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The energy scale of innation is of much interest, as it suggests the scale of grand uni6ed physics,
governs whether cosmological events such as topological defect formation can occur after in8ation,
and also determines the amplitude of gravitational waves which may be detectable using interfer-
ometers. The COBE results are used to limit the energy scale of in6ation at the time large scale
perturbations were imprinted. An exact dynamical treatment based on the Hamilton-Jacobi equa-
tions is then used to translate this into limits on the energy scale at the end of inSation. General
constraints are given, and then tighter constraints based on physically motivated assumptions re-
garding the allowed forms of density perturbation and gravitational wave spectra. These are also
compared with the values of familiar models.

PACS number(s): 98.80.Cq, 98.70.Vc

I. INTRODUCTION

Limits on the energy density at which cosmological in-
flation [1] takes place are of great interest, being a prime
example of a situation where cosmological observations
might provide information regarding the correct physics
at energies completely inaccessible by terrestrial means.
An accurate estimate of the inflationary energy scale may
provide vital information concerning the scale of unifica-
tion for gauge interactions, for example. The energy scale
is also of interest for cosmological reasons; for instance,
one is interested to know whether or not the inflationary
energy scale is so low as to forbid the formation after in-
flation of topological defects that might be of interest for
structure formation [2]. The inflationary scale also deter-
mines whether or not topological defects can quantum
mechanically nucleate during inflation [3]. The ampli-
tude of gravitational waves produced during inflation [4],
which may be detectable in our own solar system using
interferometers, is also given directly by the evolution of
the energy scale during the last stages of inflation.

The usual goal of studies such as this is to provide up-
per limits to the inflationary energy scale. As we shall
see, lower limits are much harder to come by. Stud-
ies made in the 1980s and early 1990s [5, 6] typically
made some simple modeling of inflation, and then im-
posed what was at that time the current upper limits
on xnicrowave fluctuations. (If further assumptions such
as the existence of an axion Geld were made, then other
constraints could be brought to bear [7].) Conceptually
simpler but in general weaker limits can be obtained by
considering only the efFect of gravitational wave modes
[4, 8]. The measurement of large scale microwave back-
ground temperature fluctuations by the Cosmic Back-
ground Explorer (COBE) Differential Microwave Ra-
diometer (DMR) instrument [9] now allows one to be
much more definite, in any given model replacing an up-
per limit with a definite value (and uncertainty). The un-
derstanding of the influence of gravitational wave modes
excited during inflation on the microwave background [4]

has also advanced considerably recently [10—12]. The de-
tection of such modes would provide vital information
as regards bounding the energy scale fxom below, as we
shall discuss.

The discussion here is focused on inflationary models
which utilize a single rolling scalar field; that is, chaotic
inflation [13] in its loosest sense. In such models it is
usual to assume that one can choose the potential of this
field as one likes. The results derived here are rigidly
true only in this case. However, they also hold in mod-
els with multiple rolling scalar fields, provided that the
fluctuations in field directions orthogonal to the classical
trajectory are small; indeed, as these fluctuations would
inevitably reduce the allowed energy scale by soaking up
some of the COBE anisotropy, any upper bounds de-
rived here continue to be true in this case. They do
not directly apply to models which rely on scalar fields
trapped in metastable vacuum states, though even there
one can usually, as with extended inflation [14], rephrase
this situation in terms of a rolling field.

There are typically two steps in finding the inflationary
energy scale. The first is to limit the energy density at
the time when fluctuations observable in the microwave
background were generated. This occurs as those scales
crossed outside the Hubble radius during inflation, typi-
cally when the scale factor was around e of its size at
the end of inflation (normally referred to as 60 e-foldings
from the end of inflation). Here we aim to provide a
much more general treatment than before, utilizing re-
sults to first order in the slow-roll approximation, thus
incorporating both the predicted tilt [15] in the density
perturbation (scalar) spectrum from inflation and also
including the effect of gravitational wave (tensor) modes
with their characteristic scale dependence. This enables
accurate bounds to be placed on the energy density 60
e-foldings &om the end of inflation.

