
PHYSICAL REVIEW D VOLUME 49, NUMBER 2 15 JANUARY 1994

Hybrid inflation
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Usually in8ation ends either by a slow rolling of the in6aton field, which gradually becomes faster
and faster, or by a first-order phase transition. We describe a model where inBation ends in a
different way, due to a very rapid rolling ("waterfall" ) of a scalar field o triggered by another scalar

m, 'Q'
field P. This model looks like a hybrid of chaotic infiation with V(P) = ~ and the usual theory
with spontaneous symmetry breaking with V(n) = z(M —Ao ) . The last stages of infiation in
this model are supported not by the infiaton potential V(P) but by the "noninfiationary" potential
V(o). Another hybrid model to be discussed here uses some building blocks from extended infiation
(Brans-Dicke theory), from new infiation (phase transition due to a nonminimal coupling of the
infiaton field to gravity), and from chaotic infiation (the possibility of inflation beginning at large
as well as at small o). In the simplest version of this scenario infiation ends up by slow rolling, thus
avoiding the big-bubble problem of extended in6ation.

PACS number(s): 98.80.Cq

I. INTRODUCTION

There exist three independent ways of classifying in-
Bationary models. The first classification deals with the
initial conditions for inBation. The old and new inBa-
tionary models were based on the assumption that the
Universe &om the very beginning was in a state of ther-
mal equilibrium at an extremely high temperature, and
that the infiaton field P was in a state corresponding to
the minimum of its temperature-dependent effective po-
tential V(P) [1,2]. The main idea of the chaotic infiation
scenario was to study alt possible initial conditions in
the Universe, including those which describe the Universe
outside of the state of thermal equilibrium, and the scalar
field outside of the minimum of V(P) [3]. This scenario
includes the possibility of new inBation &om the state in
a thermal equilibrium, but it contains many other pos-
sibilities as well. Therefore it can be realized in a much
greater variety of models than the new inBationary uni-

verse scenario. In fact, at present the idea of thermal
beginning is almost completely abandoned, and all real-
istic models of inBation &om the point of view of the first
classification are of the chaotic inflation type [4].

The second classification describes various regimes
which are possible during inflation: quasiexponential in-

Hation, power law inBation, etc. This classification is
absolutely independent of the issue of initial conditions.
Therefore it does not make any sense to compare, say,
power law inBation and chaotic inBation, and to oppose
them to each other. For example, in [5] it was pointed out
that the chaotic inBation scenario, as distinct Rom the
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new inBationary universe scenario, can be realized in the
theories with the efFective potential e 4' for a (( v 16m. .
Meanwhile, in [6] it was shown that this infiation is power
law. Thus, the inBationary Universe scenario in the the-
ory e ~ describes chaotic power law inBation.

Finally, the third classification is related to the way
infiation ends. There are two possibilities extensively
discussed in the literature: slow rollover versus the first-
order phase transition. The models of the first class de-
scribe slow rolling of the infiaton field P, which gradually
becomes faster and faster. A particular model of this type
is chaotic infiation in the theories P". The models of the
second class should contain at least two scalar fields:
and o. They describe a strongly first-order phase tran-
sition with bubble production which is triggered by the
slow rolling of the field P. One of the popular models
of this type is the extended inflation scenario [7], which
is a combination of the Brans-Dicke theory and the old
inBationary scenario. There exist other versions of the
first-order scenario with two scalar fields, which do not
require any modifications of the Einstein theory of grav-

ity; see, e.g. , [8].
In the beginning it was assumed that the bubbles

formed during the first-order phase transition could be a
useful ingredient of the theory of the large scale structure
formation. However, later it was realized that one should
make considerable modifications of the original models in
order to avoid disastrous consequences of the bubble pro-
duction. According to the most recent modification [9],
the bubble formation happelis only after the end of in-
Hation. In this case, the end of inBation occurs as in the
standard slow-rollover scenario. Therefore it would be
interesting to find out other possible ways in which inBa-
tion may end in the models with several different scalar
fields. More generally, one may try to find out other qual-
itatively new inBationary regimes which may appear due
to a combined evolution of several scalar 6elds.

