kf =0,
rif+kr'if+ref =0,
r'i' f' f'=o— —

(2.12)

(2.13)

(2.14)

The last equation is due to the string constraint. Notice
that the first two equations guarantee that [ri f f]- —
is a constant of the motion. Hence the constraint (2.14)
will be satisfied for all times if it is satisfied by the initial
conditions. We have therefore only two independent
differential equations in the set (2.12)—(2.14), with one
constraint on the possible initial conditions. In addition
to this, the equations are invariant under the scaling
transformation

G TAB(x), do' d7 (X~xs Xi AxiB)
27TCX

X5' '(X—X(cr,r)) . (2.10)

Therefore, whenever X =X (v), the string energy at a
timeX is givenby

B„(R 8'X') =0, 1 ~ i ~ D —1, g(r)~A, ri(~), f(r)~&f(&), (2.15)

and the constraints

T„=(a,Xo)' —R( X)'o(a, X)'= .0 (2 7)

Equations (2.6} and (2.7) turn to be integrable for the de
Sitter case (k = —2) [16]. They are not integrable for gen-

where I, is an arbitrary constant. It thus follows that the
space of solutions is parametrized by two initial condi-
tions and a scaling factor.

The invariant spacetime interval (2.1) measured for
these string solutions takes the form
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ds =ri"f (dr d—o. ), (2.16)

where we have used Eq (.2.14). We can then interpret

S( }2 ]kf 2 (2.17)

as the string size squared [2].
Equations (2. 12)—(2.14) admit a pair of simple solu-

tions that can be written in closed form:

equal to zero.
The equations of motion previously written down are

then obtained from g = [g,H ] for any g in the algebra A
generated by f,7), IIf, II„. The equation of constraint is
equivalent to the dynamical constraint H =0.

We can write the following element Q EA,
Q =i)II„+fIIf. It will be the generator of dilation of the
string size. Its time derivative is easily computed to be

( )
=, -, /& —k —i f( )

+w/& —k —i (2 18) j Q, H i =(k+2)(H+ri"f ) =(k+2}(H+S ), (2.22)

Of course, these two solutions can be scaled according to
(2.15). They are real for k+1 &0, and describe a string
that explodes or collapses for large ~, which can be seen
from the form taken in this case by the string size S(r):

1 k+2S(r) = ——exp +
k v' —k —1

(2.19)

Clearly, the string explodes, for ~~+ 00, for the choice
of plus sign of the exponent, k+2 being larger than zero
(
—1)k ) —2), or the choice of the minus sign whenever

@+2(0. The converse situation, i.e., string collapse for
v~+ ~, occurs for the choice of the minus sign and
k+2)0( —1)k) —2), or plus sign and k+2&0. No-
tice that, for these solutions,

S(r}
R(~) i/ —k i/ —k —

1
(2.20)

giving an exponential collapse and/or explosion of the
string with respect to the evolution of the spacetime.

Solution (2.18) is real for k+1 &0. For —1 & k &0, it
is real for imaginary r. For k )0, this solution is real for
imaginary conformal time g and string time ~. Hence, it
can be considered as a string instanton for k ) —1. For
k )0, it is a real solution in a Universe with Euclidean
signature.

The case k = —2 (de Sitter) is special. There, Eq. (2. 18)
yields the solution qo(v. ) found in Ref. [17]. In this case
the string size remains constant.

Notice that (2.18) (for kA —2) collapses or explodes ir-
respective of the initial string size. On the other hand,
for de Sitter space, the string equations of motion and of
constraint reduce to a sinh-Gordon equation with poten-
tial —Zcosha [16], where the string size squared is
S(r) =exp[a(o, r)]l(2H ). Therefore, configurations
with positive (negative) a are driven towards + ~
( —~ )a. That is, strings such that for any given initial
moment they are of size bigger (smaller) than the horizon
(1/&2H} tend to explode (collapse}.

The peculiarity of de Sitter spacetime in this context
can be clearly seen as soon as one realizes that Eqs.
(2.12)—(2.14) can be cast in a Hamiltonian form with a
constraint. Define

—
k( II2 112 2kf 2) (2.21)

and Poisson commutators the canonical ones,

i il, II„I
=

[f, Ilf I
= 1,

the rest of the commutators between f, i), IIf, lI„being

whence for k = —2 we have an additional (quadratic)
conserved quantity. Notice that S itself is not a con-
served quantity in general, even for de Sitter spacetime,
since [S,H] =kf g 'II„2fIIf-.