The second aspect of Gnding the inflationary energy
scale is to use the limit 60 e-foldings &om the end, and
evolve the system so as to provide a limit on the energy
scale at the end of inflation. In the past this has been
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accomplished by using the slow-roll approximation; how-
ever, inflation can only end if the slow-roll approxima-
tion breaks down, and so such approaches are necessarily
inaccurate. In this paper, the equations are written in
Hamilton-Jacobi form [16], which allows the inflationary
dynamics to be treated exactly. This involves treating
the Hubble parameter, which directly measures the en-

ergy density, as a function of the inflaton field P.
There is a disadvantage to this procedure in that one is

removing the discussion from the potential, V(P), which
is a quantity about which one believes one has an in-
tuitive feel, and focusing it on the Hubble parameter
which in specific models is supposed to be a derived quan-
tity. However, the approach offers several compensations.
One compensation is simply the ability to make analytic
progress. One should also bear in mind that many of
the motivations for being interested in the energy scale,
such as the reheat temperature and the level of gravi-
tational wave production, are directly connected to the
total energy density as measured by H rather than to
the potential alone. Further, one can utilize the results
here using a potential provided one is willing to utilize the
slow-roll approximation throughout, as in previous treat-
ments, simply by neglecting the kinetic contribution to
the Friedmann equation so that H is just proportional
to V. By contrast, a treatment based on the potential of-

fers no opportunity to move to the more accurate results
as offered here. Whether one wishes to use the potential
may depend on circumstance; in particular for the nor-
malization at 60 e-foldings, the slow-roll approximation is
very accurate in most known models. However, the slow-

roll approximation cannot possibly be good near the end
of inflation, and so the more powerful method based on
the Hubble parameter may be of much more use there.

The outline of this paper is as follows. In Sec. II, the
equations are set up in Hamilton-Jacobi form. A new

proposal is then implemented for the speci6cation of in-

flationary models, where rather than specifying them by
a potential V(P), they are instead specified by a func-
tion e(P) which measures how accurately the slow-roll

approximation holds as a function of scalar field value.
It is emphasized that this classificatio covers all infla-

tionary models involving rolling fields, and that the dy-
namics are treated exactly, not subject to any form of
slow-roll approximation. Section III discusses the gen-
eration of perturbation spectra by a given inflationary
model, and uses this to bound from above the inflation-
ary energy scale 60 e-foldings from the end of inflation.
Section IV takes advantage of the Hamilton-3acobi for-
malism to produce limits on the energy scale at the end
of inflation, both under very general circumstances and
more restrictively by imposing physically motivated con-
straints on the form of perturbation spectra produced.
Section V provides the conclusions, and also discusses
the possibility of producing lower bounds on the energy
scale.

II. INFLATIONARY DYNAMICS

The Hamilton- Jacobi equations arise when one
rewrites the equations of motion in a way that allows

one to write the Hubble parameter as a function of the
scalar field P. The usual equations of motion are

3mpi (2 )
P + 3HQ = —V'(P), (2)

with H = a ja the Hubble parameter, a the scale factor,
mp1 the Planck mass, and where as usual dots are time
derivatives and primes derivatives with respect to the
scalar field P. Differentiating the first with respect to t
and using the second gives

2H =—
mp1

We assume that P never passes through zero during in-

flation, allowing us to use P as a time variable. We
may therefore divide each side by it and eliminate the
time dependence in the Friedmann equation, obtaining
the Hamilton-3acobi equations [16]

(H') — H
mp1

327r2
V(P),

mp1
m2

Pl Hl
4'

(4)

(6)

m2p, e'(P)
16m Qe(P)

The sign of the last term, like the signs of other equa-
tions featuring ge(P) later, is determined from the choice

P ) 0. Wherever square roots are utilized, it is the posi-
tive root that is to be taken, with the overall sign incor-
porated in the prefactor. These parameters measure how

accurate the slow-roll approximation would be at a given
value of P; their smallness corresponds, respectively, to

'In rolling models, this is always a good assumption while

inflation occurs. It can only be violated while inflation is still
occurring if the potential has a local minimum with nonzero
potential energy, in which case the field will become a trapped
one. It will generally be violated after inflation ends, with the
field oscillating about a minimum with zero potential energy,
but our intention here is only to reach to the end of inflation.
Assuming inflation ends with the field approaching a mini-

mum with zero potential, inflation always ends before field

oscillations begin.

