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Trapped surfaces and the Penrose inequality in spherically symmetric geometries
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We demonstrate that the Penrose inequality is valid for spherically symmetric geometries even when

the horizon is immersed in matter. The matter field need not be at rest. The only restriction is that the
source satisfies an energy condition outside the horizon. No restrictions are placed on the matter inside

the horizon. The proof of the Penrose inequality gives a new necessary condition for the formation of
trapped surfaces. This formulation may also be adapted to give a sufficient condition. We show that a
modification of the Penrose inequality proposed by Gibbons for charged black holes can be broken in

early stages of gravitational collapse. This investigation is based exclusively on the initial data formula-
tion of general relativity.

PACS number(s): 04.20.Ex, 04.20.Fy, 97.60.Lf

In our early analyses [1] of the formation of trapped
surfaces in spherically symmetric self-gravitating systems
we found several criteria that determine the formation of
trapped surfaces. These were all expressed in terms of
quasilocal quantities. We found both necessary and
sufficient conditions when the matter was at rest (moment
of time symmetry data) and a sufficient condition when
the matter was moving. We failed, however, to discover
a necessary condition in the case of nonsymmetric in time
initial data. In this paper we fill in that gap. We do this
by first proving the Penrose inequality in the situation
when the apparent horizon is inside matter. The result-
ing equation can be manipulated to give both necessary
and sufficient conditions for the formation of trapped sur-
faces. These inequalities are interesting in that they use a
global quantity, the Arnowitt-Deser-Misner (ADM)
mass. The only assumptions we make are that a 1+3
splitting of the spacetime by maximal hypersurfaces ex-
ists and that the matter density is non-negative outside
any horizon. Only a part of the Einstein equations, the
Hamiltonian and momentum constraints, are employed.

The apparent horizon in the Schwarzschild geometry is
a surface which satisfies 2m/R =1, where m is the total
(ADM} mass of the spacetime and R is the Schwarzschild
(areal) radius of the surface. If the matter in a spherically
symmetric spacetime has compact support then the
metric in the exterior region can be written in the
Schwarzschild form and the condition 2m /R =1 is both
a necessary and sufBcient condition for the appearance of
trapped surfaces outside matter even in the case where
the matter is moving. In this note we derive inequalities
which are direct generalizations of the 2m/R =1 condi-
tion for the appearance of a horizon which are valid even
when the surface in question is inside the support of the
matter as a follow-on from a proof of the Penrose in-
equality in such circumstances.

Penrose proposed [2] an inequality which he hoped

would be satisfied by black holes. This inequality reduces
to the condition 2m /R = 1 for the horizon of a
Schwarzschild black hole. The Penrose inequality and its
generalization describing charged matter proposed by
Gibbons [3] was formulated in order to clarify cir-
cumstances in which the cosmic censorship hypothesis
[4] can be broken. In a realistic collapse to a black hole
one expects that (i) the area of an event horizon must in-
crease, (ii} apparent horizons may not have an area
greater than event horizons, and (iii) in a final stage black
holes coincide with one of the known simple solutions
(having no hair) —Schwarzschild, Reissner-Nordstrom,
Kerr, or Kerr-Newman black holes.

When the total angular momentum vanishes and the
global charge is 0, the final state should be the
Schwarzschild solution having an area 4m(2m ) . There-
fore, if there is known an initial value configuration
breaking the Penrose inequality, then at least one of the
arguments (i)-(iii} would not be true. The first two state-
ments rely on the validity of the cosmic censorship hy-
pothesis [5];because of that, the failure of the Penrose in-
equality may mean that the cosmic censorship is broken.

Ludvigsen and Vickers [6] have proven that the Pen-
rose inequality holds for a class of (possibly nonspherical)
geometries, assuming a global condition on the past his-
tory of a collapsing system. There are also several partial
proofs [7,8] or numerical analyses [9,10] in the frame-
work of the initial value formalism.

The general spherically symmetric line element can be
written as

ds = adt +adr +br [d8—+sin (8)dg ],
where 0 & P & 2n and 0 & 8 & n are the standard angle
variables.

The initial data are prescribed by giving the spatial
geometry at t =0, i.e., by specifying the functions a and b
and by giving the extrinsic curvature (which we assume
to be traceless, K =0}
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E„'=—2K = —2X&~= —2B,R /aR,
where the areal radius R is defined as

(2)
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R =r&b (3)

A useful concept is that of the mean curvature of a cen-
tered sphere in a Cauchy slice:

p =28„R /&a R . (4)

B,p = —&a I 8npo+ ,'(K„") +—,'p R——
while the momentum constraint reads

It is important to note that each of these three quantities,
I( „", R, and p are geometric three-scalars and as such do
not depend on the coordinates chosen on the three-slice.