The existence of this additional conserved quantity for
this ansatz and de Sitter spacetime reflects the fact that
the motion of classical test strings in de Sitter spacetimes
is integrable [16,17].

Let us now derive the asymptotic behavior of il and f
analytically from (2.12)—(2.14), for solutions other than
the previously written exponentials.

We find, for r~+ ~ (and kW —2),

( ) P/(k+2)

o
' +" 2&AX (r) k+2

T-~ + oo

f(r) — r """+"cos(r+q),k+2

(2.23)

where y is a constant phase and oscillation amplitude has
been normalized using the scaling (2.15). The size of the
set of solutions with this asymptotic behavior is asymp-
totically a constant times an oscillating term:

S(r) 2 1~+ CQ

icos(r+p)i k+2

(2.24)

That is, (2.23) describes the asymptotic behavior of a
string whose size oscillates with unit frequency. Quan-
tum mechanically, this corresponds to an excitation of
graviton or dilaton type. Notice that this behavior holds
for all k& —2.

The result (2.23) holds for large R and is therefore val-
id for any universe where Eq. (2.3) is valid asymptotically
%'e want to stress that all cosmological geometries exhib-
it simple oscillatory string behavior for large 8 except
when R (X } grows faster than any power of X . That is,
simple oscillatory string behavior does not appear in
inflationary universes like de Sitter.

The contraction and dilation of the Universe in this
limit, ~~ ~, is now governed by k: for —2(k (0 this
corresponds to a contracting Universe, ' otherwise it will
be expanding.

In summary, the asymptotic behavior of the string
given by (2.23) is similar to the usual in i

=1 modes in
Minkowski spacetime. It corresponds to "stable
behavior" as defined in [12,13] (the special case k = —2
(de Sitter spacetime) is analyzed in Ref. [17]).
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S(r)2 (r r }(k+2)/(k+1) for k (0

(~)2 f2(r r )k/(k+1) for k )0

(2.26)

In this regime, the Universe contracts (big crunch) as
T +Tp

Behaviors of the type (2.23} for a&0 were called
"string stretching" in Ref. [19) referring to the fact that
the string amplitude f(r) stretches when the universe ex-
pands. This is actually a coordinate-dependent effect
since the invariant string size stays constant [Eq. (2.24)].
We prefer to use the term "string stretching" in de Sitter
universe where the inuariant string size in a whole class
of string solutions grows as fast as the universe
[12,13,17,18].

Before describing our numerical study of Eqs.
(2.12)—(2.14), let us consider the singular points where rI
vanishes. Assuming that 2)(r()) =0, we find, for k & 0,

7 +Tp

)1/(k + 1)

(2.25)
Tp

f( ) f +(r r )1/(k+ 1)

For the case 0& k & —1, fo must be set equal to 0. Ex-
pression (2.25} also holds as an asymptotic behavior for
k & —1 as r~ro, but in such a case, both ri(r) and f(r)
diverge at 7 ip. We have again made use of the scaling
freedom given by (2.15). The string size squared results
to be

7 +Tp

ri(r) —r —ro,
7 +Tp

f(r) —I+a(r ro)—)
(2.30)

with a a constant. Both sets of equations correspond to a
collapsing (exploding) string for k &0 (k &0), with size

+ TQ

S(r) —(r—ro)" . The behavior (2.29) is however sub-
dominant when compared to (2.25) for k & 0. For k (—1

(2.25) is singular, and, since, as we shall later prove, ri
must vanish for some finite value of ~, it follows that
(2.29) will be present. Similarly for —1 & k &0.

The equations of motion (2.12)—(2.14) being invariant
under time reversal (r~ r), b—oth asymptotic behaviors,
(2.23}and (2.25},may describe initial or final situations of
the string. The numerical analysis, carried out using
MATHEMATIcA [22], precisely shows how to connect such
behaviors.

Equation (2.12) tells us that pe has a definite sign, pre-
cisely that of —k. Therefore, if we start from a positive
rj(0), and k &0, rj(r) will be negative for as long as
2)(r}&0. Then, if ri(0) &O, i)(r) will grow in absolute
value for as long as rj(r) )0. In conclusion, 2I will vanish
for some finite value of r=rp. On the other hand, if
rl(0) & 0 (always for k & 0), q(r) need not vanish. The nu-
merical analysis supports these conclusions.

In Fig. 1 we plot ri(r) and f(r) for k=2 with initial
conditions such that ri(0)2')(0) &0. We observe that the
behavior (2.25) is reproduced with reasonable accuracy.