Without loss of generality, we shall throughout make the
choice that P ) 0. With the equations in this form, it
is natural to think of specifying inflationary models by a
choice of H (P) rather than V(P) [17];one can then easily
generate a large set of exact inflationary solutions sim-

ply by differentiation, whereas a choice of V(P) requires
the normally impossible task of analytically solving the
nonlinear equation (4).

We can now define what we shall refer to as slow-roll
parameters e(re) and rI(P) by [11]
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N(re, re a) —= ln
4~

dP.
mpi y Qe(P)

(8)

Unlike the similar equation often seen featuring V/V',
this expression is exact. The end of inflation, when
the scale factor stops accelerating, is given precisely by
e(P) = 1, which determines P,„~.2

One computes H(P) by quadrature from

d ln H 4z e(Q)

dP mp2i

to get

the validity of neglecting the first term in Eq. (4) and
the first term of its P derivative. Let us emphasize again
though that we will not make a slow-roll approximation
in considering the dynamics. Further, c(P) possesses the
extremely useful property that the condition for inflation,
ii ) 0, is precisely equivalent to s(P) ( 1.

In this paper, it is convenient to go one small step fur-
ther than specifying models by H(i'); instead we shall
specify models by choosing e(P). By allowing arbitrary
forms of this function, we can specify arbitrary inflation-
ary models just as well as if we were to use V(P). Our
choice though allows analytic progress without the slow-
roll approximation.

The number of e-foldings N between scalar field values

P and P,„g (the latter being the scalar field value when
infiation ends) is given by

One can use these equations to calculate the density
perturbation amplitude hH (k), as formally defined in [18],
which to lowest order in slow roll is

(12)

2 H(cti)
(13)

the right-hand sides being evaluated when the comoving
scale Ir equals the (inverse) Hubble radius during infla-
tion. One can then satisfy the COBE result [9], most
conveniently taken to be evaluated 60 e-foldings from the
end of infiation. We shall henceforth take b~ to indicate
the amplitude of the spectrum at this time. This fixes
H,„d, provided one knows how to incorporate tilt and
gravitational wave corrections into the correct normal-
ization of bH.

Provided infiation ends at e(P) = 1, one then has

2
mp~

+end = +end &4' (14)

though to estimate the energy density one should include
the kinetic contribution, writing

3mp]2

Pend = +end '
8x

It is best to illustrate this formalism via an example,
which corresponds rather closely to the usual polynomial
chaotic inflation models [13] with potentials V(P) oc gP.
Let us choose

4~~(y)
H(cti) = Hesa exp dye i,

E4 pi )
(1o)

m o.pl
16xpz (16)

where H,„~ is of course H(P, „g), the Hubble parameter
at the end of inflation. The Hubble parameter is a direct
measure of the energy scale, and so bounding the energy
scale simply amounts to bounding H at diferent epochs.

The potential which generates the solutions is then

with negative P and cr a constant. Infiation ends at
E(P) = 1, giving P,„&

——cr mpi/16'', and we have

4z pz cr
N(P, P,„g) =-

o. mp2, 4

3m2
V(&) = ™H2(&)

I

1—
3 )

Whenever slow roll is good (small e) one has V(P) oc

H (P). One can thus generate an endless set of exact so-
lutions from choices of H(P), or from e(P) in those cases
where the integration giving H(P) can be done analyti-
cally.

Solving, we get

H(y) =H.„, ~

(
(4'end )

and so

240& '
Hso = H. a

I
1+

(18)

This statement is true for all rolling models. If one is con-
sidering models vrhich end in8ation by an unusual means such
as bubble nucleation in a Beld other than the rolling one (e.g. ,
extended in8ation [14]), this provides an exception and P, s
must be determined via the physics of the nucleation process.
In such cases e may be less than unity at the end of in8ation,
though one could imagine that it had increased extremely
rapidly to unity.

where H60 is the Hubble parameter 60 e-foldings from
the end of inflation. Thus

with

H.„, ( 24o)"
H = 1+

5~sr mpigcso ( cr )
(20)

240+ n
0! —2

240+ n (21)

In fact n = 2 corresponds to the special case where ri($)
is identically zero for all P.
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In the following section, we shall see that for models
with small 660 and @60 such as these, the appropriate bH
to explain the COBE result is 1.7 x 10 [18]. Conse-
quently, one has

240
~~=75 x 10 1+

mp& a
6.2 x 10 for o. = 2,
16x10 " for o. =4.