Of course, one should not invent excessively compli-
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cated models without demonstrated need. However,
sometimes qualitatively different in6ationary regimes ap-
pear after minor modifications of the basic infIationary
models, or after making their hybrids. For example, in
[10] we proposed a very simple model of two interacting
scalar fields where inflation may end by a rapid rolling of
the field 0 ("waterfall" ) triggered by the slow rolling of
the field P. This regime differs both from slow-rollover
and first-order infIations. By changing parameters of this
model one can continuously interpolate between these
two regimes. Therefore some hybrid models of such type
may share the best features of the slow-rollover and the
first-order models.

This model was only briefiy introduced in [10]. One of
the purposes of the present paper is to discuss this model
in a more detailed way. Another model to be discussed
in this paper looks like a hybrid of the Brans-Dicke the-
ory and new inBation. This model is similar to extended
infIation, but is does not suffer &om the big-bubble prob-
lem, since the phase transition which occurs in this model
is second order. Finally, we will discuss a model which
looks like a hybrid of the Brans-Dicke theory and chaotic
inBation. In this model the Universe after infIation be-
comes divided into exponentially large domains with dif-
ferent values of the Planck mass MP and of the amplitude
of density perturbations ~.

P

II. HYBRID INFLATION MODEL

We begin with the discussion of the hybrid inQation
model suggested in [10] in the context of the Einstein
theory of gravity. The effective potential of this model is
given by

will consider the stage of infiation at large P, with a' = 0.
At the moment when the infiaton field P becomes

smaller than P, = M/g, the phase transition with sym-
metry breaking occurs. If m P2 = m2M2/g2 « M4/A,
the Hubble constant at the time of the phase transition
is given by

2+M4
H

AThus we will assume that M2 » ", . We will assume

also that m « H, which gives

3AM' » mMP 2' ' (3)

One can easily verify, that, under this condition, the
Universe at P ) P, undergoes a stage of inflation. In fact,
infIation in this model occurs even if m2 is somewhat
greater than H2. Note that infiation at its last stages is
driven not by the energy density of the infiaton field P but

Mby the vacuum energy density V(0, 0) = ~z, as in the
new infiationary Universe scenario. This was the reason
why we called this model "hybrid infiation" in [10].

Let us study the behavior of the fields P and o after the

time At = H = 2" M, &om the moment t, when

the field P becomes equal to P . The equation of motion
of the field P during infiation is 3HQ = m2$. Therefore
during the time interval b, t = H i the field P decreases

from P, by AP = s&~ ——
z M~ . The absolute value of

the negative efFective mass squared —M + g2$2 of the
field 0 at that time becomes equal to

m2 2

V(0, $) = —(M —Ao ) + p + po . (1)—
4A

Am2M2
M'(P) =

+M2 (4)

Theories of this type were considered in [11—13]. The
main difFerence between the models of Refs. [11—13] and
our model is a specific choice of parameters, which allows
the existence of the waterfall regime mentioned above.
There is also another important difFerence: We will as-
sume that the field cr in this model is the Higgs Geld,
which remains a physical degree of freedom after the
Higgs efFect in an underlying gauge theory with sponta-
neous symmetry breaking. This field acquires only posi-
tive values, which removes the possibility of domain wall
formation in this theory. Usually it is rather dangerous
to take the infIaton field interacting with gauge fields,
since its effective coupling constant A may acquire large
radiative corrections e, where e is the gauge coupling
constant. In our case this problem does not appear since
density perturbations in our model remain small at rather
large A; see below.