R ( )2 ( )k/(k+1) () (2.27)

whereas the string collapses for k & 0 or k & —2, but ex-
plodes for —2 &k & —l.

Notice, that the string size S(r}grows as Xo(r} grows
for k (0. That is, the string size is proportional to the
particle horizon in this regime. For k & 0, the string size
behaves here as R {X()(r)).

From Eqs. (2.11)—(2.25) we find that the string energy
E(X )=(I/a')X behaves near the big-bang (X =0)
singularity as

-0.4

-05-

-0.6

-0.7-

-0.8

-0.9-

0 }
const k/( k +, ) const 1

R(X')
(2.28) 0.1 0.2 0.3 05

Notice that E(X ) decreases for growing small X with
the gravitational redshift factor 1/R(X ). On the con-
trary, when the particle horizon (-X ) is much larger
than the ring size, the string energy is no more redshifted
and tends to a constant [Eq. (2.23)].

Another possible behavior is given by

1)(r) —r ro, —
o (r—ro)

2(k+1)

(2.29)

0.2

O. I 0.2 0.3 0.4 O.h

For 0) k )—1, a more likely behavior is given by

FIG. 1. Cosmological spacetime with k =2: numerical solu-
tion to the ringlike equations of motion for initial conditions
such that g(0)g(0) & 0.
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In Fig. 2 we again consider g(0)r((0) (0, but this time for
k =4.

Figure 3 depicts g(r) and f(r) for k=2 with initial
conditions such that r((0)r((0) )0. We then find that the
asymptotic regime (2.23) is very quickly reached. Simi-

larly for k =4 (Fig. 4).
In Figure 5 we portray a solution for k =2 which starts

from nothing at the big crunch q=~=O and grows
steadily up to an oscillatory solution, which is to be un-

derstood as a graviton or dilaton created ex nihilo.
The next 6gure, Fig. 6, presents a numerical solution

for k = —3/2, close to a vanishing point of g, in order to
show that the analysis is general. It is clear that it obeys
equation (2.29) (modulo an unimportant scaling factor).
We proceed to show in Fig. 7 a numerical solution, also
for k = —3/2, but this time illustrating the asymptotic
regime (2.23).

There are other possible modes of the string, and in

fact our whole analysis easily generalizes to higher wind-

ing modes: take the ansatz

r(= r((r),
X'=f„(r)cosno,

X =f„(r)sinner,

X'=const, i ~3 .

(2.31)

Apart from the exponential solutions, which take the
form

FIG. 3. Cosmological spacetime with k=2: initial condi-
tions such that g(0)g(0) & 0.

-03-

-0,4

-0.5-

-06-

-07-

-08

R r,
3) 40

-0.9-

01 0'

0!

FIG. 2. Cosmological spacetime with k =4: numerical solu-

tion, for initial conditions such that q(0)g(0) & 0.
FIG. 4. Cosmological spacetime with k=4; initial condi-

tions such that q{0)g(0)& 0.
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0. 8

0. 6

40000-

20000-

0.2

-0. 2

P A r,
30 40

-20000-

-0. 4
-40000-

10

4OOOOO-

300000-

200000-

100000-

10 A 0 30 40 10 15 20
T

30

FIG. 5. Cosmological spacetime with k =2: both asymptotic
regimes are present here.

FIG. 7. Cosmological spacetime with k = —3/2: The large ~
asymptotic regime.

3.00984-

)
knr/V —k —) kn~/+ —k —1e—k

(2.32)

0.0965

3,00982 .

0.099 0.0995

3.00978-

3.00976-

3.00974-

only the ~~ ~ asymptotic behavior is slightly modified
in the context of this generalized ansatz. We find that the
analogue of (2.23) is

g—++ tx)

(r) P/(2+k)

(2.33)
r ""'+k)cos(nr+g ) .

n 2+k

III. STRINGS PROPAGATING IN STRINGY
COSMOLOGICAL SPACKTIMKS

0.0 0.097 0.0975 0.098 0.0985 0.099 0.0995

FIG. 6. Cosmological spacetime with k = —3/2: close to the
vanishing point for g. Note the analyticity of the solution.

There are a number of interesting string vacua of this
kind to be found in the literature [see (20) for a review].
These geometries can be either considered in the "string
frame" or in the "Einstein frame. " The physics changes
with the frame. We choose to work in the Einstein
frame. The reason being that in such frame the space-
time metric in the efFective field theory action is the same
metric that appears in the string action for test strings
[12]. In the string frame, the metric in the effective ac-
tion contains the dilaton field whereas the dilaton never
couples with classical test strings.