(22)

(23)

The potential supplying this e(P) is

(24)

confirming that in the slow-roll limit we just get the poly-
nomial potentials of the simplest chaotic inflation models.
The analytic solution requires that the potential has the
extra P-dependent correction term which makes the so-
lutions exact. A suitable adjustment of the original e(P)
can be used to give exactly V(P) oc gP, though it cannot
be written analytically.

III. THE PERTURBATION SPECTRA,
AND LIMITING Heo

Returning to the general case, we now need to exam-
ine in detail what the COBE normalization means. In
the last section, we mentioned the fiducial normalization
bH = 1.7 x 10 which is correct only for sufficiently ffat
scalar spectra with negligible gravitational waves. This is
appropriate only if the slow-roll parameters e(P) and rl(g)
are small at the time the relevant scales leave the hori-
zon. By utilizing standard results [18], we can improve
this to incorporate the first level of slow-roll corrections,

]

= 1 —2&60+

T =n6o = —2e60

2
mP] 660

47t e60
' (28)

(27)

In addition to this, we need to know the contributions
of the scalars and tensors to the microwave anisotropies.
As usual, the fractional temperature anisotropy is split
into multipoles (with the monopole and dipole removed)

l, m

(28)

Inffation predicts the (rotationally invariant) expectation
of these multipoles, 2&2 ——(~at~[2), where the average is
over all possible observer points.

The scalar amplitude from an inflation model can be
calculated analytically for power-law spectra, giving [18]

a treatment which is adequate for all models which ap-
pear viable when con&onted with the full range of large
scale structure observations [18]. To this order one can
also use the quantities V60, V60, and V60 in the analysis,
but we shall retain our focus on the Hubble parameter.

In the spirit of the above, we shall assume that the
scales corresponding to quadrupole anisotropies passed
out of the horizon 60 e-foldings &om the end of inflation,
and that across the scales which contribute significantly
to the COBE observation (which are only a few e-
foldings) the spectral indices of the scalar and tensor
modes can be treated as scale independent (that is, the
spectra are approximated by power laws). It is then easy
to show [ll] that the spectral indices are given from the
slow-roll parameters at that time as4

6o = 1 —4~60+ 2'@60
S

vr ~sr I'(1 + 2e —rl) I'(l —2e + q)
2& (scalar) = — l(l + 1)

2 2 I'(3/2+ 2e —rl) I'(l + 2+ 2e —rl) l(l + 1)
(29)

where, for every multipole, bH is evaluated at the scale
Hp/2 corresponding to the quadrupole. As we are as-
suming this scale leaves the horizon 60 e-foldings from
the end, we have

H260 (30)
25Vr mp)660

For the gravitational wave spectrum the general case
involves a messy double integration which must be car-
ried out numerically. To first order in slow roll we can
evade this by using an approximation due to I ucchin,
Matarrese, and Mollerach [12], which shows that if the
scalar and tensor power-law indices satisfy n60 ——n6p 1T S

(equivalently iso ——0), thus giving power-law inffation,
then to a good approximation the contributions of scalars
and tensors to the microwave multipoles remain in fixed
proportion, that proportion being given by 25eso/2. The
gravitational wave multipoles can therefore be generated
using the scalar result, but with the spectral index 1—2660
rather than the true scalar index. The expectations then
add in quadrature to give the total Z&.