The spherically symmetric Einstein equations can be
written as two initial constraints, one evolution equation
and the lapse equation. We will only consider the con-
straints in this paper.

The Hamiltonian constraint can be written as

surfaces are those on which 0' is negative. (Let us remark
that our convention differs from that of [5].)

The Penrose inequality is the statement that the left-
hand side of (10) is positive on any apparent horizon,
where future horizons are defined by 0(S) vanishing and
past horizons by 0'(S) being zero. Equation (10), there-
fore, would prove this inequality for spherically sym-
metric black holes provided that the combination of the
two integrals on the right-hand side is nonnegative. We
show that this is so if we impose very weak conditions on
the initial data.

Let us notice that, using the momentum constraint (6),
the last integrand can be written as

—8mR E,"j„.
The two integrands appearing in (10) can now be writ-

ten as

B„K„"=——',p&aK„"—8mj, . (6)

If T„ is the energy-momentum tensor of the matter field
which generates the spherical solution, then

po 0 ~ JT. (X'.0 ~ 0

The constraints (5) and (6) possess a "conserved" quan-
tity:

R (K„')E= ——— —2~ &a poR pdr
8 2 8 r

2m f &a R pop
—K„" —" dr,

T "&a

and Eq. (10) becomes
1/2

S
16m

R 0(S)0'(S)
8

+2m f &aR pop
—K„" —" dr .

a

(12)

K,' E„'R r .
T

(8)

E is r independent, d„E=0. This can be proved directly

by differentiating (8) and using the constraints (5) and (6).
Assume that the initial data are asymptotically Aat.

Assuming a suitable integrability of the current and
matter densities, asymptotically the mean curvature p ap-
proaches 0 as (2—4m Ir)/r and K„" decreases like C Ir'
while the areal radius R behaves like r(1+m/r), where
m is the ADM mass of the system. One then obtains

(13)

We assume the dominant energy condition [5], which
means that

po- i,~«a (14)

holds outside of the trapped surfaces in the data. We do
not place any restriction on the matter in the interior.

The expression ppo
—K„"j„/&a can be written as

—,'(p+K„")(p+j„/&a )+—,'(p —K„")(p—j„/&a ) .

After a-little algebra one can rewrite (8) as
1/2

This tells us that the integrand in (13) is bounded from
below by

S
16~

R 0(S)0'(S)+2m.f &a poR pdr
8

&a R inf po
— — (p K„"), po+ —(p+ K„")

a a

+ ,' f K„"a (K—„"R (10)

where S=4rrR, 0(S) is the divergence of future-directed
light rays outgoing from a sphere S(8=a 'd/dt

~ „,1nS
=p —K,") and 0'(S) is the divergence of past-directed
light rays outgoing from S (the convergence of future-
directed light rays ingoing from S)
(0'= —a 'd Idt ~;„lnS =p +K„"). Future trapped sur-
faces are those on which 0(S) is negative, past trapped

I

3 Jr Jr=+a R inf po — 0 po+v'a ' v'a

Consider the outermost future trapped surface, the (fu-
ture) apparent horizon, call it S. Let us assume that S is
outside the outermost past trapped surface. In other
words, we assume 0(S)=0 and that both 0 and 0' are
positive outside S. From (14) we also have that

po ~j„~ /&a in the same region. Then (13) implies that

1/2

~2mfR dry'a . inf po
— — 0, po+ — 0' ~0 . (15)
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Of course, an identical argument works if the outer-
most trapped surface is a past apparent horizon. Thus
we have demonstrated that the Penrose inequality holds
for the outermost horizon. Let us stress that the only as-
sumption we make is that the matter satisfies the dom-
inant energy condition in the exterior region. This may
be important if one wishes to consider quantum effects
which may lead to violations of the energy conditions.
These effects will tend to be significant only in the strong
field regions, i.e., inside the horizon.

In summary, we have proven the following.
Theorem. Let X, be a partial maximal Cauchy hyper-

surface that extends outwards from an outermost future
(past) apparent horizon situated at a sphere S. Assume
the dominant energy condition in X, and let the ADM
mass be m. Then the areal radius R =&S/4m. of the fu-
ture (past) apparent horizon must be less than the
Schwarzschild radius 2m.

Remark. The same result holds true also for any non-
maximal Cauchy hypersurface, under the remaining con-
ditions as above.

Putting the content of the theorem in yet another way,
we can say that (15) constitutes a necessary condition for
the formulation of an outer trapped surface and (since a
region filled with trapped surfaces must be surrounded by
an outermost trapped surface) also for the formation of a
trapped surface within a Cauchy slice. It complements
previously obtained results: we failed in [1] to find a
necessary condition for nonsymmetric in time initial data
[11].