We shall assume D =4 uncompactified dimensions for
this stringy universe as it was before the case for the
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FRW geometries (Sec. II). In addition, we assume some
extra compactified degrees of freedom contributing with
an amount c &0 to the central charge. No further as-
sumptions will be made. In fact the value of ~c~ gets ab-
sorbed in the choice of unit of length.

We consider in particular cosmological backgrounds in
maximally symmetric, conformally flat space, that is to
say, with metric of the form (2.1). Making the same an-
satz as before (2.8) we again have equations (2.9) as equa-
tions of motion and constraint. Notice that the invariant
string size is given by

S(r)=f(r)R(X (r)) . (3.1)

D —
1

e 2v) d~2 g (dXi }2 (3.2)

whence the equations of motion and constraint

f+27jf+f =0,
j+2f =0,
7'I f f =—0, —

(3.3)

for ringlike solutions, following the by now usual ansatz.
It has to be observed that g does not enter these equa-
tions save through its derivatives. We thus see that g can
be shifted by an arbitrary constant. Disregarding this
constant, we are actually restricted to a single nonlinear
second-order ordinary differential equation for f, up to
the choice of a sign for g. There is no scaling freedom in
this case.

In an analogous manner to the analysis carried out be-
fore, we obtain that the asymptotic behavior of the solu-
tions for ~~+ ~ is of the form

~~+ oo

f(r) — —cos(r+ip)+O(1/r ),
(3.4)

rl(r) — rI0+Inr+O(1/r) .

Here, the oscillation amplitude for f(r) is fixed for all

ring solutions. Since the asymptotic string energy is pro-

portional to e ', it is then this arbitrary parameter which
effectively plays the role of asymptotic string amplitUde.

The string size is

(3.5)

I.et us first examine the linear dilaton, flat string frame
metric solution of Myers [23], in Einstein s frame [12,20],
(with the correct constant rescaling of the spatial com-
ponents)

D —
1

d$2 =(dXO)2 (XO)2 y (dXi)2

(which implies f=0, f=0}is a critical point of this two-
dimensional dynamical system. This means that g&0
and j (0 are disconnected regions of configuration space,
as was pointed out before. On the other hand, time re-
versal invariance means that they can be mapped into
each other, so we concentrate on oj) 0. Because of (a), q
will tend towards zero as ~ grows, which corresponds to
(3.4). Backwards in time, though, it will grow
indefinitely. This growth might be up to some finite v.o, in
which case, there will be a divergence at this point, of the
form

f(r) —
—,'1n(r —r0),

T + 7O

g(r) —o)0+ —,'ln(r —r0) .

(3.7)

The string collapses in this case, but more slowly than the
spac ctime:

-'O gr —r0
(3.8)

Both types of asymptotic behaviors, (3.4) and (3.7), are
observed in the numerical solution depicted in Fig. 8.

The string energy (2.11) tends to (1/a')e ' for X —+ oo

and it is redshifted as

0e

2a'R(X )

near the big bang singularity as in Eq. (2.28).
As a conclusion, the behavior of ringlike string solu-

and asymptotically, for z~+ ~,
~~+ oo

1 goS(r) — e '~cos(r+ip)~ — —e '.
v'2 (3.6)

The string is of a bounded size, whereas the Universe is
expanding in this regime.

Observe that (a} ij is always negative and (b) o')=0 FIG. 8. Myers' spacetime: both asymptotics are observed.
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—D —1

x(X'+a)'~' '"~' g (dx')', (3.9}

for D =4. Here c & 0 as explained above and a is an arbi-
trary constant. Observe that

R (XX,a ) =2(,R (X,a /A, ),
from which we can fix a =1 without loss of generality,
and Rp can also be set to 1 by an adequate constant re-
scaling of the spatial coordinates. Making again the ring-
like ansatz (2.8), the equations of motion (2.9) are conse-
quently:

tions in this spacetime is analogous to that found for
FRW spacetimes, by making k tend formally towards
+~. An important difference between this spacetime
and the FRW solutions of genera1 relativity lies in the
fact that the "big crunch" singularity for the case at hand
is a null singularity [29], whereas it is spacelike for FRW
spacetimes. The collapse of the strings into these singu-
larities is also of different kinds: while S(w)/R (r) tends
powerlike to zero for FRW spacetimes (k & 0), it is loga-
rithmically divergent for the stringy solution under con-
sideration.