Finally, one must calculate the prediction for the
COBE 10' result. The 10' variance crzo is given by a
weighted sum over the multipole expectations, where the
weighting function F~ corresponds to the beam profile of
the experiment. That is, one writes

Note that the normalization of the energy scale at the time
the quadrupole scale crossed the Hubble radius does not de-
pend on the choice for this number; the normalization depends
only on the local physics at the time the anisotropies were gen-
erated. However, this number (which depends weakly on the
physics of reheating) does crop up in the extrapolation to the
end of inHation, as it must. Even there though, its effect is
small, as we shall see in the next section.

These are correct to first order in the slow-roll parame-
ters. Stewart and Lyth [19] have provided expressions correct
to second order, these corrections normally being small. We
shall not utilize these here. Note that the numerical factors
are difFerent From those in [11],due to a slightly different def-

inition of the slow-roll parameters.
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classical behavior therefore requires a much lower energy
scale.

In the light of this, the largest values of H60 come
from choosing the largest 660 and g60 consistent with the
assumptions being made (trying a large negative russo falls
foul of the tilt bound). The maximum value found is

H6p = 2.9x 10 mp~, corresponding to a potential energy
at that time of V60 ——3.8 x 10' GeV, for the valuesi/4

60 =g60 =025

IV. FROM ~ep TO H~~g

1 dP

mp)
(33)

At the same time, we can write

H.„,'"' = exp —~4~
Hso

(34)

where e(P,„q) = 1 and Hso is determined from the COBE
normalization for the given 660 and g6o.

This is most conveniently represented graphically, as
in Fig. 2, by plotting I/ge(P) against P/mpi. Equation
(33) then gives the required area under the curve between
the initial value and e(P) reaching unity. The area under
the curve of ge(g) subject to this constraint measures
the reduction of H, „g relative to H60, in bounding H „d
from above one's aim is to minimize this reduction.

We can see that again constraints of physical reason-
ableness must be applied in order to gain worthwhile re-
sults. This is because one can always choose e(P) so as

The COBE normalization gives us specific information
about H60, dependent only on 66p and its derivative. To
limit the energy at the end of inflation requires one to
evolve the system to P,„~. At this point, we remind the
reader that inflation can end in two distinct ways.

(1) In most slow-rolling models, inflation ends because
e(P) grows to equal unity.

(2) In certain models such as power-law [20] and in-
termediate [21] inflation, e(P) never reaches unity in the
basic models, threatening eternal inflation. One escape
route often postulated is that the form of the potential is
modified to allow e(P) to increase, which brings us back
to case (1). However, an alternative is that a new mech-
anism intervenes to end inflation. The key example is
extended inflation [14], which looks like power-law infla-
tion in the Einstein conformal frame, but is brought to
an end by the tunneling of another field with e(P) still
small.

We shall largely be concerned with the first, more com-
mon case. However, the results are typically also appli-
cable in the second, as noted below.

The key constraint is that 60 e-foldings remain, which
means that e(P) must satisfy the integral constraint

0 11
~60~ Pl

FIG. 2. A graphical illustration of Eqs. (33) and (34).
The value of g can be shifted by the addition of an arbitrary
constant. At /so one has some particular values for f6p aIld
Esp. As P increases, 1/ ge(P) must vary in such a way that
the area under it reaches 60/v 4vr just as e(P) reaches unity
to end inflation (in general it need not do so monotonically
as illustrated here). At the same time, the area under the
curve ge(P) measures the decrease of H relative to Hso in
accord with Eq. (34). It is clear that the smallest decrease in
H during the last 60 e-foldings is achieved by keeping e(P) as
small as possible for as long as possible.

to bring H,„p close to H60. This is done as follows; very
rapidly decrease e(P) until it is arbitrarily close to zero,
keep it there until 60 e-foldings have passed, and then
immediately increase it to unity. This corresponds to
the bizarre situation of the field being fired up the po-
tential, as we are keeping the total energy density fixed
while converting the initial kinetic component into poten-
tial energy. Of course, this choice is dubious on physical
grounds, and will also violate the initial assumption that
the spectra are power laws on which the calculation of
H60 was based, so this should only be taken as illustrat-
ing a general point that by sufIicient contrivance H, „,~
can always be placed near H6o.

[Perhaps more reasonable is to imagine the potential
suddenly flattening out, so that the kinetic energy term
is left simply to redshift to zero. This would simply re-
duce the Hubble parameter by a factor (1 —iso/3) ~ .