The effective mass squared of the field o is equal to
—M + g2$ . Therefore for P ) P = M/g the only
minimum of the effective potential V(0', P) is at cr = 0.
The curvature of the effective potential in the 0 direction
is much greater than in the P direction. Thus we expect
that at the Grst stages of expansion of the Universe the
field 0 rolled down to 0 = 0, whereas the field P could
remain large for a much longer time. For this reason we

The value of M (p) is much greater than H2 for Ms «
A mMP. In this case the field 0 within the time At
H rolls down to its minimum at n(P) = M(P)/ir A,

rapidly oscillates near it, and loses its energy due to the
expansion of the Universe. However, the field cannot sim-

ply relax near this minimum, since the effective potential
V(P, 0) at 0 (P) has a nonvanishing partial derivative

BV 2 g2$M (Q)
(5)

One can easily check that the motion in this direction be-
comes very fast and the field P rolls to the minimum of
its effective potential within the time much smaller than
H i if Ms « ~kg mM&2. Thus, under the specified
conditions inflation ends in this theory almost instanta-
neously, as soon as the field P reaches its critical value

P, = M/g.
The amplitude of adiabatic density perturbations pro-

duced in this theory can be estimated by standard meth-
ods [4) and is given by

M4 ~~~ 3/2

bp 16~67r Vsr ~ 4A + 2

p 5 MP gy
5M' m2$P

(6)
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In the case m « II the scalar field P does not change
substantially during the last 60 e-foldings (i.e., during
the interval b,t 60H ). In this case the amplitude
of density perturbations practically does not depend on
scale, and is given by

bp 2~6mgM

p 5A~AM'm' (7)

y = y. ex'( — ' ),

The definition of ~ used in [4] corresponds to Cosmic
P

Background Explorer (COBE) data for ~ 5 x 10
P

Dividing it by (3) with an account taken of (7) gives
M (( 5 x 10 Ag mM&. This means that the "water-

fall conditions" M « A mMJ2 and M « ~Ag mMf,
automatically follow &om the conditions m2 && H2 and

5 x 10, unless the coupling constants A and g are
extremely small. Therefore the waterfall regime is real-
ized in this model for a wide variety of values of param-
eters m, M, A, and g which lead to density perturbations

5 x 10
To give a particular example, let us take g

10 i, m 102 GeV (electroweak scale). In this case
all conditions mentioned above are satis6ed and —~

P

5 x 10 for M 1.3x GeV. In particular, we have
verified, by solving equations of motion for the fields P
and a numerically, that in6ation in this model ends up
within the time At « H i after the field P reaches its
critical value P, = Mjg. The value of the Hubble pa-
rameter at the end of inflation is given by H 7 x 10
GeV. The smallness of the Hubble constant at the end of
inflation makes it possible, in particular, to have a con-
sistent scenario for axions in inflationary cosmology even
if the axion mass is much smaller than 10 eV [10]. This
model has some other distinctive features. For example,
the spectrum of perturbations generated in this model
may look as a power law spectrum rapidly decreasing at
a large wavelength I [16].

4 2 2

Indeed, at the last stages of inflation (for z& » 2 )
the field P behaves as

However, let us take, for example, A = g = 1, M = 10
GeV (grand unification scale), and m = 5 x 10 GeV.
In this case the amplitude of perturbations at the end
of inflation (P = P ) is equal to 4 x 10 4, n 1.1, and
the amplitude of the density perturbations drops to the
desirable level —~ 5 . 10 on the galaxy scale (l~
l,e ). One may easily obtain models with even much
larger n, but this may be undesirable, since it may lead
to formation of many small primordial black holes [14].

Note, that the decrease of ~ at large l is not unlim-
M4ited. At 2 ) 4& the spectrum begins growing again.

Thus, the spectrum has a minimum on a certain scale,
corresponding to the minimum of expression (6). This
complicated shape of the spectrum appears in a very
natural way, without any need to design artificially bent
potentials.

As we have seen, coupling constants in our model can
be reasonably large, and the range of possible values of
masses m and M is extremely wide. Thus, our model is
very versatile. One should make sure, however, that the
small effective mass of the scalar field P does not acquire
large radiative corrections near P = P, . Hopefully this
can be done in supersymmetric theories with flat direc-
tions of the e8'ective potential.