Another interesting spacetime is the isotropic case of
the one obtained by Mueller [24], which is asymptotically
identical to the previous one for X —++ 00, but which
possesses simple polynomial curvature singularities for
two values of X . In Einstein's frame, it reads

D —1

ds2 (dXO)2 R (X0 a )2 y (dXi)2
i=1

(dX0)2 R 2(XO a )( 3+1)/ 3
0

larities of the metric. The curvature scalar tends to ~ as
those points are approached, and the metric is imaginary
for —1&X &1. It is also evident that X =+1 are criti-
cal planes for the set of ordinary differential equations
(3.10). Equations (3.10) are autonomous, so there is in-
variance under time translation, and we can choose T 'Tp

as the point for which X =+1. In such case, the follow-
ing asymptotic behavior is obtained by demanding that
the solutions be regular for X ~1+ when r~~O (we
choose for simplicity F0=0}:

(1/c& )X (r) —I+b, r
C24~0

f(r) — [I+O(r )] .
2 C2

(3.13)

~~0
X (~) —I+b, r

C2

c&/(c&+1)

2 C2

(3.14)

in which case the string collapses as r~0+(b & 0) with

S( )
4~0—v '/(ci+I) . (3.15)

This leads to a string size squared that tends to zero at
the same rate as the spacetime.

Allowing for singular solutions, we obtain, for
X (r)~1+ as v~0,

C1 cp+2 +X'—1 X'+1 X f+f=0, 0.75

0 5

X +(X —1) '(X +1) C1 Cp+
X —1 X +1

x(f' —f')=0,

0.25

12 ~14 ~16 18 ~0

(X ) —(X —1) '(X +1} '(f +f )=0

Here,

(3.10)

1 1 1 1
C1 1+ —

& C2 1
2 V'3 ' ' 2 v'3 (3.11)

In D spacetime dimensions one just has to replace +3 in
Eqs. (3.9)—(3.11)by 1/D —1.

From the expression of the metric one can conclude
that in the asymptotic region X ~+ Oo the behavior is
analogous to that of Myers' spacetime. That is to say,

7~+ oox' —p~,
7~+ 00

f — —cos(a+y),
7

(3.12)

20

where p is an arbitrary positive parameter proportional to
e . On the other hand, it is clear that X =+1 are singu-

FKJ. 9. Mueller's spacetime: The large ~ asymptotic
behavior is clearly observed in this numerical solution.
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7 ~

05

Passing to X ~—1, we see that there are solutions of
the same type as above, given by the exchange of c, with

c2, and such that X ~—1

To illustrate these results, we portray in Fig. 9 a nu-
merical solution in which the behavior for z~+ ~ is
particularly clear, and next in Fig. 10 a closer look at the
limit X ~1+, for a different numerical solution. It is
seen that the singular behavior (3.14) is obeyed.

75

() 5 I' IV. STRINGS PROPAGATING IN BLACK HOLE
SPACETIMES

Xo

The motion of classical test strings in a black hole
background metric is also particularly interesting. Previ-
ous works on classical strings in black hole backgrounds
considered infinite strings [25], static solutions [26], fluc-
tuations around the center-of-mass motion [11],charged
strings [27], and perturbations on static solutions [28].

We start with the Schwarzschild metric

FIG. 10. Mueller's spacetime: A closer look to the limit
Xo 1+

1
ds =R — 1 ——dtS

dr+ +r (d8 +sin 8dp )
1 —I lr

(4.1)

Alternatively, and when considering X =1 as the big
bang (and X = —1 as the big crunch), the string is com-
ing out of the big bang faster than the expansion rate of
the Universe.

where Rz =2m is the Schwarzschild radius, and the radi-
al and "temporal" coordinates are R = rR& and T=tRz.
The equations of motion of a classical test string in such a
background, and in the conformal gauge, are

r t r, t, +r(r ——1)(t —t„)=0,
r sin8($„—P )+2r cos8($,8, $8 )+2(r,g—, rP )=0, —

2r(8„—8 )+4(r,8, r8 ) rsin28($—,——P )=0,
(4.2)

(r„r)——2(t—, t )+2r(8,—8)+2rsin 8(P, P—)+ (r, r—) =0 . —
r —1

The constraints are

(t +t, )+ (r, +r )+r (8,+8 )+r sin 8(P,+P )=0,
r ' r—

t,t + r r +r 8,8 +r sin8$+ =0.
r ' r —1

(4.3)

A. Rotationally symmetric, static
2+ 1 spacetime

Consider for a while constant 0 in the equations above.
This case is similar to the motion of a string in a confor-
mally Rat, rotationally symmetric, static 2+ 1 spacetime:

ds = A (p)( dt +dp +p dP—) . (4.4)