However such circumstances are not favorable for ending
inflation, and indeed one may not even be able to redshift
the kinetic term before 60 e-foldings have passed. ]

Let us therefore impose constraints intended to be
physically "reasonable" on the form of e(P). The moti-
vation here lies in assuming that the form is functionally
simple, motivated by the notion that were it not, then
the inferred potential would also be functionally com-
plex, undermining one s prejudice that it is the potential
which belongs to a simple underlying theory.

Case A: e(P) is monotonic. This follows a suggestion by
Lyth [6], though he employed a slow-roll approximation.
As e must ultimately increase to unity, and given that
the last 60 e-foldings sample only a limited part of the
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overall potential, this appears physically well motivated.
Without paying too much attention at this point to 660
beyond noting that e' ) 0 ~ e ) g, we can see that the
largest final energy density will be generated if one keeps
s(g) at the constant value Esp until 60 e-foldings pass,
and then as before increase it suddenly up to unity. Note
that although this would again require an unusual poten-
tial in the single-field case, featuring a very flat plateau
followed by a sharp drop, this is in fact exactly what
happens in models based on two fields [22, 18j, where
inflation driven by the first field ends when the second
field becomes dynamically unstable. This scenario should
therefore certainly not be considered unreasonable.

With these assumptions, it is easy to show that

H,„d" = 7.5 x 10 peso exp (
—60esp) mph, (36)

where "max" indicates that this is the maximum possible
Hend for a given e60 For the maximizing F60 & Hend is
within a factor 2 of H60.

This is a good point to return to our assumption that
the quadrupole scale and the end of inflation are sepa-
rated by 60 e-foldings. As stated above, the normaliza-
tion at the quadrupole scale depends only on the physics
at that time; the choice of 60 only manifests itself in the
scaling to the end of inflation. It is easy to see that if
one were to make the choice 50 instead in the above equa-
tion, the effect on H,„&"would be tiny, as the exponential
plays a very insignificant role.

Note that because there is no reduction in H during
the rapid growth of e(P) to unity once 60 e-foldings have
passed, these limits also hold in the case where inflation
ends with e(P) still less than one through some additional
mechanism, again subject only to the assumption that
e'(P) & 0. It is interesting to note that extended infia-
tion features exactly a constant e(P), and hence amongst
the models permitted by the monotonicity assumption it

It is violated weakly by some models based on two 6elds
[22, 18], though in any case they tend to give very low-energy
scales. The only known example where it is violated strongly
is intermediate inflation [21], which can be implemented in an
extended inflation framework [23] and features s(P) decreasing
as P until tunneling brings inflation to an end.

= exp( —60eso) .
60

This is a very interesting result, because we recall that
it was large values of 660 which gave the largest H60,
but now we see that such large values have a detrimental
effect on the size of H,„g. In fact, as far as large H,„g
is concerned one needs small E'60. The largest H,„g we
can achieve is 6.0 x 10 mpl for 660 0.007, a significant
reduction on H6p. Further, this is for g60

———0.25, which
is not really consistent with our notion of e' being small.
For more realistic values of g60 0, the limit strengthens
yet further to H,„p & 4.1 x 10 mpl, with the maximum
at 660 0.008. Indeed, in the small e, g limit this is an
analytic result utilizing the fiducial COBE normalization,
from the maximization of

1

(eso —also)peso
(37)

If NI;„, , is less than 60, then the construction would
be inconsistent; that is, if one were to keep s(P) and
its derivative monotonic then it would be impossible to
achieve 60 e-foldings before inflation ends. This imposes
a restriction on the values of 660 and F0 that are allowed
within this assumption. Having satisfied that, then in
accord with the above the smallest reduction in H during
the last 60 e-foldings is achieved if e(P) behaves linearly
until 60 e-foldings have passed, and then increases rapidly
to unity. A tedious but straightforward calculation shows
that the reduction factor in this case is

H' a

Heo
= exp — 1+60 E60 f60 —1

~60

3 (eso —rlso)

which in the limit &so -+ 0 (equivalent to iso ~ rjso)
recovers the result of case A.