One can suggest many interesting generalizations of
2@2

our model. For example, instead of the term 2 in
ApP(1) one can use the term ~4 . In this case one may

have two disconnected stages of inflation. The first stage
occurs at large P, as in the simplest version of chaotic
inflation scenario. This stage ends at P & M~ j3, if
M (( A@M&. Then the field rapidly rolls down and
oscillates until the amplitude of its oscillations becomes
smaller than P & M . At this moment the frequencyM

Ap Mg

of oscillations ~A~P becomes smaller than the Hubble
constant, and the second stage of inflation begins. This
stage of inflation ends with the waterfall at P, = Mjg.
As was shown in [15], in the models with two stages of
inflation with a break between them the spectrum of den-

sity perturbations may have a very rich and nontrivial
structure.

III. BRANS-DICER INFLATION

whereas the scale factor of the Universe grows exponen-
tially, a e~~. This leads to the following relation be-
tween the wavelength of perturbations l and the value of
the scalar field P at the moment when these perturba-

rn'/3H'
tions were generated: P . ID this case

C

bp 2~6vrgM' ( t )
p 5A~AM~sm2 (I.y

2 2

which corresponds to the spectrum index n = 1+ 3~2 ——

M1 + M4 . Note that this spectrum index is greater
than 1, which is a very unusual feature. For the values
of m, M, A, and g considered above, the deviation of n
from 1 is vanishingly small (which is also very unusual).

Our second hybrid inflation model is very similar to
extended inflation, but it does not lead to the first-order
phase transition with bubble formation, which is a defini-
tive feature of the extended inflation scenario. The cor-
responding action is

S = d xij g ——a R—+ 0„$0"P—4 p R ( 2 1

8& 2 2

1+ BoB"o —V(o)—P

Here P =
2

4' is the Brans-Dicke field; o is the field
which may exhibit spontaneous symmetry breaking. In
the extended inflation scenario the second term in the
action (10) was absent. However, we believe that if one of
the two scalar fields is nonminimally coupled to gravity,
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one should allow for a similar coupling for another 6eld
as well.

We will consider effective potentials of the standard
type, V(0) = ~&(m —Ao' ) . From a comparison with
the standard Einstein theory it follows that the effective
Planck mass in the theory (10) depends on P and is given
by

We will try to find inflationary solutions in the theories
with m )) 1, and we will assume that initially o. = Q. The
reasons why we take o = 0 at the beginning of inflation
will be discussed in the next sections. During inflation

one can neglect & as compared with H = —[where a(t) is

the scale factor of the Universe] and P as compared with

3HQ and P2. In such a case equations for a and P in the
theory (10) take a very simple form:

begins. Analogy between this scenario and the new infla-

tionary universe scenario becomes even more striking if
one remembers that the term 12(H can be formally rep-
resented as 48m 2(T&~, where TH = H/2m is the Hawking
temperature in the inflationary universe.

One of the main problems of the new inflationary sce-
nario is that inflation in this scenario may occur only at
a density much smaller than the Planck density. In this
case a typical closed Universe of the Planck size M&
and with the Planck density Mp collapses before infla-
tion has any chance to occur. The probability of creation
of a closed universe which can survive until the beginning
of inflation is exponentially small [4]. In our scenario this
problem is absent if the universe is created in a state with
the fields P and u related to each other by the condition

M&($, 0) V(0'); there is no exponential suppression
of the probability of creation of the universe with such
properties [8].

Thus, in this scenario inflation begins at 0 = 0. Later
on, when the time t becomes greater than t„where

2 (uV(0)
a P 3

~ 4V(0)

(12) m
H, =, $, =2m

2 3

From these equations it follows that, at large t,

(14)

The effective mass squared of the 6eld cr is given by

m = —m +(8= —m +12(H = —m +2 12((u2

This means that at small t the effective potential includ-
ing the term —~zo B has a minimum at 0. = 0. Here one
may consider two limiting possibilities depending on the
value of the parameter g.