If we assume, as is natural, that /=nor, then either
A (p) ~ 1/p, or p=p(r). In the second case, p=p(r), we
have that either t =t(r) or t =t(0) Both these cases c.an
be solved by quadratures. The less physical one (which
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would correspond to compactified t coordinate), t =t(o),
produces the solution

u =v I —re' sinh(t/2),

u =&I—re' cosh(t/2) .
(4.1 1)

p=(A/n )cos(nr+v),

t =ycr+5,
(4.5) The metric takes in these coordinates the form

ds = R—se '( dv—+du )+R, r (d8 +sin 8dg ) .4 2-. 2

(4.12)

with y, v and 5 arbitrary constants.
The more interesting case p= p(r), t = t(~), has the fol-

lowing solution (co=in A}

p dp
2 —4u 2 21/2(ce n—p}

t=c e &+g
(4.6)

The coordinate v is a timelike coordinate, and u space-
like. We find from Eqs. (4.10) and (4.11):

n v+5
p =cos

2
(4.13)

again with arbitrary constants c,d, g.
Our problem of interest, in a Schwarzschild back-

ground, cannot be put in this form. However, now that
the analysis has been carried out for the conformally flat
case, it is straightforward to generalize it to applicable
expressions.

Consider then the metric

A = A2(p)( dt +dp—+b(p) p dP ) . (4.7)

If we assume, as before, that / = no, we have that either
Ab 0: 1/p, or p=p(~), in which event, either t =t(o ) or
t=t(r}, as before, and the solutions are also given by
quadratures: either

u =tanh(to/2)U .

That is, the string falls into the singularity r =0, with
constant speed tanh(to/4) (1 with respect to KS coordi-
nates (see Fig. 11). Solution (4.13) (for n =1 and 5=0)
starts at, say, v=0, on the horizon, and bounces back to
r )0 after r has vanished for r=~ This b. ehavior may be
interpreted as follows: The motion outwards the singu-
larity is unphysical. Which is to say that the string
motion ends when the singularity r=0 is reached at

Moreover, the invariant string size vanishes as
(r n) w—hen the singularity is approached.

The other (unphysical) solution (4.8), leads to

t=yo+5,

f p dp =+v.+v,
( y2 n 2b 2 2 }1/2

(4.8)

r r
(r —1)'"[y'(r —1)—n'r']'/2

(4.14)

t =ytr+5,
with y, v and 5 arbitrary constants, or

which is not so interesting given the periodicity we im-
pose on cr.

=~~+d,
(

2 —4' 2b2 2)1/2

t =cfe-'"dr+g, (4.9)

1.025 .
again with arbitrary constants c,d, g.

These solutions can now be applied to the case of equa-
torial motion of a string in a Schwarzschild black hole
background. As a matter of fact, assume just that 8 is
constant. This implies that either 8=m/2 (since 8 is re-
stricted between 0 and n), or P,=((t . Taking the axisym-
metric solutions (/=no, n =integer), it is clear that only
the equatorial motion makes sense, as is also physically
evident. Let us concentrate on such an equatorial, ax-
isyinmetric motion. Applying formula (4.9), and the re-
striction that r cannot be smaller than 0, we are led to

0.975-

0.95-

0.925-

t =to=const,

n~+5r =cos
2

(4.10) 0.9-

tt

-0.3 -0.2 -O.I 0.2 0.3
This equation describes a string propagating inside the
Schwarzschild horizon r=1. Let us remember that r
takes on a timelike character inside the horizon, whereas
t is spacelike. It is thus better to study this solution in
Kruskal-Szekeres (KS) coordinates [21]:

FIG. 11. Exact solution to the equations of motion inside the
horizon of a Schwarzschild black hole, in Kruskal-Szekeres
coordinates: the string world sheet covers all the equatorial sec-
tion of the interior of the horizon.
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B. Axisymmetric ansatx

P=ncr, 8=8(r), t =t(r), r =r(r), (4.15)

The Schwarzschild manifold not being a symmetric
space, the string equations of motion and of constraint,
(4.2) and (4.3), are not integrable there. In order to
separate the equations into ordinary differential equa-
tions, we make a simple ansatz with a symmetry compati-
ble with the time evolution. Our concrete ansatz is to
choose an axisymmetric (ring) configuration as follows:

n sin 8I n e sin 8I
4 6

r'+O(r'),
(4.23)

n sin(28I) n sin 8fcos8f
12 726

+ r+0(r ) .

This last one is obviously subdominant with respect to
Eq. (4.22).