Case B tightens the constraint from case A by enforc-
ing that @60 be close to 660, in order to minimize the
reduction factor. However, it does not offer significantly
stronger limits than the analytic result mentioned there
for small [rjso], because the reduction factor is the same
if one chooses 660 = f60, and it happens that the COBE
normalization does not change much for 66p = 0.008 if
/60 is increased from zero to equal f6p. With E60 = g6p
0.008, we get the maximum value consistent with the case
B assumptions; K „~ ( 4.1 x 10 mpi. However, in more

minimizes the reduction of K during the last 60 e-foldings
for a given e60.

Recall that this is only subject to the constraint of
a monotonic e(P), making no further assumptions as to
the form of the inflationary potential or approximations
to the inflationary dynamics, and represents a dramatic
tightening of the constraints. There is only an extremely
weak dependence, contained in the exponential which is
of order unity, on the assumption that there are 60 e-
foldings between the quadrupole scale leaving the horizon
and the end of inflation. Different reheating mechanisms
have the power to shift this number by say 10, but this
has a negligible impact on the conclusions.

The results illustrate a fundamental point; maximizing
H6p is not in general the best way to go about maximizing
H, s. Our exact treatment of the last stages of inflation
also indicates that the highest-energy densities available
at the end of inflation are much lower than the highest-
energy densities available at 60 e-foldings.

Case B: e(P) and e'(P) are monotonic. This assump-
tion poses yet tighter constraints. In accord with it, the
slowest that e(P) can rise is linearly (from its initial con-
ditions at /so), and it is easy to see that linear growth
gives the maximum number of e-foldings that could oc-
cur. By solving the appropriate equations, we can get
an upper limit on the number of e-foldings such a linear
extrapolation would give, as
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specific circumstances the case B assumptions do lead to
a tightening of the limits; for instance if Egp = 0.008 and
gyp = 0 then the limit advertised in case A is tightened
to 75%%uo of its case A limit.

V. DISCUSSION

In conclusion, limits have been provided on the infla-
tionary energy scale both 60 e-foldings from the end of
inflation and at the end of inflation. As noted in the
previous section, the results have negligible dependence
on the specific choice of 60 for the number of e-foldings
between the quadrupole scale leaving the horizon and the
end of inflation, so its dependence on the details of re-
heating can be ignored.

Throughout these conclusions, numbers are quoted
based on the central COBE normalization for the 10'
variance; to convert to an upper limit, one multiplies by
the factor by which one is willing to let the true 10'
variance go up. At present, we recommend using the
2o. upper limit, thus multiplying the numbers for H by
15/ll, though it is worth recalling that for structure for-
mation models based on inflation the intermediate angle
microwave experiments probably leave little room for the
true 10' variance to be above the COBE result at all [24].

When one incorporates tilt and gravitational wave cor-
rections to the COBE normalization, one finds that the
largest values of Hgp occur in regions far from the slow-
roll limit, where the validity of the calculations is break-
ing down. Nevertheless, by imposing physically moti-
vated constraints based on prejudice regarding structure
formation, it is reasonable to say that the largest value
of Hgp which can generate the central COBE value is

H6p = 2.9 x 10 mp].
The Hamilton-Jacobi equations are used to provide an

exact analytic treatment of the translation of limits on

Hgp into limits on H,„p. Again it is possible by sufE-
cient contrivance in the choice of e(P) to put H, „q close
to Hgp. However, by imposing very reasonable physically
motivated constraints the situation changes dramatically.
Here the properties of the maximization are much nicer,
for the maximum values of H „g occur in situations where
slow roll was accurately obeyed 60 e-foldings from the
end. This fits in with the picture that if slow roll is not
accurate, then the expansion is far from de Sitter and
hence the energy scale must be decreasing rapidly. The
best motivated assumption is that e(P) monotonically in-

creases with scale, which in general leads to a maximum
H „g of 6.0 x 10 mp~. With further reasonable assump-
tions this is tightened further to a maximum H, „g of
4.1 x 10 mpi.