IV. LARGE $

Let us consider first the model with large (. In this
case our model looks like a hybrid of the Brans-Dicke
theory and new inflation. In the very early Universe the
term 12(H determines the efFective mass squared of the
scalar field o.. This mass squared is much greater than
H, which means that the 6eld 0 rapidly rolls down to the
state o = 0 (symmetry restoration), after which inflation

After we proposed this model, we received a paper by Lay-
cock and Liddle [17j, where a similar model was invented.
We are extremely grateful to these authors for the discussion
of their results prior to publication. Our understanding of
the large-f limit of this model strongly benefited from these
drscussxons.

the effective mass squared of the field o becomes negative,
and spontaneous symmetry breaking occurs.

In the large ( limit, the absolute value of the (nega-
tive) efFective mass squared of the field 0 becomes greater
than H, within the Hubble time At = H, after t, . At
the moment t = t, + H, the effective mass squared of
the field o becomes equal to m2 = 12(A)2(t 2 —t, 2) =
—24$H, /&u. This quantity is much greater than H~ for

( ) &u/24. Under this condition, the field 0 begins grow-
ing with a very large speed, which suggests that infla-
tion ends up almost instantaneously. However, a more
detailed investigation of this question shows that the
growth of the field o later slows down. The reason for
this effect is rather nontrivial. When the 6eld 0 grows,
the efFective Planck mass decreases; see Eq. (11). This
leads to an increase of the Hubble constant H, which
slows down the rolling of the field o.. This leads to ex-
istence of an additional stage of inflation, which occurs
after the phase transition at t = t, . In many cases this
stage proves to be relatively short [17]. Thus, in this
model one can also have a "waterfall" regime, but this
waterfall is much slower than in the model (1).

This regime has a peculiar feature which deserves fur-
ther investigation. It is well known that the value of the
Brans-Dicke 6eld almost does not change after inflation
[18]. The change of this field during the last stage of in-
flation under the condition ( ) ur/24 is also very small.
This means that the present value of the field P in the
first approximation is equal to P . On the other hand, the
present value of the field 0 is given by oo = m/~A. Ac-
cording to (11), (16), the contributions to M~ from the
fields P and 0 in this approximation cancel each other,
My ——0. Thus, in order to obtain a finite answer for the
gravitational constant G = M& one should calculate the
small difference AP between P, and the present value of
the field P:
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m( b,P
MJ = 4m — - 4op

A
(17)

Alternatively, one may use a different effective poten-
tial V(0), for which this peculiar cancellation does not
occur. A more detailed investigation of the regime dis-
cussed above will be contained in the forthcoming paper
by Laycock and Liddle [17].

If the stage of inQation after the phase transition is
very short, one should take special care of production of
topological defects in this model. Typically it is very difE-
cult to create heavy strings and monopoles after in8ation.
However, it is possible to produce them during inflation-
ary phase transitions [ll, 19]. If, for example, the field 0
leads to spontaneous breakdown of an Abelian symmetry,
after the phase transition in our model many heavy cos-
mic strings will be created. In fact, cosmic strings in this
model may be even too heavy. Indeed, according to (17),
the scale of symmetry breaking is harp

——
4 &~&&. This

is much greater than the desirable value op 10 M~
[20], unless the parameter ( is extremely large. This
means that if string production is possible in our sce-
nario, they may give excessively large contribution to the
post-inflationary density perturbations. There exist sev-
eral different ways to reduce these perturbations to an
acceptable level. One possibility is to consider the field
o. of the type used in the standard theory of electroweak
interactions, where neither stable strings nor stable do-
main walls or monopoles can be produced. One should
keep in mind, however, that it may be necessary for the
field o to be a gauge singlet, since in this model, unlike
in the first hybrid inflation model (1), the coupling con-
stant A should be very small unless one takes ( extremely
large [17). The most radical way to get rid of topological
defects is to consider models where the last stage of in-

flation is long enough. This can be achieved, e.g. , in the
model to be discussed below.