Consider now the regime given by large r and 0 /r
small. From Eqs. (4.17) and (4.21), we have that, for

+m,

r —(r —3/2)8 +n sin 8(r —1/2)=0,
r8+2r'8+ n rsin8cos8=0,

(4.16)

where n =integer. This ansatz inserted in Eqs. (4.2) and
(4.3) produces the following set of equations: r — p lrl,

~-+ m cos(nr+go)
0 — 0 ——

p 7

together with

(4.24)

with a conserved quantity

e =r' +r(r —1)(8 +n sin 8), (4.17)
e =p+nm

and t given by

(4.18)

Note that these equations are invariant under the change
r~ —r, t~ t. Since —t'&0 outside the horizon, t(r) is a
monotonic function, and we can use either ~ or t to study
the time evolution for r & 1.

The string energy is found to be, in this case,

and t — e~. Here 80 is such that sin80=0, i.e., t9=lm.
with l an integer. We could here understand p as an
asymptotic radial momentum, e the energy, and nm the
mass of the string. The latter is determined by the ampli-
tude of the string oscillations.

We find for large ~ that

x =r sin8cosg=( —1)'+'m cos(nr+po)cosno,
(4.25)

y = r sin8 sing = ( —1)'+ 'm cos( n r+ yo)sinn cr .

600 d&O RS&E(t):— Po =——
a' d~ a'

where we used Eq. (2.10)

P = jdD '/v' —GT~(g),

(4.19)
In this region, spacetime is Minkowskian, and we can
recognize (4.25) as the nth excitation mode of a closed
string. For ln l

=1 this corresponds at the quantum level
to a graviton and/or a dilaton. Notice that m is the am-
plitude of the string oscillations.

The string size is here S(r)=Rsr(r)lsin8(r)l. We find
from Eqs. (4.22) —(4.24) that

and a' is the string tension.
The invariant length of the string in this case is

ds =Rsn r sin 8( —dr +do } . (4.20)

7 —++ 00 '-+" Rsm
S(r) — Rsm leos(r+y)l v'2

S(r ) —Rsa sin8&r

(4.26)

A useful equation, satisfied by solutions of these equa-
tions, is

2 ~ 1 2 ~ 2 '2

dr
+n (rsin8)= —(n sin 8—38 )sin8 . (4.21)

r —ar'",

8 —8I+2&ar'"
where a is a constant and

(4.22}

Let us now examine the possible asymptotic behaviors
of these equations in different regimes. A first interesting
question is the existence of collapsing solutions and the
corresponding critical exponents. On computation, we
find two possible collapsing behaviors from (4.16} and
(4.17), with the adequate choice of origin for r for r~0:

Whenever the string is not swallowed by the black
hole, Eq. (4.24) describes both the incoming and outgoing
regions r~+ ~. However, the mass m, the momentum
p, and the phase yo are, in general, different in the two

asymptotic regions. This is an illustration of a rather
general phenomenon noticed at the quantum level: parti-
cle transmutation [14]. This means that the excitation
state of a string changes in general when it is scattered by
an external field like a black hole. Within our classical
ansatz (4.15), the only possible changes are in amplitude
(mass), momentum, and phase. It can be seen numerical-
ly that the excitation state is indeed modified by the in-
teraction with the black hole.

Because of the structure of our ansatz, the string, if it
is not absorbed for some finite ~, may return to z =+ ~
[8I=0 (mod 2n)], where it started at r = —~, or go past
the black hole towards z = —~ [8&= vr (mod 2m.)].

A special case of interest is that of solutions such that
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V. STRINGS PROPAGATING IN STRINGY BLACK
HOLES

Among the tree-level string vacua of this type we shall
only consider nonrotating, (3+ 1)-dimensional black hole
spacetimes of the type first presented in [30].

Before coming to those, though, let us write the equa-
tions of motion corresponding to a ring configuration of a
classical string in a metric of the form (in Einstein's
frame)

Nordstrom (RN) metric when Qz and Q~ are both
different from zero. There are two horizons: an event
horizon at r+ and an inner horizon at r; and a singular-
ity at r = ~r0~. As a matter of fact, RN appears as the
special case QE =Q~.