We can also derive a sufficient condition using this
same analysis, but under stronger conditions. Assume
that the maximal initial Cauchy slice is either regular at
the origin or has at most a conical singularity there. One
can show [12] (assuming that the dominant weak energy
condition holds everywhere on the Cauchy slice)

R8~2, R8'+2 .

This allows one to get an estimate, using the same tech-
nique as before, that

'T

2m a R p~ —E„' — +M,
1' a

As before, we can show that the volume integral is less
than M, .

Hence, in the case of symmetric in time data, we al-
ways have that m ~

—,'R+M„ independent of the ex-

istence or not of trapped surfaces. We do not know
whether this condition can be violated in the case of non-
symmetric in time data.

Gibbons [3] proposed a modified form of (15) for
charged matter:

S
16m

1/2 ' 1/2

+q S (17)

where q is a global charge. (17) can be proved assuming
that all charged matter is enclosed within the outermost
trapped surface. In this case the energy density can be
written as p =p, +p', that is, it splits into a purely elec-
trostatic (monopole) part

q
Pe

8 R4 (18)

and the remaining matter density, represented by p
which we assume satisfies the energy condition (14). The
integral of the electrostatic part can be performed explic-
itly, to give

„q B„R
r=q ~ S .

r 2R2

This gives the equation

where M, (S) is the external rest mass Jt pod V outside
.Out S

a surface S. Thus, a sufficient condition is

If m ~ +M, (S) then S is a trapped surface .R (S)
2

Unfortunately, the analysis of moment of time symme-
try data suggests that the above condition may, perhaps,
never be satisfied.

At moment of time symmetry, both j' and K,' are iden-
tically zero and Eq. (13) reduces to

1/2

m— S R
p +2m &aR p~dF .

16m 8 P

S
16~

1/2 ' 1/2

+q S
R 8(S)8'(S)+2m f +a p R pdr+ ,' J K„"d,(—K„"R )dr . (20)

The rest of the reasoning is exactly the same as before, so
that finally one obtains (17).

%'e would like to point out that the Penrose inequality
[(15) with q=0] is always true, irrespective of whether
the matter is charged or not and independent of the de-
tailed distribution of charged matter. The modification
proposed by Gibbons for charged systems, however, re-
quires a closer examination. We assumed above that the
charged matter is contained entirely inside the outermost
trapped surface. Can the above result be true without

t

this condition? Equation (20) strongly suggests a nega-
tive answer. It is clear that Eq. (20) is valid even when
the charge extends outside the horizon if we understand
p to represent p =p —p„where p, is defined by (18).
In this case, however, p, is an overestimate of the electro-
static energy and p underestimates the matter energy.
Even if the matter were to satisfy the dominant energy
condition we have no reason to assume that the unphysi-
cal p would do so. It is easy to imagine an initial
geometry with an apparent horizon, where a large change
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is carried by matter outside the region with trapped sur-
faces. It should be simple to arrange things so that the
integrals (20) are negative thus violating the inequality
(17).

On the other hand, (17) will be true in the later stages
of gravitational collapse. One can show that when S is
chosen to be the outermost trapped surface then it must
move outward faster than light rays, thus swallowing
more and more of the matter; ultimately the right-hand
side of (20) becomes negligible and therefore the left-hand
side of (20) should equal zero. This in turn suggests that
the areal radius of trapped surfaces should grow (since
both global charge q and mass m are conserved) during
an evolution. That is indeed true; the directional deriva-
tive 8, + VB, of the area of the outermost trapped sur-
face S is equal to

R K,"&a (V—a/&a ),
where V is velocity of S and a/V a the velocity of outgo-
ing light rays. At the future horizon If.'„ is strictly posi-
tive: K"=—'( —8+8') =8'/2.

Let us comment on our assumptions concerning the

focusing properties of the spacetime geometry. The con-
dition that 0 is strictly positive outside a sphere of van-
ishing 8(S) means that white holes (if there are any) are
hidden inside S. Ingoing light rays are always convergent
(i.e., 8 )0) in any realistic gravitational collapse that de-
velops from smooth initial data. Or, in other words, if at
some time t the geometry of a collapsing system contains
a surface with vanishing 0', then the past history of that
system must contain a singularity. In the case of spheri-
cal symmetry the existence of a singularity follows direct-
ly from the Raychaudhuri equations [5], while in the gen-
eral nonspherical case one can invoke the Penrose-
Hawking singularity theorems. And conversely, one can
prove that if smooth initial data with strictly positive 9'

give rise to a smooth evolution then ingoing light rays are
always convergent, 0'&0 on all future Cauchy slices. It
is reasonable, therefore, to assume that 8' is always posi-
tive.
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