V. SMALL $

Let us consider the model (10) with V(0') = 4(0'

z ) in the limit of small(. In this limit the phase transi-
tion becomes irrelevant since the correction (R 12(02
to the effective mass of the field o always remains much
smaller than H2. Therefore these corrections cannot in-
fluence behavior of the field o. during inflation in a no-

ticeable way.
For this reason we will take a step back and totally dis-

regard the term —~R02 in the action (10). At the first
glance, we are returning to the standard extended infla-
tion scenario. The difference, however, is in the choice
of the effective potential V(0). In the extended inflation
scenario the effective potential V(o) should have a local
minimum at o = 0. The simple potential we consider,
which is a standard potential used in gauge theories with
spontaneous symmetry breaking, does not have this extra
minimum. In order to obtain such a minimum one should
add some cubic or logarithmic corrections to V(o). Then
one should tune these corrections to make the tunneling

suppressed, but not too strongly, since this would make
the Planck constant exponentially large and the bubbles
exponentially big. And, after all, one should either intro-
duce a potential for the Brans-Dicke Geld or considerably
modify the interaction of this field with gravity [9]. No
such modification is required in our scenario.

At the first stages of inflation in our scenario the Geld
o. slowly rolls down from some initial value 0.;„((op.
Until this field grows up approximately to harp /2, the ef-

fective potential V(0) remains almost unchanged, and its
derivative is given approximately by —m o. Therefore at
this stage Eqs. (12)—(15) remain valid, and equation for
the Geld o reads 3Ho = —, o. = m o, which gives

(m't'5
tr = ~;„exp

I

6 hatt )
(18)

gi = A m(B+st),
3(d

tos(B+ t) (19)

This stage ends up at the time t = ti, when o (ti) = o p/2.

This gives ti ——~ 1n'~
2
', Pi ——v 20p ln

Exact values of ti and Pi depend on 0;„,which may taTce

different values in different parts of the Universe. But
the situation actually is even more complicated. As was
shown in [21], an inflationary universe in the theories
with the potential V(o) =

&&
(m2 —Ao2)2 enters regime

of self-reproduction at o & H. This regime exists for
m ( H . In the context of our model this regime leads
to the formation of domains with all possible values of P
compatible with inQation at 0 = 0. The upper boundary
for inflation at small 0 (the condition m2 & H2) is given

by P & m~& ——op~sr. In such domains the stage of
classical growth of the field is very short, and the Geld

P remains almost unchanged when the field o grows up
to oi op/2 = m/2~A. For a complete investigation of
this question one should use the stochastic approach to
inflation. We will return to this problem in [22]. At the
present moment we will just keep in mind that at the end
of the Grst stage of inQation the Brans-Dicke field may
acquire different values in different parts of the Universe,
in the range of harp & Pi & api/ur. We will describe this
effect by introducing a phenomenological parameter C,
such that Pi = Chirp, 1 & C & ~~.

This means that at the end of the Grst stage, when
the field o' grows up to o crp/2 = m/2v A, the square
of the Hubble constant remains greater than the (posi-
tive) effective mass squared m (o'p) = 2m of the field
o near the minimum of its effective potential at 0 = op.
Therefore at that time inflation still continues. The effec-
tive potential V(0) near its minimum can be represented
as V(y) = m y, where we made an obvious change of
variables, y = o.p —o..

Fortunately, we already studied inflation in the Brans-
Dicke theory with this potential, and all analytical solu-
tions are known [23]:
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a(t) = a(t ) I

(p(t) l t sin(B+ ~ t) )
slxl B

(20)

Here A and B are some constants determined by initial
conditions. For ~—t ) B, u )) 1, the last equation~3~
describes the power law inflation, a(t) t

Initial conditions for this stage of inQation are de-
termined by gx = o'o/2 and Px

——Ca'o. This gives

A = ep +2 . InQation in this model ends up at

A Q6uy, [23]. Consequently, the total increase
of the size of the Universe at this stage of inQation is
given by

a(t. ) 5 P(t.) l (
a(t, ) 0 ~x ) k 2C') (21)