A very interesting phenomenon appears for these
spacetimes for the equatorial motion of a ringlike string.
We obtain the following exact solution to the equations of
motion:

dsE= —A(r)dt + dr +C(r)(d8 +sin 8dg ) .1

8(r)
(5.1}

/=no', 8=m/2, t'=e/A(r( r)),

r(r)=M+a cos(nr+y),
(5.6)

Our ansatz (4.15) can be used for this general metric.
The equations of motion and constraint are

1 AB' —BA' .2
O' A'

2 AB C A

with the following constraints on a, coming from the po-
sitivity of e =a +Qz+Q~ M r—0, an—d from impos-
ing that r(r }&

~ r0 ~:

—n BCsin 8 +
O' A'

I
~ C8= — r8 —n sin8cos8,

C

(5.2}
M —

(r0~ &
~a~ &(Mz+r02 —Q —Q )'

e

A

e =—r' + AC8 + ACn sin 8 .
B

Here e is a constant of motion and the primes denote
derivatives with respect to r for A, B, and C, which are
functions of r. The string size squared is in this case

S(r) =C(r)n sin 8. (5.3)

As in Sec. IV [Eq. (4.19)], the string energy is given here
by E(t)=e/a'.

More specifically, let us consider the following set of
metrics [30]:

(r r+ )(r r)——
A (r) =8(r) =

r r0
(5.4}

C(r)=r —r0 .

This corresponds to the presence of an electric and a
magnetic charge, to which the string does not couple save
for their effect on the metric. The parameters of the
metric are derived from the mass M and the charges QE
(electric) and Qst (magnetic) as follows:

0 2M ~ + — 0 E Mr = r =M+(M +r —Q —Q )'i

(5.5)

lf QE) Qst, the string coupling constant goes to zero
close to the singularity r=~r0~, and we would thus be
justified in considering this a good approximation to an
exact string vacuum. Remember that all these metrics
are solutions to the tree-level effectiv action.

These metrics are globally very similar to a Reissner-

From these constraints it follows that (a) the periastron
lies inside the inner horizon: r;, r; (b) the apoastron
lies outside the event horizon: rm»&r+. (c) these last
two formulas are only saturated when a =(M
+r0 —

QE
—

Qst )' . We are thus presented with the situ-
ation that a classical string enters the nonstatic region,
goes on to face the singularity, and without falling into it
bounces back out again. This looks clearly analogous to
a timelike curve that crosses from one asymptotically flat
region to another, of those present in the maximal analyt-
ic extension of this spacetime. In other words, the string
travels to other universes through the wormholes, and
continues to do so indefinitely. The extreme case
a=(M +r0 —Qz —Q~)' corresponds to e =0, from
which it follows that in this case the constant t trajec-
tories within the region r &r ~r+ are the ones the
string takes, never entering neither the asymptotically flat
regions, nor the regions connected with the singularity.
The other extreme case, a =M —

~r0~, corresponds to a
string that reaches the singularity.

Let us now examine the asymptotic behavior of ring-
like configurations of classical strings far away from the
black hole and very close to it. Far away from it, the
metric is Minkowski's up to 1/r terms. Therefore the
asymptotic behavior of ring solutions is the same as for
Schwarzschild's background, formula (4.24). More in-
teresting is the possibility of collapse onto the singularity.
Whenever r+ and r are real, as we are supposing all
along, it will always be true that (~ r0 ~ r+ )( ( r0 ~—r) &0. This inequality —will only be saturated when
Qz=Q~=0, which would place us in the already ana-
lyzed Schwarzsehild case. Therefore, consider
(~r0~ r+ )((r0~ r) &0.——We find that the string generi-
cally cannot reach the singularity r = ~r0~. Assume that it
does reach it, say, for v~0. It follows from the equa-
tions of motion
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r — (r—++r ) n sin 8,z. z

~ ~0=—
z

io —n sinOcoso,
2T . 2
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that the generic behavior is

Iro I
+cr

7~0

r'= (r—r—+ )(r —r ) r—+—(r+ +r ) 82

r

(5.7)

(5.8)

and the positivity of (IroI r—+ )(IroI —r ), we see that a
and P are necessarily greater or equal than 1, thus exclud-
ing the generic behavior a+P= 1 (or 2a+P= 1 for RN).
We stress that collapse is indeed possible, as has been
seen in the exact solution (5.6) presented above for
a =M —IrioI, but a very fine tuning of the parameters of
the infalling string is required to avoid the repulsion of
the singularity.

It is important to observe that the most interesting
effects observed in the propagation of classical strings
within our approach appear already for solutions of
Einstein-Maxwell theory, without having to investigate
tree-1eve1 string vacua.

e =r +(r —'r+ )(r —r )(8 +sin 8), (5.9)

where P= 1 —a (or P= 1 —2a for RN). There is another
possibility, with tz =P= 2. Now, from the energy
squared,
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