Let us compare these rather abstractly generated lim-
its with the sorts of values arising in polynomial chaotic
inflation models, taking as illustration V(P) oc P, which
coincidentally gives values of Gap and g~p very similar to
those we have advocated as helping to maximize H,„g,
though the general e(P) behavior is of course different.
In Sec. II, we provided an exact inBationary solution
based on choosing a polynomial H(P), which yielded
H~p ——6.8 x 10 mph and He„g ——6.2 x 10 mpi. This
solution is a good approximation to that of a quadratic &reh = 7.2'.' x 10 GeV . (40)

potential whenever the slow-roll parameters are small,
so the estimate of Hqp is a good approximation to that
appropriate to U(P) oc P2. As slow roll is a poor approx-
imation at the end of inflation, the value for H „~ is not
as accurate. Using the normalization at Hqp, but using
exact numerical simulation to evolve to H, „~ with the
polynomial potential yields H, „g ——5.4 x 10 mpi.

Throughout, we have been providing what amounts to
upper limits on the energy scale, by finding the largest
values of the energy scale consistent with the COBE nor-
malization and various dynamical constraints. No men-
tion has yet been made of lower limits, for the reason that
the energy scale can be made as low as one likes while still
satisfying COBE, provided one is willing to accept very
small values of Gap. As models do exist where cqp can be
tiny (such a class are the "hybrid" models featuring one
inflaton field and a trigger field to end inflation [22], and
natural inflation [25] provides a further example), lower
limits cannot be derived using COBE alone. However,
there is one very promising route by which a lower limit
could be placed, which would be if it were to be demon-
strated that some sizable component of the COBE signal
were due to gravitational waves [26]. Such a discovery
efFectively places a lower limit on e~p, and hence on the
inflationary energy scale. It has already been noted that
some knowledge of tensor modes is essential if one hopes
to determine the detailed form of the inflaton potential
[27].

There is also considerable interest in the region be-
tween Hgp and H, „g, as the Hubble parameter governs
the amplitude of gravitational wave production. Around
20—30 e-foldings from the end is the time when wave-

lengths which can be seen by Earth and space-based in-

terferometers are generated, and so the COBE normal-
ization allows one to make rather specific statements on
the expected amplitude from COBE normalized inflation
models [28].

Limits on p,„g can be converted to limits on the re-
heat temperature T„h, given two uncertainties. The first
is that the energy is to be distributed evenly amongst
some unknown number g, of particle degrees of freedom
available at that energy; g, is assumed to be at least the
standard model value of 106.75 but could be much larger.
Secondly, there is a parameter a & 1 which measures the
efBciency of reheating, p„h ——o.p,„d, where p„h is the
energy density when the post-inflationary thermalization
can first be said to have completed. In weakly coupled
theories e is expected to be rather small, though in theo-
ries where inflation ends violently, such as through bubble
collisions, it may not be too far from unity. Putting all
this together gives

1/2
ICh 1/4 i/4

]

eI1Cl0.78g, o.
mph ( rnp& j

Making the weak, but not essential, assumption that
c'(P) ) 0 during the last 60 e-foldings of inflation, and
using the standard model degrees of freedom, it is reason-
able to expect that the reheat temperature after inHation
will not exceed
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We end with some brief comments concerning topolog-
ical defects. It has been shown that typically one needs

a defect scale of slightly over 10 GeV if defects are to
explain large scale structure [29]. It is clear that forming
such defects after reheating will be very difEcult here,
because as a first step one must reduce the inflation-
ary contribution to COBE to almost negligible size (as
topological defect theories are already likely to produce
excessive distortions if normalized to other large scale
structure data). The reheat temperature comes down as
the square root of the fractional lowering of the COBE
signal, so to remove the inflationary density perturba-
tions will bring down the reheat temperature by another
factor of at least 3. There is however another possibility
which can be realized with particular ease in hybrid mod-
els [22], which is to form defects as inHation ends in the
field which is triggering the end of inflation. In that case

typically all the inflationary energy density is available
to go into defects, evading both the g, and o. suppression
factors, and removing the need to restore the symmetry.
Given the tight constraints illustrated above, this seems
the most promising route to salvaging compatability of
defect theories with the inflationary cosmology.
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