Thus, for large ur this stage of inflation can be very long,
and perturbations generated at this stage will be respon-
sible for the formation of the observable part of the Uni-
verse. The value of the Planck mass after inQation is
given by

vr(1+ 2C2) vr(1+ 2C')
MI =Op = m 22

(d (dA

Perturbations of the field 4t at the end of inflation at
u )) 1 are orthogonal to the classical trajectory of the
fields P(t), y(t) in the (P, g) space. Therefore the main
contribution to density perturbations is given by pertur-
bations of the 6eld y. The standard calculation gives

, as in the ordinary theory m y2 without any
modi6cation of general relativity. However, in our case
the Planck mass is not a constant, but is related to m by

Eq. (22). This gives X /resp, . In different exPo-

nentially large parts of the Universe this quantity takes
difFerent values corresponding to 1 ( C ( ~is

Taking into account our bounds on t, we see that &om
the point of view of density perturbations this model
does not exhibit any improvement as compared with the
usual theory Ay4, where ~ v A, and one needs to8

have A 10 to satisfy all observational constraints
[4]. In our model the best situation occurs in those do-
mains where quantuxn Huctuations lead to C ~is, in
which case inflation is long and ~ ~A. Thus, one still
needs to have A ( 10 to satisfy all observational con-
straints. Before considering this problem and its possible
resolution, let us discuss some distinctive features of this
model and some lessons which we learned when we were
developing it.

First of all, inBation in this theory is possible for
all values of the parameter oo, any potential V(0.)
&&(rn2 —Ag7 )2 leads to inflation at small o. In this re-
spect the model we consider differs &om the analogous
model in the context of the Einstein theory of gravity,
where inQation at small o is possible only if ~p ) My .
Of course, we do not make any miracles: In our model
the value of the effective Planck mass after inQation ap-
pears to be sxnaller than 00, see Eq. (22). The subtle

but important difference is that in the Einstein theory
inQation at small 0 occurs only in the subclass of the
models in which the two parameters op and MJ happen
to be related to each other in the above mentioned way,
whereas in the context of our model inBation at small
o occurs for all values of parameters. Moreover, as we
already mentioned, inQation in our model does not sufI'er

&om the problem of initial conditions. This makes the
existence of the inBationary regime more robust.

Another interesting feature of this model is the forma-
tion of diH'erent domains of the Universe with difI'erent
values of the Planck mass and, correspondingly, with dif-
ferent amplitudes of density perturbations. According to
our results, the range of possible variations of Mp and
is not very wide. However, in our investigation we con-
sidered only the regime when the 6eld o originally was
small, 0 (& o'0. Whereas at large ( this was a reason-
able assumption, at small f one should consider all other
possibilities as well, including inQation beginning at very
large 0. Indeed, at small ( we do not have any unavoid-
able symmetry restoration in our model. Thus, at small

( our model looks like a hybrid of the Brans-Dicke the-
ory and chaotic inflation with the potential V(o) which
at large o behaves as 4o. . In this case there is no upper
limit on possible initial values of 0 and on the result-
ing Planck mass M~, whereas the amplitude of density
perturbations in the limit of large M~ does not depend
on Mx and is proportional to ~A. The process of self-
reproduction of the Universe in this scenario divides the
Universe into many exponentially large domains where
all possible values of Mx are represented [23].

The situation changes even more dramatically if one
considers a hybrid of the Brans-Dicke theory and the sim-

2 2
plest chaotic inflation model with V(o') =

2 [23]. In
this case the Universe becomes divided into exponentially
large domains with the values of the Planck mass taking
all values &om m to oo, and with —P

M varying &om
order 1 to 0. This opens a very interesting possibility of
relating to each other the large value of the Planck mass
and the small value of —P in our part of the inQationary

P
universe [22].

In the absence of any realistic model of elementary
particle interactions on the energy scale discussed in the
present paper, it is very hard to tell whether the models
we are discussing are natural and realistic. However, it
is very encouraging that by making simple hybrids of ba-
sic inBationary models one can obtain an extremely rich
variety of inBationary theories with interesting and some-
times even very unusual properties. We believe that this
enhances the possibility of 6nding a correct description of
the observational data within the context of inQationary
cosmology.
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